rethinking water: a caas design approachmodel environmental water requirements (ewr) on a global...

12
Design for Next 12th EAD Conference Sapienza University of Rome 12-14 April 2017 Copyright © 2016. The copyright of each paper in this conference proceedings is the property of the author(s). Permission is granted to reproduce copies of these works for purposes relevant to the above conference, provided that the author(s), source and copyright notice are included on each copy. For other uses please contact the author(s). Rethinking Water: A CAAS (City As A Spaceship) design approach Susan Fairburn a , Barbara Imhof b , Susmita Mohanty c Susan Fairburn * a Gray’s School of Art, Robert Gordon University, UK b Liquifer Systems Group (LSG), Austria c Earth2Orbit LLC, (India) *[email protected] Abstract: Water is ubiquitous and essential, yet we struggle to understand it from a systems perspective. Water is a terrestrial closed-loop system involving individuals, communities, cities and geographies, and as such, might it serve as a metaphor for sustainable design? We identify four locations and frame their connections through water and society. This interaction is highly relevant to future dense urban environments and of interest to CAAS (City As A Spaceship) who explore reciprocities between terrestrial and extra-terrestrial architecture and design. CAAS explores these approaches to water management: 1) California State (United States) 2) New Delhi (India) 3) The International Space Station (Lower Earth Orbit) 4) Micro-Ecological Life-Support System Alternative (European Space Agency Research settings) In this paper, CAAS applies design research approaches to curate and frame reciprocities between situations and societies. Using locational case studies and city-by-city scale infographics it generates a discursive space from which to imagine conceptual shifts in sustainable design. Keywords: Water, Resource Management, Reciprocity, City, Spaceship 1. Introduction Water is one of the most pressing challenges of the 21st century: whether it’s too much, too little or too dirty. Violent tensions over water are certainly nothing new, but they are on the rise. Basic demand-supply rules go a long way to explaining the reasons behind this growing friction and threat. Water resources are finite and the combination of a surging world population and steady

Upload: others

Post on 16-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

DesignforNext

12thEADConferenceSapienzaUniversityofRome

12-14April2017

Copyright©2016.Thecopyrightofeachpaperinthisconferenceproceedingsisthepropertyoftheauthor(s).Permissionisgrantedtoreproducecopiesoftheseworksforpurposesrelevanttotheaboveconference,providedthattheauthor(s),sourceandcopyrightnoticeareincludedoneachcopy.Forotherusespleasecontacttheauthor(s).

RethinkingWater:ACAAS(CityAsASpaceship)designapproachSusanFairburna,BarbaraImhofb,SusmitaMohantycSusanFairburn*

aGray’sSchoolofArt,RobertGordonUniversity,UKbLiquiferSystemsGroup(LSG),AustriacEarth2OrbitLLC,(India)*[email protected]

Abstract:Waterisubiquitousandessential,yetwestruggletounderstanditfromasystemsperspective.Waterisaterrestrialclosed-loopsysteminvolvingindividuals,communities,citiesandgeographies,andassuch,mightitserveasametaphorforsustainabledesign?Weidentifyfourlocationsandframetheirconnectionsthroughwaterandsociety.This interaction is highly relevant to future dense urban environments and ofinteresttoCAAS(CityAsASpaceship)whoexplorereciprocitiesbetweenterrestrialand extra-terrestrial architecture and design. CAAS explores these approaches towatermanagement:1)CaliforniaState(UnitedStates)2)NewDelhi(India)3)TheInternationalSpaceStation(LowerEarthOrbit)4) Micro-Ecological Life-Support System Alternative (European Space AgencyResearchsettings)In this paper, CAAS applies design research approaches to curate and framereciprocities between situations and societies. Using locational case studies andcity-by-cityscaleinfographicsitgeneratesadiscursivespacefromwhichtoimagineconceptualshiftsinsustainabledesign.

Keywords:Water,ResourceManagement,Reciprocity,City,Spaceship

1.IntroductionWaterisoneofthemostpressingchallengesofthe21stcentury:whetherit’stoomuch,toolittleortoodirty.Violenttensionsoverwaterarecertainlynothingnew,buttheyareontherise.Basicdemand-supplyrulesgoalongwaytoexplainingthereasonsbehindthisgrowingfrictionandthreat.Waterresourcesarefiniteandthecombinationofasurgingworldpopulationandsteady

Page 2: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

FAIRBURN,S,IMHOF,B.ANDMOHANTY,S.

2

industrialisationmeansthescrambleforwaterisrisingandthisdrivestheneedtodevelopamultitudeofsustainableapproachestowatermanagementandrecovery.

