research article the explicit identities for spectral...

8
Research Article The Explicit Identities for Spectral Norms of Circulant-Type Matrices Involving Binomial Coefficients and Harmonic Numbers Jianwei Zhou, Xiangyong Chen, and Zhaolin Jiang Department of Mathematics, Linyi University, Shandong 276005, China Correspondence should be addressed to Zhaolin Jiang; [email protected] Received 17 October 2013; Accepted 23 December 2013; Published 12 January 2014 Academic Editor: Masoud Hajarian Copyright © 2014 Jianwei Zhou et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e explicit formulae of spectral norms for circulant-type matrices are investigated; the matrices are circulant matrix, skew-circulant matrix, and -circulant matrix, respectively. e entries are products of binomial coefficients with harmonic numbers. Explicit identities for these spectral norms are obtained. Employing these approaches, some numerical tests are listed to verify the results. 1. Introduction e classical hypergeometric summation theorems are ex- ploited to derive several striking identities on harmonic numbers [1]. In numerical analysis, circulant matrices (named “premultipliers” in numerical methods) are impor- tant because they are diagonalized by a discrete Fourier transform, and hence linear equations that contain them may be quickly solved using a fast Fourier transform. Fur- thermore, circulant, skew-circulant, and -circulant matri- ces play important roles in various applications, such as image processing, coding, and engineering model. For more details, please refer to [213] and the references therein. e skew-circulant matrices were collected to construct preconditioners for LMF-based ODE codes; Hermitian and skew-Hermitian Toeplitz systems were considered in [1417]; Lyness employed a skew-circulant matrix to construct - dimensional lattice rules in [18]. Recently, there are lots of research on the spectral distribution and norms of circulant- type matrices. In [19], the authors pointed out the processes based on the eigenvalue of circulant-type matrices and the convergence to a Poisson random measure in vague topology. ere were discussions about the convergence in probability and distribution of the spectral norm of circulant- type matrices in [20]. e authors in [21] listed the limiting spectral distribution for a class of circulant-type matrices with heavy tailed input sequence. Ngondiep et al. showed that the singular values of -circulants in [22]. Solak established the lower and upper bounds for the spectral norms of cir- culant matrices with classical Fibonacci and Lucas numbers entries in [23]. ˙ Ipek investigated an improved estimation for spectral norms in [24]. In this paper, we derive some explicit identities of spectral norms for some circulant-type matrices with product of binomial coefficients with harmonic numbers. e outline of the paper is as follows. In Section 2, the definitions and preliminary results are listed. In Section 3, the spectral norms of some circulant matrices are studied. In Section 4, the formulae of spectral norms for skew-circulant matrices are established. Section 5 is devoted to investigate the explicit formulae for -circulant matrices. e numerical tests are given in Section 6. 2. Preliminaries e binomial coefficients are defined by ( ) for all natural numbers at once by (1 + ) =∑ ≥0 ( ) . (1) Note that ( ) is the th binomial coefficient of . It is clear that ( 0 )=1, ( )=1, and ( )=0, for >. Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2014, Article ID 518913, 7 pages http://dx.doi.org/10.1155/2014/518913

Upload: others

Post on 07-Jun-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article The Explicit Identities for Spectral ...downloads.hindawi.com/journals/mpe/2014/518913.pdf · MathematicalProblems in Engineering Corollary. Let !7 5 = !5 and !76

Research ArticleThe Explicit Identities for Spectral Norms ofCirculant-Type Matrices Involving BinomialCoefficients and Harmonic Numbers

Jianwei Zhou Xiangyong Chen and Zhaolin Jiang

Department of Mathematics Linyi University Shandong 276005 China

Correspondence should be addressed to Zhaolin Jiang jzh1208sinacom

Received 17 October 2013 Accepted 23 December 2013 Published 12 January 2014

Academic Editor Masoud Hajarian

Copyright copy 2014 Jianwei Zhou et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

The explicit formulae of spectral norms for circulant-typematrices are investigated thematrices are circulantmatrix skew-circulantmatrix and 119892-circulant matrix respectively The entries are products of binomial coefficients with harmonic numbers Explicitidentities for these spectral norms are obtained Employing these approaches some numerical tests are listed to verify the results

1 Introduction

The classical hypergeometric summation theorems are ex-ploited to derive several striking identities on harmonicnumbers [1] In numerical analysis circulant matrices(named ldquopremultipliersrdquo in numerical methods) are impor-tant because they are diagonalized by a discrete Fouriertransform and hence linear equations that contain themmay be quickly solved using a fast Fourier transform Fur-thermore circulant skew-circulant and 119892-circulant matri-ces play important roles in various applications such asimage processing coding and engineering model For moredetails please refer to [2ndash13] and the references thereinThe skew-circulant matrices were collected to constructpreconditioners for LMF-based ODE codes Hermitian andskew-Hermitian Toeplitz systems were considered in [14ndash17] Lyness employed a skew-circulant matrix to construct 119904-dimensional lattice rules in [18] Recently there are lots ofresearch on the spectral distribution and norms of circulant-type matrices In [19] the authors pointed out the processesbased on the eigenvalue of circulant-type matrices andthe convergence to a Poisson random measure in vaguetopology There were discussions about the convergence inprobability and distribution of the spectral normof circulant-type matrices in [20] The authors in [21] listed the limitingspectral distribution for a class of circulant-type matriceswith heavy tailed input sequence Ngondiep et al showed that

the singular values of 119892-circulants in [22] Solak establishedthe lower and upper bounds for the spectral norms of cir-culant matrices with classical Fibonacci and Lucas numbersentries in [23] Ipek investigated an improved estimation forspectral norms in [24]

In this paper we derive some explicit identities of spectralnorms for some circulant-type matrices with product ofbinomial coefficients with harmonic numbers

The outline of the paper is as follows In Section 2 thedefinitions and preliminary results are listed In Section 3the spectral norms of some circulant matrices are studied InSection 4 the formulae of spectral norms for skew-circulantmatrices are established Section 5 is devoted to investigatethe explicit formulae for 119892-circulant matrices The numericaltests are given in Section 6

2 Preliminaries

The binomial coefficients are defined by (119899

119896) for all natural

numbers 119896 at once by

(1 + 119883)119899

= sum

119896ge0

(119899

119896) 119883119896

(1)

Note that (119899

119896) is the 119896th binomial coefficient of 119899 It is clear

that (119899

0) = 1 (

119899

119899) = 1 and (

119899

119896) = 0 for 119896 gt 119899

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2014 Article ID 518913 7 pageshttpdxdoiorg1011552014518913

2 Mathematical Problems in Engineering

The generalized harmonic numbers are defined to bepartial sums of the harmonic series [1]

1198670

(119909) = 0 119867119894(119909) =

119894

sum

119896=0

1

119909 + 119896(119894 = 1 2 ) (2)

For 119909 = 0 in particular they reduce to classical harmonicnumbers

1198670

= 0 119867119894= 1 +

1

2+

1

3+ sdot sdot sdot +

1

119894(119894 = 1 2 )

(3)

We recall the following harmonic number identities [1]119899

sum

119894=0

(119899

119894)

2

(2119899 + 119894

119894) (1198672119899+119894

minus 119867119894)

= 2(2119899

119899)

2

(1198672119899

minus 119867119899)

119899

sum

119894=0

(119899

119894) (

2119899

119894) (

3119899 + 119894

119894) (1198673119899+119894

minus 119867119894)

= (3119899

119899)

2

(21198673119899

minus 1198672119899

minus 119867119899)

(4)

Definition 1 (see [6 8]) A circulantmatrix is an 119899times119899 complexmatrix with the following form

119860119888

= (

1198860

1198861

sdot sdot sdot 119886119899minus1

119886119899minus1

1198860

sdot sdot sdot 119886119899minus2

119886119899minus2

119886119899minus1

sdot sdot sdot 119886119899minus3

d

1198861

1198862

sdot sdot sdot 1198860

)

119899times119899

(5)

The first row of 119860119888is (1198860 1198861 119886

119899minus1) its (119895 + 1)th row

is obtained by giving its 119895th row a right circular shift by oneposition

Equivalently a circulant matrix can be described withpolynomial as

119860119888

= 119891 (120578119888) =

119899minus1

sum

119894=0

119886119894120578119894

119888 (6)

where

120578119888

= (

0 1 0 sdot sdot sdot 0

0 0 1 sdot sdot sdot 0

d

0 0 0 sdot sdot sdot 1

1 0 0 sdot sdot sdot 0

)

119899times119899

(7)

Obviously 120578119899

119888= 119868119899

Now we discuss the eigenvalues of 119860119888 We declare that

the eigenvalues of 120578119888are the corresponding eigenvalues of 119860

119888

with the function 119891 in (6) which is

120582 (119860119888) = 119891 (120582 (120578

119888)) =

119899minus1

sum

119894=0

119886119894120582(120578119888)119894

(8)

Whereas 120582119895(120578119888) = 120596

119895 (119895 = 0 1 119899 minus 1) then 120582119895(119860119888)

can be calculated by

120582119895(119860119888) =

119899minus1

sum

119894=0

119886119894(120596119895

)119894

(9)

where 120596 = cos(2120587119899) + 119894 sin(2120587119899)Similarly we recall a skew-circulant matrix

Definition 2 (see [6 8]) A skew-circulant matrix is an 119899 times 119899

complex matrix with the following form

119860 sc = (

1198860

1198861

sdot sdot sdot 119886119899minus1

minus119886119899minus1

1198860

sdot sdot sdot 119886119899minus2

minus119886119899minus2

minus119886119899minus1

sdot sdot sdot 119886119899minus3

d

minus1198861

minus1198862

sdot sdot sdot 1198860

)

119899times119899

(10)

Moreover a skew-circulant matrix can be described withpolynomial as

119860 sc = 119891 (120578sc) =

119899minus1

sum

119894=0

119886119894120578119894

sc (11)

where

120578sc = (

0 1 0 sdot sdot sdot 0

0 0 1 sdot sdot sdot 0

d

0 0 0 sdot sdot sdot 1

minus1 0 0 sdot sdot sdot 0

)

119899times119899

(12)

Obviously 120578119899

sc = minus119868119899

Thus we have to calculate the eigenvalues of 119860 sc For thesame reason we obtain that

120582 (119860 sc) = 119891 (120582 (120578sc)) =

119899minus1

sum

119894=0

119886119894120582119894

(120578sc) (13)

Whereas 120582119895(120578sc) = 120596

119895

120572 (119895 = 0 1 119899 minus 1) 120582119895(119860 sc) can

be computed by

120582119895(119860 sc) =

119899minus1

sum

119894=0

119886119894(120596119895

120572)119894

(14)

where 120596 = cos(2120587119899) + 119894 sin(2120587119899) 120572 = cos(120587119899) + 119894 sin(120587119899)

Definition 3 (see [21 25]) A 119892-circulant matrix is an 119899 times 119899

complex matrix with the following form

119860119892

= (

1198860

1198861

119886119899minus1

119886119899minus119892

119886119899minus119892+1

119886119899minus119892minus1

119886119899minus2119892

119886119899minus2119892+1

119886119899minus2119892minus1

d

119886119892

119886119892+1

119886119892minus1

)

119899times119899

(15)

where 119892 is a nonnegative integer and each of the subscripts isunderstood to be reduced modulo 119899

Mathematical Problems in Engineering 3

The first row of 119860119892is (1198860 1198861 119886

119899minus1) its (119895 + 1)th row

is obtained by giving its 119895th row a right circular shift by 119892

positions (equivalently 119892 mod 119899 positions) Note that 119892 = 1

or 119892 = 119899 + 1 yields the standard circulant matrix If 119892 = 119899 minus 1then we obtain the so-called reverse circulant matrix [21]

Definition 4 (see [26]) The spectral norm sdot 2of a matrix

119860 with complex entries is the square root of the largesteigenvalue of the positive semidefinite matrix 119860

lowast

119860

1198602

= radic120582max (119860lowast119860) (16)

where 119860lowast denotes the conjugate transpose of 119860 Therefore if

119860 is an 119899 times 119899 real symmetric matrix or 119860 is a normal matrixthen

1198602

= max1le119894le119899

10038161003816100381610038161205821198941003816100381610038161003816 (17)

where 1205821 1205822 120582

119899are the eigenvalues of 119860

3 Spectral Norms of Some Circulant Matrices

Now we will analyse spectral norms of some given circulantmatrices whose entries are binomial coefficients combinedwith harmonic numbers

Our main results for those matrices are stated as follows

Theorem 5 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198611is as in

(5) and the first row of 1198611is

((119899

0)

2

(2119899

0) (1198672119899

minus 1198670)

(119899

1)

2

(2119899 + 1

1) (1198672119899+1

minus 1198671)

(119899

119899)

2

(2119899 + 119899

119899) (1198672119899+119899

minus 119867119899))

(18)

where 119886119894= (119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus 119867119894) Then one has

10038171003817100381710038171198611

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (19)

Proof Since circulant matrix 1198611

is normal employingDefinition 4 we claim that the spectral norm of 119861

1is equal to

its spectral radius Furthermore applying the irreducible andentrywise nonnegative properties we claim that 119861

12(ie

its spectral norm) is equal to its Perron value We select an(119899 + 1)-dimensional column vector V = (1 1 1)

119879 then

1198611V = (

119899

sum

119894=0

(119899

119894)

2

(2119899 + 119894

119894) (1198672119899+119894

minus 119867119894)) V (20)

Obviouslysum119899119894=0

(119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus119867119894) is an eigenvalue of 119861

1

associated with V which is necessarily the Perron value of 1198611

Employing (4) we obtain

10038171003817100381710038171198611

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (21)

This completes the proof

Hence employing the same approaches we get thefollowing corollary

Corollary 6 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198612be as in

(5) and the first row of 1198612is

((119899

0) (

2119899

0) (

3119899

0) (1198673119899

minus 1198670)

(119899

1) (

2119899

1) (

3119899 + 1

1) (1198673119899+1

minus 1198671)

(119899

119899) (

2119899

119899) (

4119899

119899) (1198674119899

minus 119867119899))

(22)

where 119886119894= (119899

119894) ( 2119899119894

) ( 3119899+119894119894

) (1198673119899+119894

minus 119867119894) Then

10038171003817100381710038171198612

10038171003817100381710038172 = (3119899

119899)

2

(21198673119899

minus 1198672119899

minus 119867119899) (23)

Now we investigate some even-order alternative as fol-lows where 119898 is odd (ie 119898 + 1 is even)

Theorem 7 Let (119898 + 1) times (119898 + 1)-circulant matrix 1198613be as in

(5) and the first row of 1198613is

((119898

0)

2

(2119898

0) (1198672119898

minus 1198670)

minus (119898

1)

2

(2119898 + 1

1) (1198672119898+1

minus 1198671)

minus(119898

119898)

2

(2119898 + 119898

119898) (1198672119898+119898

minus 119867119898

))

(24)

where 119886119894

= (minus1)119894

(119898

119894)2

( 2119898+119894119894

) (1198672119898+119894

minus 119867119894) Then there holds

the following identity

10038171003817100381710038171198613

10038171003817100381710038172 = 2(2119898

119898)