Understandingsocietalneedsandtheirimplicationforafiniteresourceisdifficultatthegloballevel,andchallengingevenattheurbanlevel.TheBrundtlandReport(OurCommonFuture,1987)publishedbytheWorldCommissiononEconomicDevelopment,iswherethetermsustainabledevelopmentwasfirstused.Itdescribedtheneedfordevelopmentthatwouldenableustomeetourpresentneedsinwaysthatwouldn’tjeopardizetheneedsofothers,particularlyfuturegenerations(WCED,1987).

Watermanagementandwaterrecoverysystemsarethereforebecomingincreasinglyimportantineverydayurban,sub-urbanandruralsettingsassystemsbecomestressed,aswestarttoanticipatetheimplicationsoffailures.Cleandrinkingwaterandsanitationareessentialtotherealisationofallhumanrights,yet884millionpeopledonothaveaccesstopotablewater(UNICEF,2015).Thispaperexploresthroughaseriesofcasestudiesthathighlightchallengesandsolutions;threeterrestrial(4.1,4.2and4.4)andoneextra-terrestrial(4.3).These,whenanalyzedwithadesign-ledCAAS(CityAsASpaceship)lens,cansetthegroundworkforlookingatwaterfromasystems-perspective,andhelptoconceptualisefutureapproachestoconsideringsustainabilityfromapositionofresourceabundancetoafullyclosed-loopbio-regenerativesystem.

2.BackgroundCAASisametaphorforlearningfromreciprocitiesbetweenaspaceshipandadensecity–environmentschallengedbyissuesofdensity,self-sufficiency,multi-cultural‘society’,confinedspaces,hygiene,recyclingofresourcesandenergyefficiency–alaunchandlandingatthesametime.Usingaspaceshipasaprecedent,withit’simminentcontextualrequirements,thevalueofeachdropofwater,singlebreathofair,freshlettuceorself-grownpotatoesisimmensebecausetheyareessentialforsurvivalintheextremeenvironmentsbeyondourearth’satmosphere.Facingenvironmentalchanges,fastgrowthofpopulation,andnaturaldisastersonearth,thereisaneedtoprioritisetheterrestrialenvironmentandits’resourcestosustaininghumanlife.CAASoffersviableapproachestomeetingtheneedsofterrestrialsocieties,todayandinthefuture,andemphasizingsustainabledesignsolutionsawayfromwaste-drivenproductionthatserveeconomies.

Inthispaper,theCAASdesign-ledapproachprovidesabroadlyframedanalysisofwater.AtthecoreofasystemsperspectiveonwaterwouldsittheAfricanproverb:“Filthywatercannotbewashed.”TheframesthroughwhichCAASexploreswatersystemsflowfromtheperspectivesof;Society,Environment,andEcology,whicharefurtherexpandedonwithanoverviewofDesignandTechnology.Theframeshelptoshapethespaceforconsideringfuturewatermanagementsystems.

Society:Withglobalpopulationbeyondsevenbillion,andrapidlyexpanding,therearealreadychallengesinmeetingthehumanrightssetoutbytheUnitedNations(UN).UNGeneralAssemblyResolution64/292statesthatcleandrinkingwaterandsanitationareessentialtotherealisationofallhumanrights.WHO/UNICEFreportsthatover90%oftheworld’spopulationnowhasaccesstoimprovedsourcesofdrinkingwater,howeverthatstillleaveshundredsofmillionsofpeoplewithoutaccess(UNICEF,2015).

Inunderstandingglobalfreshwaterdemands,thefirstrealizationisthatitisvirtuallyimpossibletomodelEnvironmentalWaterRequirements(EWR)onaglobalscale.Smakhtinandcolleagues(2004)presentedoneofthefirstattemptstodoso,basedonsimulationsusingaglobalhydrologymodel,withanaimtoinformenvironmentalwatermanagementapproachesandpolicies.Theirglobal

Page 3: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

RETHINKINGWATER:ACAAS(CITYASASPACESHIP)DESIGNAPPROACH

3

assessmentapproachattemptedtoestimatethevolumeofwaterrequiredtomaintainfreshwaterdependentecosystems,Indoingso,theyconceivedoffourcategoriesofenvironmentalwatermanagementapproaches:Natural(unmodified),Good(slightlyormoderatelymodified),Fair(moderatelyorconsiderablymodified),andPoor(criticallymodifiedanddegraded).Theirworkhighlightedtheneedtocontextualisethecategoriesfromasocietalperspective,andtoidentifywatermanagementapproachesthatmeetthe‘Good’criteria,thoughitmaybethat‘FairtoGood’isamorerealistictargetforcitiesandgovernments.

Environment:Thispaperfocusesmainlyonurbanenvironments;locationswithhighhumandensitywherethereisextensiveexploitationofwaterresources.Smakhtinandcolleagues’(ibid)model

identifiedsignificanturban/ruralconcernsandtheneedformanagementinterventionstorestoreflowpatternsandriverhabitats,thusacknowledgingarelianceonareasoutlying.Theydefinedawaterstressindicatorandshowedtheproportionofutilizablewaterinriverbasinswithdrawnfordirecthumanuse.Theirfindingshighlightedthechallengesfacingwatermanagement,theimperativetoconsiderthesystematscale,andtheneedforregularglobalwaterassessment.Hence,currentsystemsandapproachesneedre-thinking,andre-designing,toachievealternativewatermanagementpracticeswithinurbansocieties,rapidintegrationofecosystemperspectives,anduptakeofpromisingemergenttechnologies.Thismacro/microperspectiveisofinteresttoCAAS.

Ecologyistherelationshipbetweenorganisms,peopleandtheirenvironment.Whenlookingatthe“spaceship”paradigmofCAAS,theISSservesaslivingexample(Fairburn,etal.,2014),withaspaceshipresemblingawholesystem,acomplexsystemthatprovidesshelter,energy,andnutrition,andhousesinhabitantsusingtechnologiestomanagewater,airandotherresources.ThustheecologiesoftheISSreferencetheinterrelationshipsbetweenshelter,energy,lifesupportandtheinhabitants(Figure1).

DesignandTechnology:Increasingproblemsofwatershortagehavestimulatedthedesignoftechnologicalapproachesandnewpartnerships.OneoftwoexamplesfoundinIndia,isthe‘SujalaDharaproject(ToilettoTapWater)’,anexampleofasolar-poweredplantthatutilisestechnologyintheformofaseriesofseven-layersoforganicandinorganicfilters,andanano-filtermembrane.Thisapproachcanproducearound4,000litresofcleanwaterperhourandcanoperatearoundtheclock.Analternativetechnologicalexampleisthe‘JanickiOmniprocessor’,whichintegratessimpletechnologyandutilisessewersludgetogeneratecleandrinkingwater,electricityandpathogen-freeash;anapproachthathasattractedtheattentionandsupportofphilanthropists(Gatesnotes,2015).

Technologiesthatemergedfromextra-terrestrialpursuitsarefindingtheirwaytoinformterrestrialcontexts,thoughtherearemoreopportunitiestoapplytheseapproachesinwatermanagement.ThetreatmentofwaterinspaceshipsbelongstotheareaofLifeSupportSystems(LSS),whichalsoincludestherevitalizationofbreathableair,foodproductionandtreatingorganicwastematerials,hencethesystemperspectiveisinherentinextra-terrestrialoperationaldesignmethods.Figure1conveysspaceshipecologiesthroughaclosed-loopvisualisation–thusreinforcingthelifesupportsystem,andspecificallywater,intheextremescenariooflifeinspace.

Page 4: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

FAIRBURN,S,IMHOF,B.ANDMOHANTY,S.

4

Figure1.CAAS-ISSecologiesschematic.(ImageCredit,BarbaraImhof).

3.DesignresearchandmethodologyTheauthorscreatedCAASasaworkingresearchmethodologytoconsolidateverydifferentscenariosandenvironments(spaceandterrestrial),tobeassembledunderoneumbrella,tostudycommonalitiesandreciprocities.In2010,whentheCAASinitiativestarted,overlayingspaceandterrestrialhabitation,particularlyhabitationwithindensemega-citiesdistributedacrosstheplanet,wasunheardof.Tousecasestudiesfromthesecontrastingandextremeenvironments,whichseematfirstglancetobefarapart,andsearchfortheiroverlap,isamethodologyforinnovation(Figure2).

Morespecifically,theCAASmethodologyisaboutgoal-orientedproblemsolvingandtheabilitytochannelinformation,whichfurtherstheprojectorresearchquestiontowardsthethemeandfocusoftheproject.Itisabouttheevaluationofdatathroughcreativemeans,inthiscase,constantlymakinginferencesfromoverlayingscenarios–throughimagination,creationandvisualisation–asortofthoughtexperiment(Nersessian,1992).ItisimmersedinthebroadfieldofDesignResearch.AccordingtoMalikaBose,AssociateProfessoratthePennStateUniversity,designprocessesaresimilartoacriticalanalysisasundergoneinscientificwork(Bose,2007,p.126).Designstudiosofferaproductiveenvironmenttoenrichascientificwayofworkingwithacreativeculture,andtomergebothcultures.CAASwasconceivedinsuchanenvironmentandtheauthorshavebeendevelopingthisresearchapproachincollaborativeworksessionsandtwoworkresidencies;onewasself-

Page 5: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

RETHINKINGWATER:ACAAS(CITYASASPACESHIP)DESIGNAPPROACH

5

organisedatLakeComoinItalyandmorerecentlyin2015,whentheauthorswereinvitedbytheKhojInternationalArtistAssociationinDelhitoconductatwo-weekintensiveArt/Scienceresidency“TheUndividedMind”(Khoj,2015).Theauthorsdevelopedthedesignresearchapproachontwodifferentlevels:

Researchbydesign:takingdesignorcasestudiesforresearchanalysis

Designbyresearch:takingresearchresultsasbasisfordesign-orientedoutputs

Figure2.CAAS’Designresearchmethodology.(ImageCredit,BarbaraImhof,SueFairburn).