2

(1198672119898

minus 119867119898

) (25)

Proof Noticing (9) and (17) it is clear that the spectral normof 1198613can be calculated by

10038171003817100381710038171198613

10038171003817100381710038172 = max0le119905le119898

1003816100381610038161003816120582119905 (1198613)1003816100381610038161003816 = max0le119905le119898

1003816100381610038161003816100381610038161003816100381610038161003816

119898

sum

119894=0

119886119894(120596119905

)119894

1003816100381610038161003816100381610038161003816100381610038161003816

le max0le119905le119898

119898

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 sdot

100381610038161003816100381610038161003816(120596119905

)119894100381610038161003816100381610038161003816 =

119898

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816

(26)

where 119886119894

= (minus1)119894

(119898

119894)2

( 2119898+119894119894

) (1198672119898+119894

minus 119867119894) and we employed

that all circulant matrices are normalNote that if 119898 is odd then 119898 + 1 is even and 120582

1199050(120578119888) =

1205961199050 = minus1 is an eigenvalue of 120578

119888 so

10038171003817100381710038171198613

10038171003817100381710038172 =

119898

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 (27)

Combining (4) and (27) yields

10038171003817100381710038171198613

10038171003817100381710038172 = 2(2119898

119898)

2

(1198672119898

minus 119867119898

) (28)

This completes the proof

4 Mathematical Problems in Engineering

Employing the same approaches we get the followingcorollary

Corollary 8 Let (119898 + 1) times (119898 + 1)-circulant matrix 1198614be as

in (5) and the first row of 1198614is

((119898

0) (

2119898

0) (

3119898

0) (1198673119898

minus 1198670)

minus (119898

1) (

2119898

1) (

3119898 + 1

1) (1198673119898+1

minus 1198671)

(119898

119898) (

2119898

119898) (

4119898

119898) (1198674119898

minus 119867119898

))

(29)

where 119886119894

= (minus1)119894

(119898

119894) ( 2119898119894

) ( 3119898+119894119894

) (1198673119898+119894

minus 119867119894) Then one has

the following identity

10038171003817100381710038171198614

10038171003817100381710038172 = (3119898

119898)

2

(21198673119898

minus 1198672119898

minus 119867119898

) (30)

Similarly we set 1198613

= minus1198613 1198614

= minus1198614

Corollary 9 Let11986131198614be as above respectively and119898 is odd

Then

100381710038171003817100381710038171198613

100381710038171003817100381710038172= 2(

2119898

119898)

2

(1198672119898

minus 119867119898

)

100381710038171003817100381710038171198614

100381710038171003817100381710038172= (

3119898

119898)

2

(21198673119898

minus 1198672119898

minus 119867119898

)

(31)

4 Spectral Norms of Skew-Circulant Matrices

An odd-order alternative skew-circulant matrix is defined asfollows where 119904 is even

Theorem 10 Let (119904 + 1) times (119904 + 1)-circulant matrix 1198615be as in

(10) and the first row of 1198615is

((119904

0)

2

(2119904

0) (1198672119904

minus 1198670)

minus(119904

1)

2

(2119904 + 1

1) (1198672119904+1

minus 1198671)

(119904

119904)

2

(2119904 + 119904

119904) (1198672119904+119904

minus 119867119904))

(32)

where 119886119894= (minus1)

119894

(119904

119894)2

( 2119904+119894119894

) (1198672119904+119894

minus 119867119894) Then one obtains

10038171003817100381710038171198615

10038171003817100381710038172 = 2(2119904

119904)

2

(1198672119904

minus 119867119904) (33)

Proof We employ (14) and (17) to calculate the spectral normof 1198615as follows for all 119905 = 0 1 119904

1003816100381610038161003816120582119905 (1198615)1003816100381610038161003816 =

1003816100381610038161003816100381610038161003816100381610038161003816

119904

sum

119894=0

119886119894(120596119905

120572)119894

1003816100381610038161003816100381610038161003816100381610038161003816

le

119904

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 sdot

100381610038161003816100381610038161003816(120596119905

120572)119894100381610038161003816100381610038161003816

=

119904

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 =

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894)

(34)

where 119886119894= (minus1)

119894

(119904

119894)2

( 2119904+119894119894

) (1198672119904+119894

minus 119867119894)

Since the skew-circulantmatrix is normal we deduce that10038171003817100381710038171198615

10038171003817100381710038172 = max0le119905le119904

1003816100381610038161003816120582119905 (1198615)1003816100381610038161003816 (35)

If 119904 is even then 119904 + 1 is odd We declare that 120582sc = minus1

is an eigenvalue of 120578sc then we calculate the correspondingeigenvalue of 119861

5as follows

120582(1198615) =

119904

sum

119894=0

119886119894120582119894

sc =

119904

sum

119894=0

119886119894(minus1)119894

=

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894)

(36)

where we had employed (14)Noticing (34) we claim that 120582

(1198615) is the maximum of

|120582119905(1198615)| which means

10038171003817100381710038171198615

10038171003817100381710038172 =

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894) (37)

Thus from (4) we obtain

10038171003817100381710038171198615

10038171003817100381710038172 = 2(2119904

119904)

2

(1198672119904

minus 119867119904) (38)

This completes the proof

Similarly we can calculate the identity for 1198616

Corollary 11 Let (119904 + 1) times (119904 + 1)-circulant matrix 1198616be as in

(10) and the first row of 1198616is

((119904

0) (

2119904

0) (

3119904

0) (1198673119904

minus 1198670)

minus (119904

1) (

2119904

1) (

3119904 + 1

1) (1198673119904+1

minus 1198671)

(119904

119904) (

2119904

119904) (

3119904 + 119904

119904) (1198673119904+119904

minus 119867119904))

(39)

where 119886119894= (minus1)

119894

(119904

119894) ( 2119904119894

) ( 3119904+119894119894

) (1198673119904+119894

minus 119867119894) Then there holds

10038171003817100381710038171198616

10038171003817100381710038172 = (3119904

119904)

2

(21198673119904

minus 1198672119904

minus 119867119904) (40)

Mathematical Problems in Engineering 5

Corollary 12 Let1198615

= minus1198615and119861

6= minus1198616 and 119904 is evenThen

one has the identities for spectral norm

100381710038171003817100381710038171198615

100381710038171003817100381710038172= 2(

2119904

119904)

2

(21198672119904

minus 119867119904)

100381710038171003817100381710038171198616

100381710038171003817100381710038172= (

3119904

119904)

2

(21198673119904

minus 1198672119904

minus 119867119904)

(41)

5 Spectral Norms of 119892-Circulant Matrices

Inspired by the above propositions we analyse spectral normsof some given 119892-circulant matrices in this section

Lemma 13 (see [25]) The (119899+1)times(119899+1)matrix119876119892is unitary

if and only if

(119899 + 1 119892) = 1 (42)

where 119876119892is a 119892-circulant matrix with the first row 119890

lowast

= [1

0 0]

Lemma 14 (see [25]) 119860 is a 119892-circulant matrix with the firstrow [119886

0 1198861 119886

119899] if and only if

119860 = 119876119892119862 (43)

where

119862 = circ (1198860 1198861 119886

119899) (44)

In the following part we set (119899 + 1 119892) = 1

Theorem 15 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198617be as in

(15) and the first row of 1198617is

((119899

0)

2

(2119899

0) (1198672119899

minus 1198670)

(119899

1)

2

(2119899 + 1

1) (1198672119899+1

minus 1198671)

(119899

119899)

2

(2119899 + 119899

119899) (1198672119899+119899

minus 119867119899))

(45)

where 119886119894= (119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus 119867119894) Then

10038171003817100381710038171198617

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (46)

Proof With the help of Lemmas 13 and 14 we know thatthe 119892-circulant matrix 119861

7is normal then we claim that the

spectral norm of 1198617is equal to its spectral radius Further-

more applying the irreducible and entrywise nonnegativeproperties we claim that 119861

72(ie its spectral norm) is equal

to its Perron value We select a (119899 + 1)-dimensional columnvector V = (1 1 1)

119879 then

1198617V = (

119899

sum

119894=0

(119899

119894)

2

(2119899 + 119894

119894) (1198672119899+119894

minus 119867119894)) V (47)

Obviouslysum119899119894=0

(119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus119867119894) is an eigenvalue of 119861

7

associated with V which is necessarily the Perron value of 1198617

Employing (4) we obtain

10038171003817100381710038171198617

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (48)

This completes the proof

Corollary 16 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198618be as

in (15) and the first row of 1198618is

((119899

0) (

2119899

0) (

3119899

0) (1198673119899

minus 1198670)

(119899

1) (

2119899

1) (

3119899 + 1

1) (1198673119899+1

minus 1198671)

(119899

119899) (

2119899

119899) (

4119899

119899) (1198674119899

minus 119867119899))

(49)

where 119886119894= (119899

119894) ( 2119899119894

) ( 3119899+119894119894

) (1198673119899+119894

minus 119867119894) Then one obtains

10038171003817100381710038171198618

10038171003817100381710038172 = (3119899

119899)

2

(21198673119899

minus 1198672119899

minus 119867119899) (50)

6 Numerical Examples

Example 1 In this example we give the numerical results for1198611and 119861

2

Comparing the data in Table 1 we declare that theidentities of spectral norms for 119861

119894(119894 = 1 2) hold

Example 2 In this example we list the numerical results for119861119894 119861119894

(119894 = 3 4)With the help of data in Table 2 it is clear that the

identities of spectral norms for 119861119894 119861119894

(119894 = 3 4) hold

Example 3 In this example we reveal the numerical resultsfor alternative skew-circulant matrices 119861

119894 119861119894

(119894 = 5 6)Combining the data in Table 3 we deduce that the

identities of spectral norms for 119861119894 119861119894

(119894 = 5 6) hold

Example 4 In this example we show numerical results for 1198617

and 1198618

Considering the data in Table 4 we deduce that theidentities of spectral norms for 119861

119894(119894 = 7 8) hold

The above results demonstrate that the identities ofspectral norms for the given matrices hold

7 Conclusion

This paper had discussed the explicit formulae for identicalestimations of spectral norms for circulant skew-circulantand 119892-circulant matrices whose entries are binomial coef-ficients combined with harmonic numbers Furthermoreit is easy to take other entries to obtain more interestingidentities and the same approaches can be used to verifythose identities Furthermore explicit formulas for both

6 Mathematical Problems in Engineering

Table 1 Spectral norms of 119861119894(119894 = 1 2) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 0 1 2 3 4 5 610038171003817100381710038171198611

10038171003817100381710038172 0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 610038171003817100381710038171198612

10038171003817100381710038172 0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

1198621119899

0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 6

1198622119899

0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

Table 2 Spectral norms of 119861119894 119861119894(119894 = 3 4) 119862

1119898= 2(2119898

119898)2

(1198672119898

minus 119867119898

) and 1198622119898

= (3119898

119898)2

(21198673119898

minus 1198672119898

minus 119867119898

)

119898 1 3 5 7 9 1110038171003817100381710038171198613

10038171003817100381710038172 4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 1110038171003817100381710038171198614

10038171003817100381710038172 105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16100381710038171003817100381710038171198613

1003817100381710038171003817100381724 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

100381710038171003817100381710038171198614

100381710038171003817100381710038172105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

1198621119898

4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

1198622119898

105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

Table 3 Spectral norms of 119861119894 119861119894(119894 = 5 6) 119862

1119904= 2(2119904

119904)2

(1198672119904

minus 119867119904) and 119862

2119904= (3119904

119904)2

(21198673119904

minus 1198672119904

minus 119867119904)

119904 0 2 4 6 8 1010038171003817100381710038171198615

10038171003817100381710038172 0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 1010038171003817100381710038171198616

10038171003817100381710038172 0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15100381710038171003817100381710038171198615

1003817100381710038171003817100381720 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

100381710038171003817100381710038171198616

1003817100381710038171003817100381720 296e+2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

1198621119904

0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

1198622119904

0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

Table 4 Spectral norms of 119861119894(119894 = 7 8) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 + 1 5 6 7119892 2 3 4 5 2 3 4 5 610038171003817100381710038171198617

10038171003817100381710038172 622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 610038171003817100381710038171198618

10038171003817100381710038172 344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

1198621119899

622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6

1198622119899

344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

norms 119860 and 119860minus1

help us to estimate the so-calledcondition number It is an interesting problem to investigatethe properties of 119861

119894(119894 = 1 2 8) such as the explicit

formulations for determinants and inverses by just using theentries in the first row

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work is supported by NFSC (no 11201212) Promo-tive Research Fund for Excellent Young and Middle-AgedScientists of Shandong Province (no BS2012DX004) Shan-dong Province Higher Educational Science and Technology

Program (J13LI11) AMEP and the Special Funds for DoctoralAuthorities of Linyi University

References

[1] W C Chu and L D Donno ldquoHypergeometric series andharmonic number identitiesrdquoAdvances in AppliedMathematicsvol 34 no 1 pp 123ndash137 2005

[2] M H Ang K T Arasu S Lun Ma and Y Strassler ldquoStudyof proper circulant weighing matrices with weight 9rdquo DiscreteMathematics vol 308 no 13 pp 2802ndash2809 2008

[3] V Brimkov ldquoAlgorithmic and explicit determination of theLovasz number for certain circulant graphsrdquo Discrete AppliedMathematics vol 155 no 14 pp 1812ndash1825 2007

[4] A Cambini ldquoAn explicit form of the inverse of a particularcirculantmatrixrdquoDiscreteMathematics vol 48 no 2-3 pp 323ndash325 1984

Mathematical Problems in Engineering 7

[5] W S Chou B S Du and P J S Shiue ldquoA note on circulanttransition matrices in Markov chainsrdquo Linear Algebra and ItsApplications vol 429 no 7 pp 1699ndash1704 2008

[6] P Davis Circulant Matrices Wiley New York NY USA 1979[7] C Erbas and M M Tanik ldquoGenerating solutions to the N-

Queens problems using 2-circulantsrdquo Mathematics Magazinevol 68 no 5 pp 343ndash356 1995

[8] Z L Jiang and Z X Zhou Circulant Matrices ChengduUniversity of Science and Technology Press Chengdu China1999

[9] A Mamut Q X Huang and F J Liu ldquoEnumeration of 2-regular circulant graphs and directed double networksrdquoDiscreteApplied Mathematics vol 157 no 5 pp 1024ndash1033 2009

[10] I Stojmenovic ldquoMultiplicative circulant networks topologicalproperties and communication algorithmsrdquo Discrete AppliedMathematics vol 77 no 3 pp 281ndash305 1997

[11] M Ventou and C Rigoni ldquoSelf-dual doubly circulant codesrdquoDiscrete Mathematics vol 56 no 2-3 pp 291ndash298 1985

[12] M J Weinberger and A Lempel ldquoFactorization of symmetriccirculantmatrices in finite fieldsrdquoDiscrete AppliedMathematicsvol 28 no 3 pp 271ndash285 1990

[13] Y K Wu R Z Jia and Q Li ldquog-circulant solutions to the (0 1)matrix equation 119860