AsshowninFigure2,thisdesignresearchapproachinvolveslocationalscenariosandinfographics,whicharecomposedtodelivertheanalysisofthework,fromwhichinsightsaredrawntoaddtothediscoursewithinagivenarea,suchasthedesignofenvironments.TheCAASmentalmodelisthefirststeptowardsaconceptualshift,beginningwithacarefullycuratedsetofcasestudiesselectedforanalysis,asoutlinedinthenextsection,andfollowedbycomparativeanalysisatacity-by-cityscale.

4.LocationalScenariosThissectionpresentscasestudiescoveringarangeofgloballocations,approachesandissuespertinenttoanalysingandinformingfutureapproachestowatermanagement.Centraltoallscenariospresentedistheconnectionframedthroughwaterandsociety.Threeofthemareterrestrial-basedandoneisextra-terrestrial.

4.1CASESTUDY“A”:CALIFORNIA,USALocation:NorthernHemisphere.Latitude120W,Longitude37NRemoteness:WellconnectedtotherestoftheUnitedStatesandmajorcitiesworldwideSociety:38.8Millionin2015Watersources:Groundwater,ColoradoRiver,SanJoaquinRiver,SanFranciscoBay,Lakes

Page 6: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

FAIRBURN,S,IMHOF,B.ANDMOHANTY,S.

6

Startingin2011/2012(andstillongoing),California,oneoftheworld’smostprosperouseconomieshasbeenfacingoneofthemostseveredroughtsonrecord.WaterinCaliforniaisverycloselymanaged,withanextensivepipelinenetworktoservethemostpopulatedanddryareasofthestate.Precipitationislimited,withthevastmajorityofrainandsnowfalloccurringinthewintermonths,inthenorthernpartofthestate.Thisdelicatebalancemeansthatadryrainyseasoncanhavelastingconsequences.Astheworld'slargest,mostproductive,andmostcontroversialwatersystem,itmanagesover49km3ofwaterperyear(Jenkinsetal,2004).

Waterandwaterrightsareamongthestate'sdivisivepoliticalissues.Anongoingdebateiswhetherthestateshouldincreasetheredistributionofwatertoitslargeagriculturalandurbansectorsorincreaseconservationandpreservethenaturalecosystemsofthewatersources.AsthemostpopulousstateintheU.S.andamajoragriculturalproducer,droughtinCaliforniacanhavesevereeconomicaswellasenvironmentalimpact.Thestateadministrationhasrespondedwithasenseofurgencyworthyofemulationbyotherpartsoftheworldthatareseekingsolutions,regulationsandtheresolvetoconservewateraggressively.Californiahasbroughtinregulation,behaviouralcampaigns,anddisseminationofpractices,asthemain‘technology’tosaveeverydropofwatertheycan.Californiansareurgednottorelaxtheirwater-savinghabitsandtocontinueconservingbyreducingoreliminatingoutdoorirrigationwhenit’swetandkeepinghouseholdwaterusetotheessentials.Theirapproachescouldbecriticizedastoolaxgiventhelong-termimplicationsonwidersociety.

4.2CASESTUDY“B”:‘SUJALADHARA-TOILETTOTAP’WATERPROJECT,NEWDELHI,INDIALocation:SouthHemisphere,Latitude:28.6139ELongitude:77.2090ERemoteness:India’scapitalcitywithexcellentconnectivitybyrail,roadandairSociety:18,686,902asofFebruary2016 Watersources:RiversYamunaandGanga,BhakrastorageinPunjab

InJuly2015,ArvindKejriwal,theChiefMinisterofNewDelhiinauguratedthepilotproject“SujalaDhara--Toilettotapwater”attheKeshopurSewageTreatmentPlant.TheDelhiJalBoardhaspartneredwithSANA(SocialAwareness,NewerAlternatives)toimplementaprojectthatrecyclessewagewasteintodrinkingwater.Theplantisgenerallyaffordableandpoweredbysolarenergy.Itcanproducearound4,000litresofcleanwatereveryhour,andrunningcontinuouslythat’s25millionlitresofdrinkingwaterperyear.ThetechnologywasdesignedbyAbsoluteWater,anintegratedwatermanagementcompany(AbsoluteWater,2016).Thewaterfromthesewagepitgoesthroughabiofilterthathassevenlayersoforganicandinorganicmaterialincludingplants,earthworms,sandandpebbles,andthenthroughanano-filtermembraneforfurthertreatment.However,interestinthistechnologyhascomeupagainstasocietalmentalblockaroundtheuseoftreatedsewage,eventhoughweknowfromexperienceontheISSthatthetechnologyisdoableinbothsettingsandthatthetreatedwaterisfitfordrinking.