119898

= 119869lowast

119899rdquo Linear Algebra and its Applications

vol 345 no 1ndash3 pp 195ndash224 2002[14] D Bertaccini and M K Ng ldquoSkew-circulant preconditioners

for systems of LMF-based ODE codesrdquo in Numerical Analysisand Its Applications Lecture Notes in Computer Science pp93ndash101 2001

[15] R Chan and X Q Jin ldquoCirculant and skew-circulant pre-conditioners for skew-hermitian type Toeplitz systemsrdquo BITNumerical Mathematics vol 31 no 4 pp 632ndash646 1991

[16] R Chan andM K Ng ldquoToeplitz preconditioners for HermitianToeplitz systemsrdquo Linear Algebra and Its Applications C vol 190pp 181ndash208 1993

[17] T Huclke ldquoCirculant and skew-circulant matrices for solvingToeplitz matrix problemsrdquo SIAM Journal on Matrix Analysisand Applications vol 13 no 3 pp 767ndash777 1992

[18] J N Lyness and T SOslashrevik ldquoFour-dimensional lattice rulesgenerated by skew-circulant matricesrdquoMathematics of Compu-tation vol 73 no 245 pp 279ndash295 2004

[19] A Bose R S Hazra and K Saha ldquoPoisson convergence ofeigenvalues of circulant type matricesrdquo Extremes vol 14 no 4pp 365ndash392 2011

[20] A Bose R S Hazra and K Saha ldquoSpectral norm of circulant-type matricesrdquo Journal of Theoretical Probability vol 24 no 2pp 479ndash516 2011

[21] A Bose S Guha R S Hazra and K Saha ldquoCirculant typematrices with heavy tailed entriesrdquo Statistics and ProbabilityLetters vol 81 no 11 pp 1706ndash1716 2011

[22] E Ngondiep S Serra-Capizzano and D Sesana ldquoSpectralfeatures and asymptotic properties for g-circulants and g-Toeplitz sequencesrdquo SIAM Journal on Matrix Analysis andApplications vol 31 no 4 pp 1663ndash1687 2009

[23] S Solak ldquoOn the norms of circulantmatrices with the Fibonacciand Lucas numbersrdquo Applied Mathematics and Computationvol 160 no 1 pp 125ndash132 2005

[24] A Ipek ldquoOn the spectral norms of circulant matrices withclassical Fibonacci and Lucas numbers entriesrdquo Applied Mathe-matics and Computation vol 217 no 12 pp 6011ndash6012 2011

[25] W T Stallings and T L Boullion ldquoThe pseudoinverse of anr-circulant matrixrdquo Proceedings of the American MathematicalSociety vol 34 no 2 pp 385ndash388 1972

[26] R A Horn and C R Johnson Matrix Analysis CambridgeUniversity Press Cambridge UK 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article The Explicit Identities for Spectral ...downloads.hindawi.com/journals/mpe/2014/518913.pdf · MathematicalProblems in Engineering Corollary. Let !7 5 = !5 and !76

2 Mathematical Problems in Engineering

The generalized harmonic numbers are defined to bepartial sums of the harmonic series [1]

1198670

(119909) = 0 119867119894(119909) =

119894

sum

119896=0

1

119909 + 119896(119894 = 1 2 ) (2)

For 119909 = 0 in particular they reduce to classical harmonicnumbers

1198670

= 0 119867119894= 1 +

1

2+

1

3+ sdot sdot sdot +

1

119894(119894 = 1 2 )

(3)

We recall the following harmonic number identities [1]119899

sum

119894=0

(119899

119894)

2

(2119899 + 119894

119894) (1198672119899+119894

minus 119867119894)

= 2(2119899

119899)

2

(1198672119899

minus 119867119899)

119899

sum

119894=0

(119899

119894) (

2119899

119894) (

3119899 + 119894

119894) (1198673119899+119894

minus 119867119894)

= (3119899

119899)

2

(21198673119899

minus 1198672119899

minus 119867119899)

(4)

Definition 1 (see [6 8]) A circulantmatrix is an 119899times119899 complexmatrix with the following form

119860119888

= (

1198860

1198861

sdot sdot sdot 119886119899minus1

119886119899minus1

1198860

sdot sdot sdot 119886119899minus2

119886119899minus2

119886119899minus1

sdot sdot sdot 119886119899minus3

d

1198861

1198862

sdot sdot sdot 1198860

)

119899times119899

(5)

The first row of 119860119888is (1198860 1198861 119886

119899minus1) its (119895 + 1)th row

is obtained by giving its 119895th row a right circular shift by oneposition

Equivalently a circulant matrix can be described withpolynomial as

119860119888

= 119891 (120578119888) =

119899minus1

sum

119894=0

119886119894120578119894

119888 (6)

where

120578119888

= (

0 1 0 sdot sdot sdot 0

0 0 1 sdot sdot sdot 0

d

0 0 0 sdot sdot sdot 1

1 0 0 sdot sdot sdot 0

)

119899times119899

(7)

Obviously 120578119899

119888= 119868119899

Now we discuss the eigenvalues of 119860119888 We declare that

the eigenvalues of 120578119888are the corresponding eigenvalues of 119860

119888

with the function 119891 in (6) which is

120582 (119860119888) = 119891 (120582 (120578

119888)) =

119899minus1

sum

119894=0

119886119894120582(120578119888)119894

(8)

Whereas 120582119895(120578119888) = 120596

119895 (119895 = 0 1 119899 minus 1) then 120582119895(119860119888)

can be calculated by

120582119895(119860119888) =

119899minus1

sum

119894=0

119886119894(120596119895

)119894

(9)

where 120596 = cos(2120587119899) + 119894 sin(2120587119899)Similarly we recall a skew-circulant matrix

Definition 2 (see [6 8]) A skew-circulant matrix is an 119899 times 119899

complex matrix with the following form

119860 sc = (

1198860

1198861

sdot sdot sdot 119886119899minus1

minus119886119899minus1

1198860

sdot sdot sdot 119886119899minus2

minus119886119899minus2

minus119886119899minus1

sdot sdot sdot 119886119899minus3

d

minus1198861

minus1198862

sdot sdot sdot 1198860

)

119899times119899

(10)

Moreover a skew-circulant matrix can be described withpolynomial as

119860 sc = 119891 (120578sc) =

119899minus1

sum

119894=0

119886119894120578119894

sc (11)

where

120578sc = (

0 1 0 sdot sdot sdot 0

0 0 1 sdot sdot sdot 0

d

0 0 0 sdot sdot sdot 1

minus1 0 0 sdot sdot sdot 0

)

119899times119899

(12)

Obviously 120578119899

sc = minus119868119899

Thus we have to calculate the eigenvalues of 119860 sc For thesame reason we obtain that

120582 (119860 sc) = 119891 (120582 (120578sc)) =

119899minus1

sum

119894=0

119886119894120582119894

(120578sc) (13)

Whereas 120582119895(120578sc) = 120596

119895

120572 (119895 = 0 1 119899 minus 1) 120582119895(119860 sc) can

be computed by

120582119895(119860 sc) =

119899minus1

sum

119894=0

119886119894(120596119895

120572)119894

(14)

where 120596 = cos(2120587119899) + 119894 sin(2120587119899) 120572 = cos(120587119899) + 119894 sin(120587119899)

Definition 3 (see [21 25]) A 119892-circulant matrix is an 119899 times 119899

complex matrix with the following form

119860119892

= (

1198860

1198861

119886119899minus1

119886119899minus119892

119886119899minus119892+1

119886119899minus119892minus1

119886119899minus2119892

119886119899minus2119892+1

119886119899minus2119892minus1

d

119886119892

119886119892+1

119886119892minus1

)

119899times119899

(15)

where 119892 is a nonnegative integer and each of the subscripts isunderstood to be reduced modulo 119899

Mathematical Problems in Engineering 3

The first row of 119860119892is (1198860 1198861 119886

119899minus1) its (119895 + 1)th row

is obtained by giving its 119895th row a right circular shift by 119892

positions (equivalently 119892 mod 119899 positions) Note that 119892 = 1

or 119892 = 119899 + 1 yields the standard circulant matrix If 119892 = 119899 minus 1then we obtain the so-called reverse circulant matrix [21]

Definition 4 (see [26]) The spectral norm sdot 2of a matrix

119860 with complex entries is the square root of the largesteigenvalue of the positive semidefinite matrix 119860

lowast

119860

1198602

= radic120582max (119860lowast119860) (16)

where 119860lowast denotes the conjugate transpose of 119860 Therefore if

119860 is an 119899 times 119899 real symmetric matrix or 119860 is a normal matrixthen

1198602

= max1le119894le119899

10038161003816100381610038161205821198941003816100381610038161003816 (17)

where 1205821 1205822 120582

119899are the eigenvalues of 119860

3 Spectral Norms of Some Circulant Matrices

Now we will analyse spectral norms of some given circulantmatrices whose entries are binomial coefficients combinedwith harmonic numbers

Our main results for those matrices are stated as follows

Theorem 5 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198611is as in

(5) and the first row of 1198611is

((119899

0)

2

(2119899

0) (1198672119899

minus 1198670)

(119899

1)

2

(2119899 + 1

1) (1198672119899+1

minus 1198671)

(119899

119899)

2

(2119899 + 119899

119899) (1198672119899+119899

minus 119867119899))

(18)

where 119886119894= (119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus 119867119894) Then one has

10038171003817100381710038171198611

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (19)

Proof Since circulant matrix 1198611

is normal employingDefinition 4 we claim that the spectral norm of 119861

1is equal to

its spectral radius Furthermore applying the irreducible andentrywise nonnegative properties we claim that 119861

12(ie

its spectral norm) is equal to its Perron value We select an(119899 + 1)-dimensional column vector V = (1 1 1)

119879 then

1198611V = (

119899

sum

119894=0

(119899

119894)

2

(2119899 + 119894

119894) (1198672119899+119894

minus 119867119894)) V (20)

Obviouslysum119899119894=0

(119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus119867119894) is an eigenvalue of 119861

1

associated with V which is necessarily the Perron value of 1198611

Employing (4) we obtain

10038171003817100381710038171198611

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (21)

This completes the proof

Hence employing the same approaches we get thefollowing corollary

Corollary 6 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198612be as in

(5) and the first row of 1198612is

((119899

0) (

2119899

0) (

3119899

0) (1198673119899

minus 1198670)

(119899

1) (

2119899

1) (

3119899 + 1

1) (1198673119899+1

minus 1198671)

(119899

119899) (

2119899

119899) (

4119899

119899) (1198674119899

minus 119867119899))

(22)

where 119886119894= (119899

119894) ( 2119899119894

) ( 3119899+119894119894

) (1198673119899+119894

minus 119867119894) Then

10038171003817100381710038171198612

10038171003817100381710038172 = (3119899

119899)

2

(21198673119899

minus 1198672119899

minus 119867119899) (23)

Now we investigate some even-order alternative as fol-lows where 119898 is odd (ie 119898 + 1 is even)

Theorem 7 Let (119898 + 1) times (119898 + 1)-circulant matrix 1198613be as in

(5) and the first row of 1198613is

((119898

0)

2

(2119898

0) (1198672119898

minus 1198670)

minus (119898

1)

2

(2119898 + 1

1) (1198672119898+1

minus 1198671)

minus(119898

119898)

2

(2119898 + 119898

119898) (1198672119898+119898

minus 119867119898

))

(24)

where 119886119894

= (minus1)119894

(119898

119894)2

( 2119898+119894119894

) (1198672119898+119894

minus 119867119894) Then there holds

the following identity

10038171003817100381710038171198613

10038171003817100381710038172 = 2(2119898

119898)

2

(1198672119898

minus 119867119898

) (25)

Proof Noticing (9) and (17) it is clear that the spectral normof 1198613can be calculated by

10038171003817100381710038171198613

10038171003817100381710038172 = max0le119905le119898

1003816100381610038161003816120582119905 (1198613)1003816100381610038161003816 = max0le119905le119898

1003816100381610038161003816100381610038161003816100381610038161003816

119898

sum

119894=0

119886119894(120596119905

)119894

1003816100381610038161003816100381610038161003816100381610038161003816

le max0le119905le119898

119898

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 sdot

100381610038161003816100381610038161003816(120596119905

)119894100381610038161003816100381610038161003816 =

119898

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816

(26)

where 119886119894

= (minus1)119894

(119898

119894)2

( 2119898+119894119894

) (1198672119898+119894

minus 119867119894) and we employed

that all circulant matrices are normalNote that if 119898 is odd then 119898 + 1 is even and 120582

1199050(120578119888) =

1205961199050 = minus1 is an eigenvalue of 120578

119888 so

10038171003817100381710038171198613

10038171003817100381710038172 =

119898

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 (27)

Combining (4) and (27) yields

10038171003817100381710038171198613

10038171003817100381710038172 = 2(2119898

119898)

2

(1198672119898

minus 119867119898

) (28)

This completes the proof

4 Mathematical Problems in Engineering

Employing the same approaches we get the followingcorollary

Corollary 8 Let (119898 + 1) times (119898 + 1)-circulant matrix 1198614be as

in (5) and the first row of 1198614is

((119898

0) (

2119898

0) (

3119898

0) (1198673119898

minus 1198670)

minus (119898

1) (

2119898

1) (

3119898 + 1

1) (1198673119898+1

minus 1198671)

(119898

119898) (

2119898

119898) (

4119898

119898) (1198674119898

minus 119867119898

))

(29)

where 119886119894

= (minus1)119894

(119898

119894) ( 2119898119894

) ( 3119898+119894119894

) (1198673119898+119894

minus 119867119894) Then one has

the following identity

10038171003817100381710038171198614

10038171003817100381710038172 = (3119898

119898)

2

(21198673119898

minus 1198672119898

minus 119867119898

) (30)

Similarly we set 1198613

= minus1198613 1198614

= minus1198614

Corollary 9 Let11986131198614be as above respectively and119898 is odd

Then

100381710038171003817100381710038171198613

100381710038171003817100381710038172= 2(

2119898

119898)

2

(1198672119898

minus 119867119898

)

100381710038171003817100381710038171198614

100381710038171003817100381710038172= (

3119898

119898)

2

(21198673119898

minus 1198672119898

minus 119867119898

)

(31)

4 Spectral Norms of Skew-Circulant Matrices

An odd-order alternative skew-circulant matrix is defined asfollows where 119904 is even

Theorem 10 Let (119904 + 1) times (119904 + 1)-circulant matrix 1198615be as in

(10) and the first row of 1198615is

((119904

0)

2

(2119904

0) (1198672119904

minus 1198670)

minus(119904

1)

2

(2119904 + 1

1) (1198672119904+1

minus 1198671)

(119904

119904)

2

(2119904 + 119904

119904) (1198672119904+119904

minus 119867119904))

(32)

where 119886119894= (minus1)

119894

(119904

119894)2

( 2119904+119894119894

) (1198672119904+119894

minus 119867119894) Then one obtains

10038171003817100381710038171198615

10038171003817100381710038172 = 2(2119904

119904)

2

(1198672119904

minus 119867119904) (33)

Proof We employ (14) and (17) to calculate the spectral normof 1198615as follows for all 119905 = 0 1 119904

1003816100381610038161003816120582119905 (1198615)1003816100381610038161003816 =

1003816100381610038161003816100381610038161003816100381610038161003816

119904

sum

119894=0

119886119894(120596119905

120572)119894

1003816100381610038161003816100381610038161003816100381610038161003816

le

119904

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 sdot

100381610038161003816100381610038161003816(120596119905

120572)119894100381610038161003816100381610038161003816

=

119904

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 =

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894)

(34)

where 119886119894= (minus1)

119894

(119904

119894)2

( 2119904+119894119894

) (1198672119904+119894

minus 119867119894)

Since the skew-circulantmatrix is normal we deduce that10038171003817100381710038171198615

10038171003817100381710038172 = max0le119905le119904

1003816100381610038161003816120582119905 (1198615)1003816100381610038161003816 (35)

If 119904 is even then 119904 + 1 is odd We declare that 120582sc = minus1

is an eigenvalue of 120578sc then we calculate the correspondingeigenvalue of 119861

5as follows

120582(1198615) =

119904

sum

119894=0

119886119894120582119894

sc =

119904

sum

119894=0

119886119894(minus1)119894

=

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894)

(36)

where we had employed (14)Noticing (34) we claim that 120582

(1198615) is the maximum of

|120582119905(1198615)| which means

10038171003817100381710038171198615

10038171003817100381710038172 =

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894) (37)

Thus from (4) we obtain

10038171003817100381710038171198615

10038171003817100381710038172 = 2(2119904

119904)

2

(1198672119904

minus 119867119904) (38)

This completes the proof

Similarly we can calculate the identity for 1198616

Corollary 11 Let (119904 + 1) times (119904 + 1)-circulant matrix 1198616be as in

(10) and the first row of 1198616is

((119904

0) (

2119904

0) (

3119904

0) (1198673119904

minus 1198670)

minus (119904

1) (

2119904

1) (

3119904 + 1

1) (1198673119904+1

minus 1198671)

(119904

119904) (

2119904

119904) (

3119904 + 119904

119904) (1198673119904+119904

minus 119867119904))

(39)

where 119886119894= (minus1)

119894

(119904

119894) ( 2119904119894

) ( 3119904+119894119894

) (1198673119904+119894

minus 119867119894) Then there holds

10038171003817100381710038171198616

10038171003817100381710038172 = (3119904

119904)

2

(21198673119904

minus 1198672119904

minus 119867119904) (40)

Mathematical Problems in Engineering 5

Corollary 12 Let1198615

= minus1198615and119861

6= minus1198616 and 119904 is evenThen

one has the identities for spectral norm

100381710038171003817100381710038171198615

100381710038171003817100381710038172= 2(

2119904

119904)

2

(21198672119904

minus 119867119904)

100381710038171003817100381710038171198616

100381710038171003817100381710038172= (

3119904

119904)

2

(21198673119904

minus 1198672119904

minus 119867119904)

(41)

5 Spectral Norms of 119892-Circulant Matrices

Inspired by the above propositions we analyse spectral normsof some given 119892-circulant matrices in this section

Lemma 13 (see [25]) The (119899+1)times(119899+1)matrix119876119892is unitary

if and only if

(119899 + 1 119892) = 1 (42)

where 119876119892is a 119892-circulant matrix with the first row 119890

lowast

= [1

0 0]

Lemma 14 (see [25]) 119860 is a 119892-circulant matrix with the firstrow [119886

0 1198861 119886

119899] if and only if

119860 = 119876119892119862 (43)

where

119862 = circ (1198860 1198861 119886

119899) (44)

In the following part we set (119899 + 1 119892) = 1

Theorem 15 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198617be as in

(15) and the first row of 1198617is

((119899

0)

2

(2119899

0) (1198672119899

minus 1198670)

(119899

1)

2

(2119899 + 1

1) (1198672119899+1

minus 1198671)

(119899

119899)

2

(2119899 + 119899

119899) (1198672119899+119899

minus 119867119899))

(45)

where 119886119894= (119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus 119867119894) Then

10038171003817100381710038171198617

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (46)

Proof With the help of Lemmas 13 and 14 we know thatthe 119892-circulant matrix 119861

7is normal then we claim that the

spectral norm of 1198617is equal to its spectral radius Further-

more applying the irreducible and entrywise nonnegativeproperties we claim that 119861

72(ie its spectral norm) is equal

to its Perron value We select a (119899 + 1)-dimensional columnvector V = (1 1 1)

119879 then

1198617V = (

119899

sum

119894=0

(119899

119894)

2

(2119899 + 119894

119894) (1198672119899+119894

minus 119867119894)) V (47)

Obviouslysum119899119894=0

(119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus119867119894) is an eigenvalue of 119861

7

associated with V which is necessarily the Perron value of 1198617

Employing (4) we obtain

10038171003817100381710038171198617

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (48)

This completes the proof

Corollary 16 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198618be as

in (15) and the first row of 1198618is

((119899

0) (

2119899

0) (

3119899

0) (1198673119899

minus 1198670)

(119899

1) (

2119899

1) (

3119899 + 1

1) (1198673119899+1

minus 1198671)

(119899

119899) (

2119899

119899) (

4119899

119899) (1198674119899

minus 119867119899))

(49)

where 119886119894= (119899

119894) ( 2119899119894

) ( 3119899+119894119894

) (1198673119899+119894

minus 119867119894) Then one obtains

10038171003817100381710038171198618

10038171003817100381710038172 = (3119899

119899)

2

(21198673119899

minus 1198672119899

minus 119867119899) (50)

6 Numerical Examples

Example 1 In this example we give the numerical results for1198611and 119861

2

Comparing the data in Table 1 we declare that theidentities of spectral norms for 119861

119894(119894 = 1 2) hold

Example 2 In this example we list the numerical results for119861119894 119861119894

(119894 = 3 4)With the help of data in Table 2 it is clear that the

identities of spectral norms for 119861119894 119861119894

(119894 = 3 4) hold

Example 3 In this example we reveal the numerical resultsfor alternative skew-circulant matrices 119861

119894 119861119894

(119894 = 5 6)Combining the data in Table 3 we deduce that the

identities of spectral norms for 119861119894 119861119894

(119894 = 5 6) hold

Example 4 In this example we show numerical results for 1198617

and 1198618

Considering the data in Table 4 we deduce that theidentities of spectral norms for 119861

119894(119894 = 7 8) hold

The above results demonstrate that the identities ofspectral norms for the given matrices hold

7 Conclusion

This paper had discussed the explicit formulae for identicalestimations of spectral norms for circulant skew-circulantand 119892-circulant matrices whose entries are binomial coef-ficients combined with harmonic numbers Furthermoreit is easy to take other entries to obtain more interestingidentities and the same approaches can be used to verifythose identities Furthermore explicit formulas for both

6 Mathematical Problems in Engineering

Table 1 Spectral norms of 119861119894(119894 = 1 2) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 0 1 2 3 4 5 610038171003817100381710038171198611

10038171003817100381710038172 0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 610038171003817100381710038171198612

10038171003817100381710038172 0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

1198621119899

0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 6

1198622119899

0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

Table 2 Spectral norms of 119861119894 119861119894(119894 = 3 4) 119862

1119898= 2(2119898

119898)2

(1198672119898

minus 119867119898

) and 1198622119898

= (3119898

119898)2

(21198673119898

minus 1198672119898

minus 119867119898

)

119898 1 3 5 7 9 1110038171003817100381710038171198613

10038171003817100381710038172 4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 1110038171003817100381710038171198614

10038171003817100381710038172 105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16100381710038171003817100381710038171198613

1003817100381710038171003817100381724 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

100381710038171003817100381710038171198614

100381710038171003817100381710038172105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

1198621119898

4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

1198622119898

105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

Table 3 Spectral norms of 119861119894 119861119894(119894 = 5 6) 119862

1119904= 2(2119904

119904)2

(1198672119904

minus 119867119904) and 119862

2119904= (3119904

119904)2

(21198673119904

minus 1198672119904

minus 119867119904)

119904 0 2 4 6 8 1010038171003817100381710038171198615

10038171003817100381710038172 0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 1010038171003817100381710038171198616

10038171003817100381710038172 0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15100381710038171003817100381710038171198615

1003817100381710038171003817100381720 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

100381710038171003817100381710038171198616

1003817100381710038171003817100381720 296e+2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

1198621119904

0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

1198622119904

0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

Table 4 Spectral norms of 119861119894(119894 = 7 8) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 + 1 5 6 7119892 2 3 4 5 2 3 4 5 610038171003817100381710038171198617

10038171003817100381710038172 622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 610038171003817100381710038171198618

10038171003817100381710038172 344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

1198621119899

622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6

1198622119899

344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

norms 119860 and 119860minus1

help us to estimate the so-calledcondition number It is an interesting problem to investigatethe properties of 119861

119894(119894 = 1 2 8) such as the explicit

formulations for determinants and inverses by just using theentries in the first row

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work is supported by NFSC (no 11201212) Promo-tive Research Fund for Excellent Young and Middle-AgedScientists of Shandong Province (no BS2012DX004) Shan-dong Province Higher Educational Science and Technology

Program (J13LI11) AMEP and the Special Funds for DoctoralAuthorities of Linyi University

References

[1] W C Chu and L D Donno ldquoHypergeometric series andharmonic number identitiesrdquoAdvances in AppliedMathematicsvol 34 no 1 pp 123ndash137 2005

[2] M H Ang K T Arasu S Lun Ma and Y Strassler ldquoStudyof proper circulant weighing matrices with weight 9rdquo DiscreteMathematics vol 308 no 13 pp 2802ndash2809 2008

[3] V Brimkov ldquoAlgorithmic and explicit determination of theLovasz number for certain circulant graphsrdquo Discrete AppliedMathematics vol 155 no 14 pp 1812ndash1825 2007

[4] A Cambini ldquoAn explicit form of the inverse of a particularcirculantmatrixrdquoDiscreteMathematics vol 48 no 2-3 pp 323ndash325 1984

Mathematical Problems in Engineering 7

[5] W S Chou B S Du and P J S Shiue ldquoA note on circulanttransition matrices in Markov chainsrdquo Linear Algebra and ItsApplications vol 429 no 7 pp 1699ndash1704 2008

[6] P Davis Circulant Matrices Wiley New York NY USA 1979[7] C Erbas and M M Tanik ldquoGenerating solutions to the N-

Queens problems using 2-circulantsrdquo Mathematics Magazinevol 68 no 5 pp 343ndash356 1995

[8] Z L Jiang and Z X Zhou Circulant Matrices ChengduUniversity of Science and Technology Press Chengdu China1999

[9] A Mamut Q X Huang and F J Liu ldquoEnumeration of 2-regular circulant graphs and directed double networksrdquoDiscreteApplied Mathematics vol 157 no 5 pp 1024ndash1033 2009

[10] I Stojmenovic ldquoMultiplicative circulant networks topologicalproperties and communication algorithmsrdquo Discrete AppliedMathematics vol 77 no 3 pp 281ndash305 1997

[11] M Ventou and C Rigoni ldquoSelf-dual doubly circulant codesrdquoDiscrete Mathematics vol 56 no 2-3 pp 291ndash298 1985

[12] M J Weinberger and A Lempel ldquoFactorization of symmetriccirculantmatrices in finite fieldsrdquoDiscrete AppliedMathematicsvol 28 no 3 pp 271ndash285 1990

[13] Y K Wu R Z Jia and Q Li ldquog-circulant solutions to the (0 1)matrix equation 119860

119898

= 119869lowast

119899rdquo Linear Algebra and its Applications

vol 345 no 1ndash3 pp 195ndash224 2002[14] D Bertaccini and M K Ng ldquoSkew-circulant preconditioners

for systems of LMF-based ODE codesrdquo in Numerical Analysisand Its Applications Lecture Notes in Computer Science pp93ndash101 2001

[15] R Chan and X Q Jin ldquoCirculant and skew-circulant pre-conditioners for skew-hermitian type Toeplitz systemsrdquo BITNumerical Mathematics vol 31 no 4 pp 632ndash646 1991

[16] R Chan andM K Ng ldquoToeplitz preconditioners for HermitianToeplitz systemsrdquo Linear Algebra and Its Applications C vol 190pp 181ndash208 1993

[17] T Huclke ldquoCirculant and skew-circulant matrices for solvingToeplitz matrix problemsrdquo SIAM Journal on Matrix Analysisand Applications vol 13 no 3 pp 767ndash777 1992

[18] J N Lyness and T SOslashrevik ldquoFour-dimensional lattice rulesgenerated by skew-circulant matricesrdquoMathematics of Compu-tation vol 73 no 245 pp 279ndash295 2004

[19] A Bose R S Hazra and K Saha ldquoPoisson convergence ofeigenvalues of circulant type matricesrdquo Extremes vol 14 no 4pp 365ndash392 2011

[20] A Bose R S Hazra and K Saha ldquoSpectral norm of circulant-type matricesrdquo Journal of Theoretical Probability vol 24 no 2pp 479ndash516 2011

[21] A Bose S Guha R S Hazra and K Saha ldquoCirculant typematrices with heavy tailed entriesrdquo Statistics and ProbabilityLetters vol 81 no 11 pp 1706ndash1716 2011

[22] E Ngondiep S Serra-Capizzano and D Sesana ldquoSpectralfeatures and asymptotic properties for g-circulants and g-Toeplitz sequencesrdquo SIAM Journal on Matrix Analysis andApplications vol 31 no 4 pp 1663ndash1687 2009

[23] S Solak ldquoOn the norms of circulantmatrices with the Fibonacciand Lucas numbersrdquo Applied Mathematics and Computationvol 160 no 1 pp 125ndash132 2005

[24] A Ipek ldquoOn the spectral norms of circulant matrices withclassical Fibonacci and Lucas numbers entriesrdquo Applied Mathe-matics and Computation vol 217 no 12 pp 6011ndash6012 2011

[25] W T Stallings and T L Boullion ldquoThe pseudoinverse of anr-circulant matrixrdquo Proceedings of the American MathematicalSociety vol 34 no 2 pp 385ndash388 1972

[26] R A Horn and C R Johnson Matrix Analysis CambridgeUniversity Press Cambridge UK 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article The Explicit Identities for Spectral ...downloads.hindawi.com/journals/mpe/2014/518913.pdf · MathematicalProblems in Engineering Corollary. Let !7 5 = !5 and !76

Mathematical Problems in Engineering 3

The first row of 119860119892is (1198860 1198861 119886

119899minus1) its (119895 + 1)th row

is obtained by giving its 119895th row a right circular shift by 119892

positions (equivalently 119892 mod 119899 positions) Note that 119892 = 1

or 119892 = 119899 + 1 yields the standard circulant matrix If 119892 = 119899 minus 1then we obtain the so-called reverse circulant matrix [21]

Definition 4 (see [26]) The spectral norm sdot 2of a matrix

119860 with complex entries is the square root of the largesteigenvalue of the positive semidefinite matrix 119860

lowast

119860

1198602

= radic120582max (119860lowast119860) (16)

where 119860lowast denotes the conjugate transpose of 119860 Therefore if

119860 is an 119899 times 119899 real symmetric matrix or 119860 is a normal matrixthen