Thesekindsofwaterprojects,emergentfromenvironmentaldesignandtechnology,arenotlimitedtoDelhi.Drivenbynecessityandwaterscarcity,denselypopulatedurbanIndiancitieshavebegunpursuingotherwatermanagementstrategiesthatareakintothesystemsthatarebeingdesignedandusedinextra-terrestrialenvironments.Manycitieshavemadeitmandatoryforallnewresidentialandcommercialdevelopmentstorecycleandreusewaterlocallyandlocalmunicipalitiesareencouragingandenforcingrainwaterharvestinginsomestates.Forexample,inTamilNadu,rainwaterharvestingwasmadecompulsoryforeverybuildingtoavoidgroundwaterdepletionand

Page 7: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

RETHINKINGWATER:ACAAS(CITYASASPACESHIP)DESIGNAPPROACH

7

hasbeenrathersuccessful(Waterharvesters,2016).Theharvestedrainwatercanbeusedasdrinkingwater,longer-termstorageandforotherpurposessuchasgroundwaterrecharge.

ThecultureofwaterconservationisnotentirelynewtoanoldcivilizationsuchasIndia.Anarchitecturallypicturesquewaytoaccessgroundwateraccesswasthroughbeautifullydesigned“stepwells”.MostcommoninwesternIndiaandaridregionsofsouthAsia,stepwellsarewellsinwhichthewatermaybereachedbydescendingasetofsteps.ThepracticalideaspreadnorthtothestateofRajasthan,alongthewesternborderofIndia,whereseveralthousandsofthesewellswerebuilt,withthisconstructionapproachhittingitspeakfromthe11thto16thcentury(LivingstonandBeach,2002).Mostexistingstepwellsdatefromthelast800years.

Stepwellsareexcellentexamplesofbuiltwatermanagementtocopewithseasonalfluctuationsinwateravailability,toaccessgroundwater,andtomaintainandmanagethesystems.Aswellasprovidingaccesstopotablewater,stepwellsalsoservedaleisurepurposeforsociety,withthebaseofthewellprovidingrelieffromdaytimeheatandaplaceforsocialgatheringsandreligiousceremonies.Watermanagementandsocietalcustomsneednotbedivisive.

4.3CASESTUDY“C”:INTERNATIONALSPACESTATION,LOWEARTHORBIT Location:ISScruisingaltitude400kmfromEarthRemoteness:OrbitstheEarthevery90minutes;servicedbyhumanandcargoferriesSociety:maximumof6 Watersource:TheISSreceiveswatersuppliesviacargoshipssuchastheRussianProgressspacecraft,EuropeanATV(AutomatedTransferVehicle),JapaneseHTV(H-2TransferVehicle),AmericanDragoncapsule.

TheISSorbitstheearthevery90minutes400kmabovetheearth’ssurfacewithaspeedof27,000km/hr.TheISSisbigenoughtobeviewedwithanakedeyefromearthwithatotalvolumeof916m3andthespreadofasoccerfield.Since2000ithasbeenpermanentlyoccupied,firstwithacrewof3andfrom2009onwards,witha6-person-crew.Itisthelargestinternationalcooperationprojectforthepeacefuluseofouterspace.Itservesasscientifictest-bedinpreparationoffuturemissionstotheMoonandtoMars.

Forasix-monthstay,anastronautneedsapproximately0.5tonsofwater,andforsixastronautsthattranslatestonearly3tonsofwater(Figure3).Withinternationallaunchratesrangingfrom€30000-36000perkg,waterbecomesaratherexpensiveresourcethatisshippedtoorbit,thusrecyclingthispreciousresourcebecomesimperativewiththepushtoexploreoffplanet.

Fig.3:LiferequirementsonEarthandinSpaceaccordingtoNASA,courtesyofNASA.

Page 8: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

FAIRBURN,S,IMHOF,B.ANDMOHANTY,S.

8

OntheISStherearetwodifferentwatertreatmentsystems.OntheUSside,theastronautsdrinkafilteredmixturethatincludesrecycledhygienewater,condensate,astronautbreathandsweat,andurinefromcrewmembers.SometimestheastronautsgoovertotheRussiansegmentandcollecttheurinetouseitfortheUSsystem.TheISSalsostoresabout2000litresofwaterinreserveforemergencypurposes.TheISSwatersystemwasdesignedanddevelopedtogetherwiththeairrevitalizationsystem.BothsystemsarepartoftheoverallISSEnvironmentalControlandLifeSupportSystem(ECLSS).WhiletheISSECLSShasundergoneconstantupgradesandimprovements,itisnotafullyclosed-loopyetbutitwouldneedtobeforlongdurationhumanmissionstoMoonandMars.