1198602

= max1le119894le119899

10038161003816100381610038161205821198941003816100381610038161003816 (17)

where 1205821 1205822 120582

119899are the eigenvalues of 119860

3 Spectral Norms of Some Circulant Matrices

Now we will analyse spectral norms of some given circulantmatrices whose entries are binomial coefficients combinedwith harmonic numbers

Our main results for those matrices are stated as follows

Theorem 5 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198611is as in

(5) and the first row of 1198611is

((119899

0)

2

(2119899

0) (1198672119899

minus 1198670)

(119899

1)

2

(2119899 + 1

1) (1198672119899+1

minus 1198671)

(119899

119899)

2

(2119899 + 119899

119899) (1198672119899+119899

minus 119867119899))

(18)

where 119886119894= (119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus 119867119894) Then one has

10038171003817100381710038171198611

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (19)

Proof Since circulant matrix 1198611

is normal employingDefinition 4 we claim that the spectral norm of 119861

1is equal to

its spectral radius Furthermore applying the irreducible andentrywise nonnegative properties we claim that 119861

12(ie

its spectral norm) is equal to its Perron value We select an(119899 + 1)-dimensional column vector V = (1 1 1)

119879 then

1198611V = (

119899

sum

119894=0

(119899

119894)

2

(2119899 + 119894

119894) (1198672119899+119894

minus 119867119894)) V (20)

Obviouslysum119899119894=0

(119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus119867119894) is an eigenvalue of 119861

1

associated with V which is necessarily the Perron value of 1198611

Employing (4) we obtain

10038171003817100381710038171198611

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (21)

This completes the proof

Hence employing the same approaches we get thefollowing corollary

Corollary 6 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198612be as in

(5) and the first row of 1198612is

((119899

0) (

2119899

0) (

3119899

0) (1198673119899

minus 1198670)

(119899

1) (

2119899

1) (

3119899 + 1

1) (1198673119899+1

minus 1198671)

(119899

119899) (

2119899

119899) (

4119899

119899) (1198674119899

minus 119867119899))

(22)

where 119886119894= (119899

119894) ( 2119899119894

) ( 3119899+119894119894

) (1198673119899+119894

minus 119867119894) Then

10038171003817100381710038171198612

10038171003817100381710038172 = (3119899

119899)

2

(21198673119899

minus 1198672119899

minus 119867119899) (23)

Now we investigate some even-order alternative as fol-lows where 119898 is odd (ie 119898 + 1 is even)

Theorem 7 Let (119898 + 1) times (119898 + 1)-circulant matrix 1198613be as in

(5) and the first row of 1198613is

((119898

0)

2

(2119898

0) (1198672119898

minus 1198670)

minus (119898

1)

2

(2119898 + 1

1) (1198672119898+1

minus 1198671)

minus(119898

119898)

2

(2119898 + 119898

119898) (1198672119898+119898

minus 119867119898

))

(24)

where 119886119894

= (minus1)119894

(119898

119894)2

( 2119898+119894119894

) (1198672119898+119894

minus 119867119894) Then there holds

the following identity

10038171003817100381710038171198613

10038171003817100381710038172 = 2(2119898

119898)

2

(1198672119898

minus 119867119898

) (25)

Proof Noticing (9) and (17) it is clear that the spectral normof 1198613can be calculated by

10038171003817100381710038171198613

10038171003817100381710038172 = max0le119905le119898

1003816100381610038161003816120582119905 (1198613)1003816100381610038161003816 = max0le119905le119898

1003816100381610038161003816100381610038161003816100381610038161003816

119898

sum

119894=0

119886119894(120596119905

)119894

1003816100381610038161003816100381610038161003816100381610038161003816

le max0le119905le119898

119898

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 sdot

100381610038161003816100381610038161003816(120596119905

)119894100381610038161003816100381610038161003816 =

119898

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816

(26)

where 119886119894

= (minus1)119894

(119898

119894)2

( 2119898+119894119894

) (1198672119898+119894

minus 119867119894) and we employed

that all circulant matrices are normalNote that if 119898 is odd then 119898 + 1 is even and 120582

1199050(120578119888) =

1205961199050 = minus1 is an eigenvalue of 120578

119888 so

10038171003817100381710038171198613

10038171003817100381710038172 =

119898

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 (27)

Combining (4) and (27) yields

10038171003817100381710038171198613

10038171003817100381710038172 = 2(2119898

119898)

2

(1198672119898

minus 119867119898

) (28)

This completes the proof

4 Mathematical Problems in Engineering

Employing the same approaches we get the followingcorollary

Corollary 8 Let (119898 + 1) times (119898 + 1)-circulant matrix 1198614be as

in (5) and the first row of 1198614is

((119898

0) (

2119898

0) (

3119898

0) (1198673119898

minus 1198670)

minus (119898

1) (

2119898

1) (

3119898 + 1

1) (1198673119898+1

minus 1198671)

(119898

119898) (

2119898

119898) (

4119898

119898) (1198674119898

minus 119867119898

))

(29)

where 119886119894

= (minus1)119894

(119898

119894) ( 2119898119894

) ( 3119898+119894119894

) (1198673119898+119894

minus 119867119894) Then one has

the following identity

10038171003817100381710038171198614

10038171003817100381710038172 = (3119898

119898)

2

(21198673119898

minus 1198672119898

minus 119867119898

) (30)

Similarly we set 1198613

= minus1198613 1198614

= minus1198614

Corollary 9 Let11986131198614be as above respectively and119898 is odd

Then

100381710038171003817100381710038171198613

100381710038171003817100381710038172= 2(

2119898

119898)

2

(1198672119898

minus 119867119898

)

100381710038171003817100381710038171198614

100381710038171003817100381710038172= (

3119898

119898)

2

(21198673119898

minus 1198672119898

minus 119867119898

)

(31)

4 Spectral Norms of Skew-Circulant Matrices

An odd-order alternative skew-circulant matrix is defined asfollows where 119904 is even

Theorem 10 Let (119904 + 1) times (119904 + 1)-circulant matrix 1198615be as in

(10) and the first row of 1198615is

((119904

0)

2

(2119904

0) (1198672119904

minus 1198670)

minus(119904

1)

2

(2119904 + 1

1) (1198672119904+1

minus 1198671)

(119904

119904)

2

(2119904 + 119904

119904) (1198672119904+119904

minus 119867119904))

(32)

where 119886119894= (minus1)

119894

(119904

119894)2

( 2119904+119894119894

) (1198672119904+119894

minus 119867119894) Then one obtains

10038171003817100381710038171198615

10038171003817100381710038172 = 2(2119904

119904)

2

(1198672119904

minus 119867119904) (33)

Proof We employ (14) and (17) to calculate the spectral normof 1198615as follows for all 119905 = 0 1 119904

1003816100381610038161003816120582119905 (1198615)1003816100381610038161003816 =

1003816100381610038161003816100381610038161003816100381610038161003816

119904

sum

119894=0

119886119894(120596119905

120572)119894

1003816100381610038161003816100381610038161003816100381610038161003816

le

119904

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 sdot

100381610038161003816100381610038161003816(120596119905

120572)119894100381610038161003816100381610038161003816

=

119904

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 =

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894)

(34)

where 119886119894= (minus1)

119894

(119904

119894)2

( 2119904+119894119894

) (1198672119904+119894

minus 119867119894)

Since the skew-circulantmatrix is normal we deduce that10038171003817100381710038171198615

10038171003817100381710038172 = max0le119905le119904

1003816100381610038161003816120582119905 (1198615)1003816100381610038161003816 (35)

If 119904 is even then 119904 + 1 is odd We declare that 120582sc = minus1

is an eigenvalue of 120578sc then we calculate the correspondingeigenvalue of 119861

5as follows

120582(1198615) =

119904

sum

119894=0

119886119894120582119894

sc =

119904

sum

119894=0

119886119894(minus1)119894

=

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894)

(36)

where we had employed (14)Noticing (34) we claim that 120582

(1198615) is the maximum of

|120582119905(1198615)| which means

10038171003817100381710038171198615

10038171003817100381710038172 =

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894) (37)

Thus from (4) we obtain

10038171003817100381710038171198615

10038171003817100381710038172 = 2(2119904

119904)

2

(1198672119904

minus 119867119904) (38)

This completes the proof

Similarly we can calculate the identity for 1198616

Corollary 11 Let (119904 + 1) times (119904 + 1)-circulant matrix 1198616be as in

(10) and the first row of 1198616is

((119904

0) (

2119904

0) (

3119904

0) (1198673119904

minus 1198670)

minus (119904

1) (

2119904

1) (

3119904 + 1

1) (1198673119904+1

minus 1198671)

(119904

119904) (

2119904

119904) (

3119904 + 119904

119904) (1198673119904+119904

minus 119867119904))

(39)

where 119886119894= (minus1)

119894

(119904

119894) ( 2119904119894

) ( 3119904+119894119894

) (1198673119904+119894

minus 119867119894) Then there holds

10038171003817100381710038171198616

10038171003817100381710038172 = (3119904

119904)

2

(21198673119904

minus 1198672119904

minus 119867119904) (40)

Mathematical Problems in Engineering 5

Corollary 12 Let1198615

= minus1198615and119861

6= minus1198616 and 119904 is evenThen

one has the identities for spectral norm

100381710038171003817100381710038171198615

100381710038171003817100381710038172= 2(

2119904

119904)

2

(21198672119904

minus 119867119904)

100381710038171003817100381710038171198616

100381710038171003817100381710038172= (

3119904

119904)

2

(21198673119904

minus 1198672119904

minus 119867119904)

(41)

5 Spectral Norms of 119892-Circulant Matrices

Inspired by the above propositions we analyse spectral normsof some given 119892-circulant matrices in this section

Lemma 13 (see [25]) The (119899+1)times(119899+1)matrix119876119892is unitary

if and only if

(119899 + 1 119892) = 1 (42)

where 119876119892is a 119892-circulant matrix with the first row 119890

lowast

= [1

0 0]

Lemma 14 (see [25]) 119860 is a 119892-circulant matrix with the firstrow [119886

0 1198861 119886

119899] if and only if

119860 = 119876119892119862 (43)

where

119862 = circ (1198860 1198861 119886

119899) (44)

In the following part we set (119899 + 1 119892) = 1

Theorem 15 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198617be as in

(15) and the first row of 1198617is

((119899

0)

2

(2119899

0) (1198672119899

minus 1198670)

(119899

1)

2

(2119899 + 1

1) (1198672119899+1

minus 1198671)

(119899

119899)

2

(2119899 + 119899

119899) (1198672119899+119899

minus 119867119899))

(45)

where 119886119894= (119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus 119867119894) Then

10038171003817100381710038171198617

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (46)

Proof With the help of Lemmas 13 and 14 we know thatthe 119892-circulant matrix 119861

7is normal then we claim that the

spectral norm of 1198617is equal to its spectral radius Further-

more applying the irreducible and entrywise nonnegativeproperties we claim that 119861

72(ie its spectral norm) is equal

to its Perron value We select a (119899 + 1)-dimensional columnvector V = (1 1 1)

119879 then

1198617V = (

119899

sum

119894=0

(119899

119894)

2

(2119899 + 119894

119894) (1198672119899+119894

minus 119867119894)) V (47)

Obviouslysum119899119894=0

(119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus119867119894) is an eigenvalue of 119861

7

associated with V which is necessarily the Perron value of 1198617

Employing (4) we obtain

10038171003817100381710038171198617

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (48)

This completes the proof

Corollary 16 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198618be as

in (15) and the first row of 1198618is

((119899

0) (

2119899

0) (

3119899

0) (1198673119899

minus 1198670)

(119899

1) (

2119899

1) (

3119899 + 1

1) (1198673119899+1

minus 1198671)

(119899

119899) (

2119899

119899) (

4119899

119899) (1198674119899

minus 119867119899))

(49)

where 119886119894= (119899

119894) ( 2119899119894

) ( 3119899+119894119894

) (1198673119899+119894

minus 119867119894) Then one obtains

10038171003817100381710038171198618

10038171003817100381710038172 = (3119899

119899)

2

(21198673119899

minus 1198672119899

minus 119867119899) (50)

6 Numerical Examples

Example 1 In this example we give the numerical results for1198611and 119861

2

Comparing the data in Table 1 we declare that theidentities of spectral norms for 119861

119894(119894 = 1 2) hold

Example 2 In this example we list the numerical results for119861119894 119861119894

(119894 = 3 4)With the help of data in Table 2 it is clear that the

identities of spectral norms for 119861119894 119861119894

(119894 = 3 4) hold

Example 3 In this example we reveal the numerical resultsfor alternative skew-circulant matrices 119861

119894 119861119894

(119894 = 5 6)Combining the data in Table 3 we deduce that the

identities of spectral norms for 119861119894 119861119894

(119894 = 5 6) hold

Example 4 In this example we show numerical results for 1198617

and 1198618

Considering the data in Table 4 we deduce that theidentities of spectral norms for 119861

119894(119894 = 7 8) hold

The above results demonstrate that the identities ofspectral norms for the given matrices hold

7 Conclusion

This paper had discussed the explicit formulae for identicalestimations of spectral norms for circulant skew-circulantand 119892-circulant matrices whose entries are binomial coef-ficients combined with harmonic numbers Furthermoreit is easy to take other entries to obtain more interestingidentities and the same approaches can be used to verifythose identities Furthermore explicit formulas for both

6 Mathematical Problems in Engineering

Table 1 Spectral norms of 119861119894(119894 = 1 2) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 0 1 2 3 4 5 610038171003817100381710038171198611

10038171003817100381710038172 0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 610038171003817100381710038171198612

10038171003817100381710038172 0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

1198621119899

0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 6

1198622119899

0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

Table 2 Spectral norms of 119861119894 119861119894(119894 = 3 4) 119862

1119898= 2(2119898

119898)2

(1198672119898

minus 119867119898

) and 1198622119898

= (3119898

119898)2

(21198673119898

minus 1198672119898

minus 119867119898

)

119898 1 3 5 7 9 1110038171003817100381710038171198613

10038171003817100381710038172 4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 1110038171003817100381710038171198614

10038171003817100381710038172 105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16100381710038171003817100381710038171198613

1003817100381710038171003817100381724 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

100381710038171003817100381710038171198614

100381710038171003817100381710038172105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

1198621119898

4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

1198622119898

105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

Table 3 Spectral norms of 119861119894 119861119894(119894 = 5 6) 119862

1119904= 2(2119904

119904)2

(1198672119904

minus 119867119904) and 119862

2119904= (3119904

119904)2

(21198673119904

minus 1198672119904

minus 119867119904)

119904 0 2 4 6 8 1010038171003817100381710038171198615

10038171003817100381710038172 0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 1010038171003817100381710038171198616

10038171003817100381710038172 0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15100381710038171003817100381710038171198615

1003817100381710038171003817100381720 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

100381710038171003817100381710038171198616

1003817100381710038171003817100381720 296e+2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

1198621119904

0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

1198622119904

0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

Table 4 Spectral norms of 119861119894(119894 = 7 8) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 + 1 5 6 7119892 2 3 4 5 2 3 4 5 610038171003817100381710038171198617

10038171003817100381710038172 622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 610038171003817100381710038171198618