PartsoftheISSECLSShavebeenusedinterrestrialwatertreatmentsystemse.g.theMicrobialCheckValve(MCV)thatisanintegralcomponentofthewaterpurificationandfiltrationprocess.TheMCVisaniodinated-resinthatprovidesasimplewaytocontrolmicrobialgrowthinwaterwithouttheuseofpower.Bydispensingiodineintothewater,itperformsanimportantsecondarynutritionalfunctionforhumans.Thischemical,whenaddedtothediet,promotesproperbrainfunctionsandmaintainsbodilyhormonelevels--whichregulatecelldevelopmentandgrowth.CollaborationsbetweenNASAandaidorganizationshaveledtowaterrecoverysystemsusingtheMCV,thustheseextra-terrestrialapproachestowatermanagementhavebeenappliedtoaddressterrestrialissues.

4.4CASESTUDY“D”:MELiSSA,UNIVERSITATAUTONOMAdeBARCELONA,SPAIN.Location:NorthernHemisphere.Latitude:41.390205Longitude:2.154007 Remoteness:IntheprovinceofCatalunya,Spain.Excellentconnectivity.Society:Irrelevant;CurrentlyitisanexperimentaltestbedhousedinauniversityWatersource:Irrelevant

Thisfinalcasestudydrawsourfocustofuturelong-termspacemissionsandpermanentstaysonextra-terrestrialsurfacesforwhichwillrequireaclosedLifeSupportSystem.Itisintendedtobeaclosed-loopsystem,andisconceivedasanetworkoffiveconnectedbiologicalcompartments.Eachofthesecompartmentshasadifferentbiochemicalfunctionthatallowsforexchangeofgasesandfluids.Theastronautsproducebiowastethatisfedintotheliquefyingcompartmentwhereanoxygenicfermentationtakesplaceusingbacteria,aprocesswhichsetsfreevolatilefattyacids,ammonia,andminerals.Thesereachthesecondcompartment,whichallowsforaphotoheterotrophicprocessi.e.thedecompositionofthematerialsthroughanothertypeofbacteria.Bothcompartmentsandtheastronautsreleasecarbondioxidewhichisfedintothelooptothealgaecompartment.Inthiscompartment,thealgaetransformthecarbondioxideintooxygenthroughaphotosyntheticprocess,andtheastronautscanrecoverwaterasaby-product.Afterthesecondbacterialdecomposition,ammoniaandmineralsgointothenitrifyingcompartmentwhereoxygenisadded.Theresultingnitratesareusedfortheplantcompartment.Thecrewtendstheplantsandharvestsvegetables.Afullyclosedloopbio-regenerativesystemthatservestoinspireandinnovatefutureterrestrialandextra-terrestrialwaterandresourcemanagementsystems,alike.OneoftheESA-incubatedDutchcompaniesIP-Staroffersgrey,yellow,blackwaterrecycling,nutrientrecovery,foodproduction,toxin/pathogensandmicro-pollutantremoval,allderivedfromtheMELiSSAsystem(figure4).Also,intheveryisolatedAntarcticConcordiaResearchStation,blackandgreywatertreatmenttranslatedfromtheMELiSSAspaceapplicationproduceswater,whichfollowsthehygieneandsafetystandardsforpotablewater.(Battrick2004)

Page 9: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

RETHINKINGWATER:ACAAS(CITYASASPACESHIP)DESIGNAPPROACH

9

Figure4:MELISSAsupportsystemsdiagram(waterisshownasblueline).(Credit:LIQUIFERSystemsGroup,Schematic:AnneMarleneRüede,2014)

5.CAASComparativeAnalysis Wefurtherexploredthe“city”asa“spaceship”metaphorandusinggraphicalrepresentationsofinformationonwatermanagementandrecovery(dataonspecificurbansettings)asacomplementarywaytocommunicateandmakeinferences.Weattemptedtomapterrestrialwatertendencies,specificallylookingatwaterconsumption,wastewatertreated,waterqualityatsource,investmentintowatersystemspercapita,andefficiencies.ThissectionprovidesaCAAS-basedanalysisthroughtwosetsofvisualdata.Figure5presentsasetcomparingandcontrastingtheworld’sdensestcitiessuchasMumbai,Tokyo,NewYork,SaoPaulo,Cairo,MexicoCity,Amsterdam,Paris,Lagos,Johannesburg,andcomparesthemtosmallercounterparts,suchasSanFrancisco,Toronto,andVienna.

Thissetcomparing15citiesoftheworldallowsustoseehowcitiesmanagetheirwaterresourcesandthedegreetowhichtheyinvestinqualityandefficiencies.Asaninfographic,itevidencesthevariablerelationshipinwaterefficiencyandwastewatertreatedbetweencitiesfromindustriallyadvancednations(e.g.Amsterdam,NewYork,Tokyo,TorontoandVienna)andthoselessindustrializedones(e.g.SaoPaolo,MexicoCity,Cairo),withtheformerachievingagoodbalanceofoverallsystemefficiency,likelyconfirmatoryoftheirinvestmentpercapita,despitetheindicativewaterqualityatsource.Butthereismoretoit-evenamongtheindustrialnations,waterconsumptionpatternsvarywidely.Althoughthiscomparativeanalysisoffersinsightsintosocietalfactorsofwateruse,managementandrecovery,andgiven‘profile’mightsuggestthecombinationofapproachesforsustainablethinkingandpractices,furtheranalysesandthinkingisnecessarytogetanin-depthunderstandingofwhatthesemapsconvey.

Page 10: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

FAIRBURN,S,IMHOF,B.ANDMOHANTY,S.

10

Figure5:Citiesoftheworld:WATER–avisualvectorportrayalofcomparativedatapointsforWaterManagementandRecovery,Imagecredit:AnneMarleneRüede,2016.

6.ConclusionsThispaperproposesinpart,thatwaterservesasametaphorforashared,commongood,thatlinksusthroughoursharedresponsibilities.Itpositionsthisalongsidethe‘spaceship’paradigm,wherebythespaceshipresemblesawhole,complexsystemthatprovidesshelter,energy,andnutrition,andhousesinhabitantsusingtechnologiestomanagewater,airandotherresources.Itisproposedthat

Page 11: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

RETHINKINGWATER:ACAAS(CITYASASPACESHIP)DESIGNAPPROACH

11

thisparadigmrelatesstronglytosustainability–whichatthecoreconsidersresourceutilisationanddepletion(Walker,2006,p.81),givingprioritytotheenvironment(ibid,p.5),andrequiringasharedsenseofresponsibilityacrossthesystem.Wehavenotyetachievedthatsharedresponsibility,butthispaperframestheemergingreciprocitiesbetweenlivingonandoffplanetandthesystemsthathavehadtobedevelopedtosupportlifeinthelatterextreme.

WastemanagementstrategiesonEartharenowstartingtomirrorthoseofSpace.Theclosed-loopMELiSSAlife-supportsystemsimplementedinSpain,aswellasthesemi-closedloopISS-basedlife-supportsystems,arenowfindingtheirwayintourbanandsuburbanpartsoftheworld–fromCaliforniatoNewDelhi.Thetechnologiesemployedfromplacetoplacemightvarysomewhat,buttheultimateobjectiveisthesame:treatmentofsewageeffluentstogeneratepotablewater.TheNewDelhicasestudyisplayingoutinotherpartsoftheworldwiththeirownregionalnarratives.Withthedepletionofgroundwater,riverwaterandlakes,bothindustrializedandemergingeconomieshavestartedtoemploypoliciesandregulationsthattreatwasteasaresource.Seekingtostretchtheglobalallotmentofriverwater,lakesandgroundwater,wateragenciesworldwidearestartingtorecyclesewageeffluent,legislatingrainwaterharvesting,promotingrenewabilityandefficiency,andresponsiblelifestyles.Additionally,theCaliforniacaststudy,highlightsissuesgroundedinhistoricalapproachestolarge-scaleland-basedinfrastructureforurbanprosperity,plusissuesarisingfromwaterscarcity,supportingthelackofcorrelationbetweenresourcevalue,societaluse,andlifestyle.

CAAS’researchmethodologies,involvingconsolidatingverydifferentscenariosandenvironmentstostudytheircommonalitiesandtoframereciprocities,offersameanstoenrichascientificwayofworkingwithacreativeculture,andtomergebothcultures.Closingthelooponwaterisapriorityandthispaperpresentscontentandappliesdesignresearchtoinformourunderstandingofsustainabilitythroughwater,whichisitselfaclosed-loopsystem.Asachallengeofglobalproportions,providingaconsistentsupplyofpotablewaterhasbecomeakeytalkingpointofpoliticians,philanthropists,citizenactivistsandpolicymakersalike.Architects,designersandengineershaveanimportantroletoplayinapplyingdesignstrategiestominimizetheuseofwaterandmaximizewatermanagementandrecovery–bothonandofftheplanet.InthewordsofDavidSchindler,oneofCanada’smostinfluentialenvironmentalscientists:“Wearegoingtoforgetallabouttheeconomywhenwerunoutofwater”.

ReferencesWCED(1987)OurCommonFuture,WorldCommissiononEnvironmentandDevelopment,OxfordUniversityPress,Oxford,p.43.