10038171003817100381710038172 344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

1198621119899

622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6

1198622119899

344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

norms 119860 and 119860minus1

help us to estimate the so-calledcondition number It is an interesting problem to investigatethe properties of 119861

119894(119894 = 1 2 8) such as the explicit

formulations for determinants and inverses by just using theentries in the first row

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work is supported by NFSC (no 11201212) Promo-tive Research Fund for Excellent Young and Middle-AgedScientists of Shandong Province (no BS2012DX004) Shan-dong Province Higher Educational Science and Technology

Program (J13LI11) AMEP and the Special Funds for DoctoralAuthorities of Linyi University

References

[1] W C Chu and L D Donno ldquoHypergeometric series andharmonic number identitiesrdquoAdvances in AppliedMathematicsvol 34 no 1 pp 123ndash137 2005

[2] M H Ang K T Arasu S Lun Ma and Y Strassler ldquoStudyof proper circulant weighing matrices with weight 9rdquo DiscreteMathematics vol 308 no 13 pp 2802ndash2809 2008

[3] V Brimkov ldquoAlgorithmic and explicit determination of theLovasz number for certain circulant graphsrdquo Discrete AppliedMathematics vol 155 no 14 pp 1812ndash1825 2007

[4] A Cambini ldquoAn explicit form of the inverse of a particularcirculantmatrixrdquoDiscreteMathematics vol 48 no 2-3 pp 323ndash325 1984

Mathematical Problems in Engineering 7

[5] W S Chou B S Du and P J S Shiue ldquoA note on circulanttransition matrices in Markov chainsrdquo Linear Algebra and ItsApplications vol 429 no 7 pp 1699ndash1704 2008

[6] P Davis Circulant Matrices Wiley New York NY USA 1979[7] C Erbas and M M Tanik ldquoGenerating solutions to the N-

Queens problems using 2-circulantsrdquo Mathematics Magazinevol 68 no 5 pp 343ndash356 1995

[8] Z L Jiang and Z X Zhou Circulant Matrices ChengduUniversity of Science and Technology Press Chengdu China1999

[9] A Mamut Q X Huang and F J Liu ldquoEnumeration of 2-regular circulant graphs and directed double networksrdquoDiscreteApplied Mathematics vol 157 no 5 pp 1024ndash1033 2009

[10] I Stojmenovic ldquoMultiplicative circulant networks topologicalproperties and communication algorithmsrdquo Discrete AppliedMathematics vol 77 no 3 pp 281ndash305 1997

[11] M Ventou and C Rigoni ldquoSelf-dual doubly circulant codesrdquoDiscrete Mathematics vol 56 no 2-3 pp 291ndash298 1985

[12] M J Weinberger and A Lempel ldquoFactorization of symmetriccirculantmatrices in finite fieldsrdquoDiscrete AppliedMathematicsvol 28 no 3 pp 271ndash285 1990

[13] Y K Wu R Z Jia and Q Li ldquog-circulant solutions to the (0 1)matrix equation 119860

119898

= 119869lowast

119899rdquo Linear Algebra and its Applications

vol 345 no 1ndash3 pp 195ndash224 2002[14] D Bertaccini and M K Ng ldquoSkew-circulant preconditioners

for systems of LMF-based ODE codesrdquo in Numerical Analysisand Its Applications Lecture Notes in Computer Science pp93ndash101 2001

[15] R Chan and X Q Jin ldquoCirculant and skew-circulant pre-conditioners for skew-hermitian type Toeplitz systemsrdquo BITNumerical Mathematics vol 31 no 4 pp 632ndash646 1991

[16] R Chan andM K Ng ldquoToeplitz preconditioners for HermitianToeplitz systemsrdquo Linear Algebra and Its Applications C vol 190pp 181ndash208 1993

[17] T Huclke ldquoCirculant and skew-circulant matrices for solvingToeplitz matrix problemsrdquo SIAM Journal on Matrix Analysisand Applications vol 13 no 3 pp 767ndash777 1992

[18] J N Lyness and T SOslashrevik ldquoFour-dimensional lattice rulesgenerated by skew-circulant matricesrdquoMathematics of Compu-tation vol 73 no 245 pp 279ndash295 2004

[19] A Bose R S Hazra and K Saha ldquoPoisson convergence ofeigenvalues of circulant type matricesrdquo Extremes vol 14 no 4pp 365ndash392 2011

[20] A Bose R S Hazra and K Saha ldquoSpectral norm of circulant-type matricesrdquo Journal of Theoretical Probability vol 24 no 2pp 479ndash516 2011

[21] A Bose S Guha R S Hazra and K Saha ldquoCirculant typematrices with heavy tailed entriesrdquo Statistics and ProbabilityLetters vol 81 no 11 pp 1706ndash1716 2011

[22] E Ngondiep S Serra-Capizzano and D Sesana ldquoSpectralfeatures and asymptotic properties for g-circulants and g-Toeplitz sequencesrdquo SIAM Journal on Matrix Analysis andApplications vol 31 no 4 pp 1663ndash1687 2009

[23] S Solak ldquoOn the norms of circulantmatrices with the Fibonacciand Lucas numbersrdquo Applied Mathematics and Computationvol 160 no 1 pp 125ndash132 2005

[24] A Ipek ldquoOn the spectral norms of circulant matrices withclassical Fibonacci and Lucas numbers entriesrdquo Applied Mathe-matics and Computation vol 217 no 12 pp 6011ndash6012 2011

[25] W T Stallings and T L Boullion ldquoThe pseudoinverse of anr-circulant matrixrdquo Proceedings of the American MathematicalSociety vol 34 no 2 pp 385ndash388 1972

[26] R A Horn and C R Johnson Matrix Analysis CambridgeUniversity Press Cambridge UK 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article The Explicit Identities for Spectral ...downloads.hindawi.com/journals/mpe/2014/518913.pdf · MathematicalProblems in Engineering Corollary. Let !7 5 = !5 and !76

4 Mathematical Problems in Engineering

Employing the same approaches we get the followingcorollary

Corollary 8 Let (119898 + 1) times (119898 + 1)-circulant matrix 1198614be as

in (5) and the first row of 1198614is

((119898

0) (

2119898

0) (

3119898

0) (1198673119898

minus 1198670)

minus (119898

1) (

2119898

1) (

3119898 + 1

1) (1198673119898+1

minus 1198671)

(119898

119898) (

2119898

119898) (

4119898

119898) (1198674119898

minus 119867119898

))

(29)

where 119886119894

= (minus1)119894

(119898

119894) ( 2119898119894

) ( 3119898+119894119894

) (1198673119898+119894

minus 119867119894) Then one has

the following identity

10038171003817100381710038171198614

10038171003817100381710038172 = (3119898

119898)

2

(21198673119898

minus 1198672119898

minus 119867119898

) (30)

Similarly we set 1198613

= minus1198613 1198614

= minus1198614

Corollary 9 Let11986131198614be as above respectively and119898 is odd

Then

100381710038171003817100381710038171198613

100381710038171003817100381710038172= 2(

2119898

119898)

2

(1198672119898

minus 119867119898

)

100381710038171003817100381710038171198614

100381710038171003817100381710038172= (

3119898

119898)

2

(21198673119898

minus 1198672119898

minus 119867119898

)

(31)

4 Spectral Norms of Skew-Circulant Matrices

An odd-order alternative skew-circulant matrix is defined asfollows where 119904 is even

Theorem 10 Let (119904 + 1) times (119904 + 1)-circulant matrix 1198615be as in

(10) and the first row of 1198615is

((119904

0)

2

(2119904

0) (1198672119904

minus 1198670)

minus(119904

1)

2

(2119904 + 1

1) (1198672119904+1

minus 1198671)

(119904

119904)

2

(2119904 + 119904

119904) (1198672119904+119904

minus 119867119904))

(32)

where 119886119894= (minus1)

119894

(119904

119894)2

( 2119904+119894119894

) (1198672119904+119894

minus 119867119894) Then one obtains

10038171003817100381710038171198615

10038171003817100381710038172 = 2(2119904

119904)

2

(1198672119904

minus 119867119904) (33)

Proof We employ (14) and (17) to calculate the spectral normof 1198615as follows for all 119905 = 0 1 119904

1003816100381610038161003816120582119905 (1198615)1003816100381610038161003816 =

1003816100381610038161003816100381610038161003816100381610038161003816

119904

sum

119894=0

119886119894(120596119905

120572)119894

1003816100381610038161003816100381610038161003816100381610038161003816

le

119904

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 sdot

100381610038161003816100381610038161003816(120596119905

120572)119894100381610038161003816100381610038161003816

=

119904

sum

119894=0

10038161003816100381610038161198861198941003816100381610038161003816 =

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894)

(34)

where 119886119894= (minus1)

119894

(119904

119894)2

( 2119904+119894119894

) (1198672119904+119894

minus 119867119894)

Since the skew-circulantmatrix is normal we deduce that10038171003817100381710038171198615

10038171003817100381710038172 = max0le119905le119904

1003816100381610038161003816120582119905 (1198615)1003816100381610038161003816 (35)

If 119904 is even then 119904 + 1 is odd We declare that 120582sc = minus1

is an eigenvalue of 120578sc then we calculate the correspondingeigenvalue of 119861

5as follows

120582(1198615) =

119904

sum

119894=0

119886119894120582119894

sc =

119904

sum

119894=0

119886119894(minus1)119894

=

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894)

(36)

where we had employed (14)Noticing (34) we claim that 120582

(1198615) is the maximum of

|120582119905(1198615)| which means

10038171003817100381710038171198615

10038171003817100381710038172 =

119904

sum

119894=0

(119904

119894)

2

(2119904 + 119894

119894) (1198672119904+119894

minus 119867119894) (37)

Thus from (4) we obtain

10038171003817100381710038171198615

10038171003817100381710038172 = 2(2119904

119904)

2

(1198672119904

minus 119867119904) (38)

This completes the proof

Similarly we can calculate the identity for 1198616

Corollary 11 Let (119904 + 1) times (119904 + 1)-circulant matrix 1198616be as in

(10) and the first row of 1198616is

((119904

0) (

2119904

0) (

3119904

0) (1198673119904

minus 1198670)

minus (119904

1) (

2119904

1) (

3119904 + 1

1) (1198673119904+1

minus 1198671)

(119904

119904) (

2119904

119904) (

3119904 + 119904

119904) (1198673119904+119904

minus 119867119904))

(39)

where 119886119894= (minus1)

119894

(119904

119894) ( 2119904119894

) ( 3119904+119894119894

) (1198673119904+119894

minus 119867119894) Then there holds

10038171003817100381710038171198616

10038171003817100381710038172 = (3119904

119904)

2

(21198673119904

minus 1198672119904

minus 119867119904) (40)

Mathematical Problems in Engineering 5

Corollary 12 Let1198615

= minus1198615and119861

6= minus1198616 and 119904 is evenThen

one has the identities for spectral norm

100381710038171003817100381710038171198615

100381710038171003817100381710038172= 2(

2119904

119904)

2

(21198672119904

minus 119867119904)

100381710038171003817100381710038171198616

100381710038171003817100381710038172= (

3119904

119904)

2

(21198673119904

minus 1198672119904

minus 119867119904)

(41)

5 Spectral Norms of 119892-Circulant Matrices

Inspired by the above propositions we analyse spectral normsof some given 119892-circulant matrices in this section

Lemma 13 (see [25]) The (119899+1)times(119899+1)matrix119876119892is unitary

if and only if

(119899 + 1 119892) = 1 (42)

where 119876119892is a 119892-circulant matrix with the first row 119890

lowast

= [1

0 0]

Lemma 14 (see [25]) 119860 is a 119892-circulant matrix with the firstrow [119886

0 1198861 119886

119899] if and only if

119860 = 119876119892119862 (43)

where

119862 = circ (1198860 1198861 119886

119899) (44)

In the following part we set (119899 + 1 119892) = 1

Theorem 15 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198617be as in

(15) and the first row of 1198617is

((119899

0)

2

(2119899

0) (1198672119899

minus 1198670)

(119899

1)

2

(2119899 + 1

1) (1198672119899+1

minus 1198671)

(119899

119899)

2

(2119899 + 119899

119899) (1198672119899+119899

minus 119867119899))

(45)

where 119886119894= (119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus 119867119894) Then

10038171003817100381710038171198617

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (46)

Proof With the help of Lemmas 13 and 14 we know thatthe 119892-circulant matrix 119861

7is normal then we claim that the

spectral norm of 1198617is equal to its spectral radius Further-

more applying the irreducible and entrywise nonnegativeproperties we claim that 119861

72(ie its spectral norm) is equal

to its Perron value We select a (119899 + 1)-dimensional columnvector V = (1 1 1)

119879 then

1198617V = (

119899

sum

119894=0

(119899

119894)

2

(2119899 + 119894

119894) (1198672119899+119894

minus 119867119894)) V (47)

Obviouslysum119899119894=0

(119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus119867119894) is an eigenvalue of 119861

7

associated with V which is necessarily the Perron value of 1198617

Employing (4) we obtain

10038171003817100381710038171198617

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (48)

This completes the proof

Corollary 16 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198618be as

in (15) and the first row of 1198618is

((119899

0) (

2119899

0) (

3119899

0) (1198673119899

minus 1198670)

(119899

1) (

2119899

1) (

3119899 + 1

1) (1198673119899+1

minus 1198671)

(119899

119899) (

2119899

119899) (

4119899

119899) (1198674119899

minus 119867119899))

(49)

where 119886119894= (119899

119894) ( 2119899119894

) ( 3119899+119894119894

) (1198673119899+119894

minus 119867119894) Then one obtains

10038171003817100381710038171198618

10038171003817100381710038172 = (3119899

119899)

2

(21198673119899

minus 1198672119899

minus 119867119899) (50)

6 Numerical Examples

Example 1 In this example we give the numerical results for1198611and 119861

2

Comparing the data in Table 1 we declare that theidentities of spectral norms for 119861

119894(119894 = 1 2) hold

Example 2 In this example we list the numerical results for119861119894 119861119894

(119894 = 3 4)With the help of data in Table 2 it is clear that the

identities of spectral norms for 119861119894 119861119894

(119894 = 3 4) hold

Example 3 In this example we reveal the numerical resultsfor alternative skew-circulant matrices 119861

119894 119861119894

(119894 = 5 6)Combining the data in Table 3 we deduce that the

identities of spectral norms for 119861119894 119861119894

(119894 = 5 6) hold

Example 4 In this example we show numerical results for 1198617

and 1198618

Considering the data in Table 4 we deduce that theidentities of spectral norms for 119861

119894(119894 = 7 8) hold

The above results demonstrate that the identities ofspectral norms for the given matrices hold

7 Conclusion

This paper had discussed the explicit formulae for identicalestimations of spectral norms for circulant skew-circulantand 119892-circulant matrices whose entries are binomial coef-ficients combined with harmonic numbers Furthermoreit is easy to take other entries to obtain more interestingidentities and the same approaches can be used to verifythose identities Furthermore explicit formulas for both

6 Mathematical Problems in Engineering

Table 1 Spectral norms of 119861119894(119894 = 1 2) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 0 1 2 3 4 5 610038171003817100381710038171198611