UNICEF/WHOProgressonSanitationandDrinkingWater:2015UpdateandMDGAssessment.URL:http://www.unicef.org/publications/files/Progress_on_Sanitation_and_Drinking_Water_2015_Update_. pdf[accessed15February2016].

Smakhtin,V.,Revenga,C.andDöll,P.,(2004)APilotGlobalAssessmentofEnvironmentalWaterRequirementsandScarcity,WaterInternational,29:3,p.307–317,September2004.

Fairburn,S.,Mohanty,S.Imhof,B.,(2014)CityAsASpaceship(CAAS),PaperIAC-14-E4.2.8presentedatthe65thInternationalAstronauticalCongress,Toronto,CanadaSeptember2014. Nersessian,N.J.(1992)IntheTheoretician'sLaboratory:ThoughtExperimentingasMentalModeling,inPSA:ProceedingsoftheBiennialMeetingofthePhilosophyofScienceAssociation,VolumeTwo:SymposiaandInvitedPapers,pp.291-301Publishedby:TheUniversityofChicagoPress.

Page 12: Rethinking Water: A CAAS design approachmodel Environmental Water Requirements (EWR) on a global scale. Smakhtin and colleagues (2004) presented one of the first attempts to do so,

FAIRBURN,S,IMHOF,B.ANDMOHANTY,S.

12

Bose,M.(2007).TheDesignStudio,AsiteforCriticalEnquiryinDesignStudioPedagogy:HorizonsfortheFuture,A.MSalamaandN.WilkinsonEditors,TheUrbanInternationalPress,Gateshead,UK.

https://www.gatesnotes.com/Development/Omniprocessor-From-Poop-to-Potable[Accessed15Feb2016].http://khojworkshop.org/programme/the-undivided-mind-art-science-residency/[Accessed30November2016].Jenkins,MarionW.;Lund,JayR.;Howitt,RichardE.;Draper,AndrewJ.;Msangi,SiwaM.;Tanaka,StacyK.;Ritzema,RandallS.;Marques,GuilhermeF.(2004)."OptimizationofCalifornia'sWaterSupplySystem:ResultsandInsights".JournalofWaterResourcesPlanning&Management130(4).pp.271–280.http://absolutewater.in/[accessed1March2016].TamilNaduDistrictMunicipalitatiesAct(2014)http://www.tn.gov.in/dtp/rainwater.htm,[Accessed1March2016].Livingston,M,Beach,M.(2002)StepstoWater:TheAncientStepwellsofIndia.PrincetonArchitecturalPress.NASA,ClosingtheLoop:RecyclingWaterandAirinSpace,https://www.nasa.gov/pdf/146558main_RecyclingEDA%28final%29%204_10_06.pdf,[Accessed22February2016].USastronautsdrinkrecycledurineaboardspacestationbutRussiansrefuse,

https://www.theguardian.com/science/2015/aug/26/us-astronauts-recycled-urine-international-space-station[Accessed1March2016].Joshi,A.,AdvancedNASATechnologySupportsWaterPurificationEffortsWorldwide,InternationalSpaceStationProgramScienceOffice,NASAJohnsonSpaceCenter,http://www.nasa.gov/mission_pages/station/research/benefits/water_purification_prt.htm,[Accessed20February2016].IP-Star,companywebsite,http://www.ipstar.nl,[Accessed27February2016].Walker,S(2006).SustainbilitybyDesign:ExplorationsinTheoryandPractice.Earthscan,LondonUK.BattrickB.(ed.),WaterRecyclingSystemsforTheAntarcticConcordiaStation,EuropeanSpaceAgency,BR-217,January2004,http://www.esa.int/esapub/br/br217/br217.pdf.CalgaryHerald,http://calgaryherald.com/news/local-news/expert-challenges-federal-politicians-to-link-water-with-the-economy,[Accessed20November2016].

AbouttheAuthors:

SueFairburnMScMEDesisaDesignEducatorandResearcherwhoworksbetweentheboundariesofthebody,societyandenvironments.HerresearchandpracticeusesknowledgeexchangeinSocialDesignandDesignforExtremes–howthisfeedscreativity,resilienceandconceptualshiftsinhowwelive.

BarbaraImhof,PhDisaspacearchitectandtheco-founder/co-manageroftheLIQUIFERSystemsGroupaplatformforarchitecture,design,humanfactors,systemsengineering,physicsandspacetechnology.Sheworkstrans-disciplinary,cross-culturalandcross-generationalcollaborationsandwasamemberoftheAntarcticBiennale[2017]

SusmitaMohanty,PhDisaspaceshipdesignerandaerospaceentrepreneurwholivesarenaissancelifewithoutboundaries.ShewasamemberoftheAntarcticBiennale[2017]andshelivedinisolationonasimulatedMartianoutpostintheUtahdesert[2004].SheistheCEOofEarth2Orbit,India’sfirstprivatestart-up.