10038171003817100381710038172 0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 610038171003817100381710038171198612

10038171003817100381710038172 0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

1198621119899

0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 6

1198622119899

0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

Table 2 Spectral norms of 119861119894 119861119894(119894 = 3 4) 119862

1119898= 2(2119898

119898)2

(1198672119898

minus 119867119898

) and 1198622119898

= (3119898

119898)2

(21198673119898

minus 1198672119898

minus 119867119898

)

119898 1 3 5 7 9 1110038171003817100381710038171198613

10038171003817100381710038172 4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 1110038171003817100381710038171198614

10038171003817100381710038172 105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16100381710038171003817100381710038171198613

1003817100381710038171003817100381724 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

100381710038171003817100381710038171198614

100381710038171003817100381710038172105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

1198621119898

4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

1198622119898

105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

Table 3 Spectral norms of 119861119894 119861119894(119894 = 5 6) 119862

1119904= 2(2119904

119904)2

(1198672119904

minus 119867119904) and 119862

2119904= (3119904

119904)2

(21198673119904

minus 1198672119904

minus 119867119904)

119904 0 2 4 6 8 1010038171003817100381710038171198615

10038171003817100381710038172 0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 1010038171003817100381710038171198616

10038171003817100381710038172 0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15100381710038171003817100381710038171198615

1003817100381710038171003817100381720 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

100381710038171003817100381710038171198616

1003817100381710038171003817100381720 296e+2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

1198621119904

0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

1198622119904

0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

Table 4 Spectral norms of 119861119894(119894 = 7 8) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 + 1 5 6 7119892 2 3 4 5 2 3 4 5 610038171003817100381710038171198617

10038171003817100381710038172 622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 610038171003817100381710038171198618

10038171003817100381710038172 344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

1198621119899

622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6

1198622119899

344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

norms 119860 and 119860minus1

help us to estimate the so-calledcondition number It is an interesting problem to investigatethe properties of 119861

119894(119894 = 1 2 8) such as the explicit

formulations for determinants and inverses by just using theentries in the first row

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work is supported by NFSC (no 11201212) Promo-tive Research Fund for Excellent Young and Middle-AgedScientists of Shandong Province (no BS2012DX004) Shan-dong Province Higher Educational Science and Technology

Program (J13LI11) AMEP and the Special Funds for DoctoralAuthorities of Linyi University

References

[1] W C Chu and L D Donno ldquoHypergeometric series andharmonic number identitiesrdquoAdvances in AppliedMathematicsvol 34 no 1 pp 123ndash137 2005

[2] M H Ang K T Arasu S Lun Ma and Y Strassler ldquoStudyof proper circulant weighing matrices with weight 9rdquo DiscreteMathematics vol 308 no 13 pp 2802ndash2809 2008

[3] V Brimkov ldquoAlgorithmic and explicit determination of theLovasz number for certain circulant graphsrdquo Discrete AppliedMathematics vol 155 no 14 pp 1812ndash1825 2007

[4] A Cambini ldquoAn explicit form of the inverse of a particularcirculantmatrixrdquoDiscreteMathematics vol 48 no 2-3 pp 323ndash325 1984

Mathematical Problems in Engineering 7

[5] W S Chou B S Du and P J S Shiue ldquoA note on circulanttransition matrices in Markov chainsrdquo Linear Algebra and ItsApplications vol 429 no 7 pp 1699ndash1704 2008

[6] P Davis Circulant Matrices Wiley New York NY USA 1979[7] C Erbas and M M Tanik ldquoGenerating solutions to the N-

Queens problems using 2-circulantsrdquo Mathematics Magazinevol 68 no 5 pp 343ndash356 1995

[8] Z L Jiang and Z X Zhou Circulant Matrices ChengduUniversity of Science and Technology Press Chengdu China1999

[9] A Mamut Q X Huang and F J Liu ldquoEnumeration of 2-regular circulant graphs and directed double networksrdquoDiscreteApplied Mathematics vol 157 no 5 pp 1024ndash1033 2009

[10] I Stojmenovic ldquoMultiplicative circulant networks topologicalproperties and communication algorithmsrdquo Discrete AppliedMathematics vol 77 no 3 pp 281ndash305 1997

[11] M Ventou and C Rigoni ldquoSelf-dual doubly circulant codesrdquoDiscrete Mathematics vol 56 no 2-3 pp 291ndash298 1985

[12] M J Weinberger and A Lempel ldquoFactorization of symmetriccirculantmatrices in finite fieldsrdquoDiscrete AppliedMathematicsvol 28 no 3 pp 271ndash285 1990

[13] Y K Wu R Z Jia and Q Li ldquog-circulant solutions to the (0 1)matrix equation 119860

119898

= 119869lowast

119899rdquo Linear Algebra and its Applications

vol 345 no 1ndash3 pp 195ndash224 2002[14] D Bertaccini and M K Ng ldquoSkew-circulant preconditioners

for systems of LMF-based ODE codesrdquo in Numerical Analysisand Its Applications Lecture Notes in Computer Science pp93ndash101 2001

[15] R Chan and X Q Jin ldquoCirculant and skew-circulant pre-conditioners for skew-hermitian type Toeplitz systemsrdquo BITNumerical Mathematics vol 31 no 4 pp 632ndash646 1991

[16] R Chan andM K Ng ldquoToeplitz preconditioners for HermitianToeplitz systemsrdquo Linear Algebra and Its Applications C vol 190pp 181ndash208 1993

[17] T Huclke ldquoCirculant and skew-circulant matrices for solvingToeplitz matrix problemsrdquo SIAM Journal on Matrix Analysisand Applications vol 13 no 3 pp 767ndash777 1992

[18] J N Lyness and T SOslashrevik ldquoFour-dimensional lattice rulesgenerated by skew-circulant matricesrdquoMathematics of Compu-tation vol 73 no 245 pp 279ndash295 2004

[19] A Bose R S Hazra and K Saha ldquoPoisson convergence ofeigenvalues of circulant type matricesrdquo Extremes vol 14 no 4pp 365ndash392 2011

[20] A Bose R S Hazra and K Saha ldquoSpectral norm of circulant-type matricesrdquo Journal of Theoretical Probability vol 24 no 2pp 479ndash516 2011

[21] A Bose S Guha R S Hazra and K Saha ldquoCirculant typematrices with heavy tailed entriesrdquo Statistics and ProbabilityLetters vol 81 no 11 pp 1706ndash1716 2011

[22] E Ngondiep S Serra-Capizzano and D Sesana ldquoSpectralfeatures and asymptotic properties for g-circulants and g-Toeplitz sequencesrdquo SIAM Journal on Matrix Analysis andApplications vol 31 no 4 pp 1663ndash1687 2009

[23] S Solak ldquoOn the norms of circulantmatrices with the Fibonacciand Lucas numbersrdquo Applied Mathematics and Computationvol 160 no 1 pp 125ndash132 2005

[24] A Ipek ldquoOn the spectral norms of circulant matrices withclassical Fibonacci and Lucas numbers entriesrdquo Applied Mathe-matics and Computation vol 217 no 12 pp 6011ndash6012 2011

[25] W T Stallings and T L Boullion ldquoThe pseudoinverse of anr-circulant matrixrdquo Proceedings of the American MathematicalSociety vol 34 no 2 pp 385ndash388 1972

[26] R A Horn and C R Johnson Matrix Analysis CambridgeUniversity Press Cambridge UK 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article The Explicit Identities for Spectral ...downloads.hindawi.com/journals/mpe/2014/518913.pdf · MathematicalProblems in Engineering Corollary. Let !7 5 = !5 and !76

Mathematical Problems in Engineering 5

Corollary 12 Let1198615

= minus1198615and119861

6= minus1198616 and 119904 is evenThen

one has the identities for spectral norm

100381710038171003817100381710038171198615

100381710038171003817100381710038172= 2(

2119904

119904)

2

(21198672119904

minus 119867119904)

100381710038171003817100381710038171198616

100381710038171003817100381710038172= (

3119904

119904)

2

(21198673119904

minus 1198672119904

minus 119867119904)

(41)

5 Spectral Norms of 119892-Circulant Matrices

Inspired by the above propositions we analyse spectral normsof some given 119892-circulant matrices in this section

Lemma 13 (see [25]) The (119899+1)times(119899+1)matrix119876119892is unitary

if and only if

(119899 + 1 119892) = 1 (42)

where 119876119892is a 119892-circulant matrix with the first row 119890

lowast

= [1

0 0]

Lemma 14 (see [25]) 119860 is a 119892-circulant matrix with the firstrow [119886

0 1198861 119886

119899] if and only if

119860 = 119876119892119862 (43)

where

119862 = circ (1198860 1198861 119886

119899) (44)

In the following part we set (119899 + 1 119892) = 1

Theorem 15 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198617be as in

(15) and the first row of 1198617is

((119899

0)

2

(2119899

0) (1198672119899

minus 1198670)

(119899

1)

2

(2119899 + 1

1) (1198672119899+1

minus 1198671)

(119899

119899)

2

(2119899 + 119899

119899) (1198672119899+119899

minus 119867119899))

(45)

where 119886119894= (119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus 119867119894) Then

10038171003817100381710038171198617

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (46)

Proof With the help of Lemmas 13 and 14 we know thatthe 119892-circulant matrix 119861

7is normal then we claim that the

spectral norm of 1198617is equal to its spectral radius Further-

more applying the irreducible and entrywise nonnegativeproperties we claim that 119861

72(ie its spectral norm) is equal

to its Perron value We select a (119899 + 1)-dimensional columnvector V = (1 1 1)

119879 then

1198617V = (

119899

sum

119894=0

(119899

119894)

2

(2119899 + 119894

119894) (1198672119899+119894

minus 119867119894)) V (47)

Obviouslysum119899119894=0

(119899

119894)2

( 2119899+119894119894

) (1198672119899+119894

minus119867119894) is an eigenvalue of 119861

7

associated with V which is necessarily the Perron value of 1198617

Employing (4) we obtain

10038171003817100381710038171198617

10038171003817100381710038172 = 2(2119899

119899)

2

(1198672119899

minus 119867119899) (48)

This completes the proof

Corollary 16 Let (119899 + 1) times (119899 + 1)-circulant matrix 1198618be as

in (15) and the first row of 1198618is

((119899

0) (

2119899

0) (

3119899

0) (1198673119899

minus 1198670)

(119899

1) (

2119899

1) (

3119899 + 1

1) (1198673119899+1

minus 1198671)

(119899

119899) (

2119899

119899) (

4119899

119899) (1198674119899

minus 119867119899))

(49)

where 119886119894= (119899

119894) ( 2119899119894

) ( 3119899+119894119894

) (1198673119899+119894

minus 119867119894) Then one obtains

10038171003817100381710038171198618

10038171003817100381710038172 = (3119899

119899)

2

(21198673119899

minus 1198672119899

minus 119867119899) (50)

6 Numerical Examples

Example 1 In this example we give the numerical results for1198611and 119861

2

Comparing the data in Table 1 we declare that theidentities of spectral norms for 119861

119894(119894 = 1 2) hold

Example 2 In this example we list the numerical results for119861119894 119861119894

(119894 = 3 4)With the help of data in Table 2 it is clear that the

identities of spectral norms for 119861119894 119861119894

(119894 = 3 4) hold

Example 3 In this example we reveal the numerical resultsfor alternative skew-circulant matrices 119861

119894 119861119894

(119894 = 5 6)Combining the data in Table 3 we deduce that the

identities of spectral norms for 119861119894 119861119894

(119894 = 5 6) hold

Example 4 In this example we show numerical results for 1198617

and 1198618

Considering the data in Table 4 we deduce that theidentities of spectral norms for 119861

119894(119894 = 7 8) hold

The above results demonstrate that the identities ofspectral norms for the given matrices hold

7 Conclusion

This paper had discussed the explicit formulae for identicalestimations of spectral norms for circulant skew-circulantand 119892-circulant matrices whose entries are binomial coef-ficients combined with harmonic numbers Furthermoreit is easy to take other entries to obtain more interestingidentities and the same approaches can be used to verifythose identities Furthermore explicit formulas for both

6 Mathematical Problems in Engineering

Table 1 Spectral norms of 119861119894(119894 = 1 2) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 0 1 2 3 4 5 610038171003817100381710038171198611

10038171003817100381710038172 0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 610038171003817100381710038171198612

10038171003817100381710038172 0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

1198621119899

0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 6

1198622119899

0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

Table 2 Spectral norms of 119861119894 119861119894(119894 = 3 4) 119862

1119898= 2(2119898

119898)2

(1198672119898

minus 119867119898

) and 1198622119898

= (3119898

119898)2

(21198673119898

minus 1198672119898

minus 119867119898

)

119898 1 3 5 7 9 1110038171003817100381710038171198613

10038171003817100381710038172 4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 1110038171003817100381710038171198614

10038171003817100381710038172 105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16100381710038171003817100381710038171198613

1003817100381710038171003817100381724 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

100381710038171003817100381710038171198614

100381710038171003817100381710038172105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

1198621119898

4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

1198622119898

105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

Table 3 Spectral norms of 119861119894 119861119894(119894 = 5 6) 119862

1119904= 2(2119904

119904)2

(1198672119904

minus 119867119904) and 119862

2119904= (3119904

119904)2

(21198673119904

minus 1198672119904

minus 119867119904)

119904 0 2 4 6 8 1010038171003817100381710038171198615

10038171003817100381710038172 0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 1010038171003817100381710038171198616

10038171003817100381710038172 0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15100381710038171003817100381710038171198615

1003817100381710038171003817100381720 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

100381710038171003817100381710038171198616

1003817100381710038171003817100381720 296e+2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

1198621119904

0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

1198622119904

0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

Table 4 Spectral norms of 119861119894(119894 = 7 8) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 + 1 5 6 7119892 2 3 4 5 2 3 4 5 610038171003817100381710038171198617

10038171003817100381710038172 622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 610038171003817100381710038171198618

10038171003817100381710038172 344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

1198621119899

622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6

1198622119899

344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

norms 119860 and 119860minus1

help us to estimate the so-calledcondition number It is an interesting problem to investigatethe properties of 119861

119894(119894 = 1 2 8) such as the explicit

formulations for determinants and inverses by just using theentries in the first row

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work is supported by NFSC (no 11201212) Promo-tive Research Fund for Excellent Young and Middle-AgedScientists of Shandong Province (no BS2012DX004) Shan-dong Province Higher Educational Science and Technology

Program (J13LI11) AMEP and the Special Funds for DoctoralAuthorities of Linyi University

References

[1] W C Chu and L D Donno ldquoHypergeometric series andharmonic number identitiesrdquoAdvances in AppliedMathematicsvol 34 no 1 pp 123ndash137 2005

[2] M H Ang K T Arasu S Lun Ma and Y Strassler ldquoStudyof proper circulant weighing matrices with weight 9rdquo DiscreteMathematics vol 308 no 13 pp 2802ndash2809 2008

[3] V Brimkov ldquoAlgorithmic and explicit determination of theLovasz number for certain circulant graphsrdquo Discrete AppliedMathematics vol 155 no 14 pp 1812ndash1825 2007

[4] A Cambini ldquoAn explicit form of the inverse of a particularcirculantmatrixrdquoDiscreteMathematics vol 48 no 2-3 pp 323ndash325 1984

Mathematical Problems in Engineering 7

[5] W S Chou B S Du and P J S Shiue ldquoA note on circulanttransition matrices in Markov chainsrdquo Linear Algebra and ItsApplications vol 429 no 7 pp 1699ndash1704 2008

[6] P Davis Circulant Matrices Wiley New York NY USA 1979[7] C Erbas and M M Tanik ldquoGenerating solutions to the N-

Queens problems using 2-circulantsrdquo Mathematics Magazinevol 68 no 5 pp 343ndash356 1995

[8] Z L Jiang and Z X Zhou Circulant Matrices ChengduUniversity of Science and Technology Press Chengdu China1999

[9] A Mamut Q X Huang and F J Liu ldquoEnumeration of 2-regular circulant graphs and directed double networksrdquoDiscreteApplied Mathematics vol 157 no 5 pp 1024ndash1033 2009

[10] I Stojmenovic ldquoMultiplicative circulant networks topologicalproperties and communication algorithmsrdquo Discrete AppliedMathematics vol 77 no 3 pp 281ndash305 1997

[11] M Ventou and C Rigoni ldquoSelf-dual doubly circulant codesrdquoDiscrete Mathematics vol 56 no 2-3 pp 291ndash298 1985

[12] M J Weinberger and A Lempel ldquoFactorization of symmetriccirculantmatrices in finite fieldsrdquoDiscrete AppliedMathematicsvol 28 no 3 pp 271ndash285 1990

[13] Y K Wu R Z Jia and Q Li ldquog-circulant solutions to the (0 1)matrix equation 119860

119898

= 119869lowast

119899rdquo Linear Algebra and its Applications

vol 345 no 1ndash3 pp 195ndash224 2002[14] D Bertaccini and M K Ng ldquoSkew-circulant preconditioners

for systems of LMF-based ODE codesrdquo in Numerical Analysisand Its Applications Lecture Notes in Computer Science pp93ndash101 2001

[15] R Chan and X Q Jin ldquoCirculant and skew-circulant pre-conditioners for skew-hermitian type Toeplitz systemsrdquo BITNumerical Mathematics vol 31 no 4 pp 632ndash646 1991

[16] R Chan andM K Ng ldquoToeplitz preconditioners for HermitianToeplitz systemsrdquo Linear Algebra and Its Applications C vol 190pp 181ndash208 1993

[17] T Huclke ldquoCirculant and skew-circulant matrices for solvingToeplitz matrix problemsrdquo SIAM Journal on Matrix Analysisand Applications vol 13 no 3 pp 767ndash777 1992

[18] J N Lyness and T SOslashrevik ldquoFour-dimensional lattice rulesgenerated by skew-circulant matricesrdquoMathematics of Compu-tation vol 73 no 245 pp 279ndash295 2004

[19] A Bose R S Hazra and K Saha ldquoPoisson convergence ofeigenvalues of circulant type matricesrdquo Extremes vol 14 no 4pp 365ndash392 2011

[20] A Bose R S Hazra and K Saha ldquoSpectral norm of circulant-type matricesrdquo Journal of Theoretical Probability vol 24 no 2pp 479ndash516 2011

[21] A Bose S Guha R S Hazra and K Saha ldquoCirculant typematrices with heavy tailed entriesrdquo Statistics and ProbabilityLetters vol 81 no 11 pp 1706ndash1716 2011

[22] E Ngondiep S Serra-Capizzano and D Sesana ldquoSpectralfeatures and asymptotic properties for g-circulants and g-Toeplitz sequencesrdquo SIAM Journal on Matrix Analysis andApplications vol 31 no 4 pp 1663ndash1687 2009

[23] S Solak ldquoOn the norms of circulantmatrices with the Fibonacciand Lucas numbersrdquo Applied Mathematics and Computationvol 160 no 1 pp 125ndash132 2005

[24] A Ipek ldquoOn the spectral norms of circulant matrices withclassical Fibonacci and Lucas numbers entriesrdquo Applied Mathe-matics and Computation vol 217 no 12 pp 6011ndash6012 2011

[25] W T Stallings and T L Boullion ldquoThe pseudoinverse of anr-circulant matrixrdquo Proceedings of the American MathematicalSociety vol 34 no 2 pp 385ndash388 1972

[26] R A Horn and C R Johnson Matrix Analysis CambridgeUniversity Press Cambridge UK 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article The Explicit Identities for Spectral ...downloads.hindawi.com/journals/mpe/2014/518913.pdf · MathematicalProblems in Engineering Corollary. Let !7 5 = !5 and !76

6 Mathematical Problems in Engineering

Table 1 Spectral norms of 119861119894(119894 = 1 2) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 0 1 2 3 4 5 610038171003817100381710038171198611

10038171003817100381710038172 0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 610038171003817100381710038171198612

10038171003817100381710038172 0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

1198621119899

0 4 42 493119890 + 2 622119890 + 3 820119890 + 4 112119890 + 6

1198622119899

0 105119890 + 1 296119890 + 2 969119890 + 3 344119890 + 5 128119890 + 7 495119890 + 8

Table 2 Spectral norms of 119861119894 119861119894(119894 = 3 4) 119862

1119898= 2(2119898

119898)2

(1198672119898

minus 119867119898

) and 1198622119898

= (3119898

119898)2

(21198673119898

minus 1198672119898

minus 119867119898

)

119898 1 3 5 7 9 1110038171003817100381710038171198613

10038171003817100381710038172 4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 1110038171003817100381710038171198614

10038171003817100381710038172 105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16100381710038171003817100381710038171198613

1003817100381710038171003817100381724 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

100381710038171003817100381710038171198614

100381710038171003817100381710038172105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

1198621119898

4 493119890 + 2 820119890 + 4 155119890 + 7 315119890 + 9 668119890 + 11

1198622119898

105 969119890 + 3 128119890 + 7 196119890 + 10 320119890 + 13 549119890 + 16

Table 3 Spectral norms of 119861119894 119861119894(119894 = 5 6) 119862

1119904= 2(2119904

119904)2

(1198672119904

minus 119867119904) and 119862

2119904= (3119904

119904)2

(21198673119904

minus 1198672119904

minus 119867119904)

119904 0 2 4 6 8 1010038171003817100381710038171198615

10038171003817100381710038172 0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 1010038171003817100381710038171198616

10038171003817100381710038172 0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15100381710038171003817100381710038171198615

1003817100381710038171003817100381720 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

100381710038171003817100381710038171198616

1003817100381710038171003817100381720 296e+2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

1198621119904

0 42 622119890 + 3 112119890 + 6 220119890 + 8 457119890 + 10

1198622119904

0 296119890 + 2 344119890 + 5 495119890 + 5 786119890 + 11 132119890 + 15

Table 4 Spectral norms of 119861119894(119894 = 7 8) 119862

1119899= 2(2119899

119899)2

(1198672119899

minus 119867119899) and 119862

2119899= (3119899

119899)2

(21198673119899

minus 1198672119899

minus 119867119899)

119899 + 1 5 6 7119892 2 3 4 5 2 3 4 5 610038171003817100381710038171198617

10038171003817100381710038172 622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 610038171003817100381710038171198618

10038171003817100381710038172 344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

1198621119899

622119890 + 3 622119890 + 3 622119890 + 3 820119890 + 4 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6 112119890 + 6

1198622119899

344119890 + 5 344119890 + 5 344119890 + 5 128119890 + 7 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8 495119890 + 8

norms 119860 and 119860minus1

help us to estimate the so-calledcondition number It is an interesting problem to investigatethe properties of 119861

119894(119894 = 1 2 8) such as the explicit

formulations for determinants and inverses by just using theentries in the first row

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This work is supported by NFSC (no 11201212) Promo-tive Research Fund for Excellent Young and Middle-AgedScientists of Shandong Province (no BS2012DX004) Shan-dong Province Higher Educational Science and Technology

Program (J13LI11) AMEP and the Special Funds for DoctoralAuthorities of Linyi University

References

[1] W C Chu and L D Donno ldquoHypergeometric series andharmonic number identitiesrdquoAdvances in AppliedMathematicsvol 34 no 1 pp 123ndash137 2005

[2] M H Ang K T Arasu S Lun Ma and Y Strassler ldquoStudyof proper circulant weighing matrices with weight 9rdquo DiscreteMathematics vol 308 no 13 pp 2802ndash2809 2008

[3] V Brimkov ldquoAlgorithmic and explicit determination of theLovasz number for certain circulant graphsrdquo Discrete AppliedMathematics vol 155 no 14 pp 1812ndash1825 2007

[4] A Cambini ldquoAn explicit form of the inverse of a particularcirculantmatrixrdquoDiscreteMathematics vol 48 no 2-3 pp 323ndash325 1984

Mathematical Problems in Engineering 7

[5] W S Chou B S Du and P J S Shiue ldquoA note on circulanttransition matrices in Markov chainsrdquo Linear Algebra and ItsApplications vol 429 no 7 pp 1699ndash1704 2008

[6] P Davis Circulant Matrices Wiley New York NY USA 1979[7] C Erbas and M M Tanik ldquoGenerating solutions to the N-

Queens problems using 2-circulantsrdquo Mathematics Magazinevol 68 no 5 pp 343ndash356 1995

[8] Z L Jiang and Z X Zhou Circulant Matrices ChengduUniversity of Science and Technology Press Chengdu China1999

[9] A Mamut Q X Huang and F J Liu ldquoEnumeration of 2-regular circulant graphs and directed double networksrdquoDiscreteApplied Mathematics vol 157 no 5 pp 1024ndash1033 2009

[10] I Stojmenovic ldquoMultiplicative circulant networks topologicalproperties and communication algorithmsrdquo Discrete AppliedMathematics vol 77 no 3 pp 281ndash305 1997

[11] M Ventou and C Rigoni ldquoSelf-dual doubly circulant codesrdquoDiscrete Mathematics vol 56 no 2-3 pp 291ndash298 1985

[12] M J Weinberger and A Lempel ldquoFactorization of symmetriccirculantmatrices in finite fieldsrdquoDiscrete AppliedMathematicsvol 28 no 3 pp 271ndash285 1990

[13] Y K Wu R Z Jia and Q Li ldquog-circulant solutions to the (0 1)matrix equation 119860

119898

= 119869lowast

119899rdquo Linear Algebra and its Applications

vol 345 no 1ndash3 pp 195ndash224 2002[14] D Bertaccini and M K Ng ldquoSkew-circulant preconditioners

for systems of LMF-based ODE codesrdquo in Numerical Analysisand Its Applications Lecture Notes in Computer Science pp93ndash101 2001

[15] R Chan and X Q Jin ldquoCirculant and skew-circulant pre-conditioners for skew-hermitian type Toeplitz systemsrdquo BITNumerical Mathematics vol 31 no 4 pp 632ndash646 1991

[16] R Chan andM K Ng ldquoToeplitz preconditioners for HermitianToeplitz systemsrdquo Linear Algebra and Its Applications C vol 190pp 181ndash208 1993

[17] T Huclke ldquoCirculant and skew-circulant matrices for solvingToeplitz matrix problemsrdquo SIAM Journal on Matrix Analysisand Applications vol 13 no 3 pp 767ndash777 1992

[18] J N Lyness and T SOslashrevik ldquoFour-dimensional lattice rulesgenerated by skew-circulant matricesrdquoMathematics of Compu-tation vol 73 no 245 pp 279ndash295 2004

[19] A Bose R S Hazra and K Saha ldquoPoisson convergence ofeigenvalues of circulant type matricesrdquo Extremes vol 14 no 4pp 365ndash392 2011

[20] A Bose R S Hazra and K Saha ldquoSpectral norm of circulant-type matricesrdquo Journal of Theoretical Probability vol 24 no 2pp 479ndash516 2011

[21] A Bose S Guha R S Hazra and K Saha ldquoCirculant typematrices with heavy tailed entriesrdquo Statistics and ProbabilityLetters vol 81 no 11 pp 1706ndash1716 2011

[22] E Ngondiep S Serra-Capizzano and D Sesana ldquoSpectralfeatures and asymptotic properties for g-circulants and g-Toeplitz sequencesrdquo SIAM Journal on Matrix Analysis andApplications vol 31 no 4 pp 1663ndash1687 2009

[23] S Solak ldquoOn the norms of circulantmatrices with the Fibonacciand Lucas numbersrdquo Applied Mathematics and Computationvol 160 no 1 pp 125ndash132 2005

[24] A Ipek ldquoOn the spectral norms of circulant matrices withclassical Fibonacci and Lucas numbers entriesrdquo Applied Mathe-matics and Computation vol 217 no 12 pp 6011ndash6012 2011

[25] W T Stallings and T L Boullion ldquoThe pseudoinverse of anr-circulant matrixrdquo Proceedings of the American MathematicalSociety vol 34 no 2 pp 385ndash388 1972

[26] R A Horn and C R Johnson Matrix Analysis CambridgeUniversity Press Cambridge UK 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article The Explicit Identities for Spectral ...downloads.hindawi.com/journals/mpe/2014/518913.pdf · MathematicalProblems in Engineering Corollary. Let !7 5 = !5 and !76

Mathematical Problems in Engineering 7

[5] W S Chou B S Du and P J S Shiue ldquoA note on circulanttransition matrices in Markov chainsrdquo Linear Algebra and ItsApplications vol 429 no 7 pp 1699ndash1704 2008

[6] P Davis Circulant Matrices Wiley New York NY USA 1979[7] C Erbas and M M Tanik ldquoGenerating solutions to the N-

Queens problems using 2-circulantsrdquo Mathematics Magazinevol 68 no 5 pp 343ndash356 1995

[8] Z L Jiang and Z X Zhou Circulant Matrices ChengduUniversity of Science and Technology Press Chengdu China1999

[9] A Mamut Q X Huang and F J Liu ldquoEnumeration of 2-regular circulant graphs and directed double networksrdquoDiscreteApplied Mathematics vol 157 no 5 pp 1024ndash1033 2009

[10] I Stojmenovic ldquoMultiplicative circulant networks topologicalproperties and communication algorithmsrdquo Discrete AppliedMathematics vol 77 no 3 pp 281ndash305 1997

[11] M Ventou and C Rigoni ldquoSelf-dual doubly circulant codesrdquoDiscrete Mathematics vol 56 no 2-3 pp 291ndash298 1985

[12] M J Weinberger and A Lempel ldquoFactorization of symmetriccirculantmatrices in finite fieldsrdquoDiscrete AppliedMathematicsvol 28 no 3 pp 271ndash285 1990

[13] Y K Wu R Z Jia and Q Li ldquog-circulant solutions to the (0 1)matrix equation 119860

119898

= 119869lowast

119899rdquo Linear Algebra and its Applications

vol 345 no 1ndash3 pp 195ndash224 2002[14] D Bertaccini and M K Ng ldquoSkew-circulant preconditioners

for systems of LMF-based ODE codesrdquo in Numerical Analysisand Its Applications Lecture Notes in Computer Science pp93ndash101 2001

[15] R Chan and X Q Jin ldquoCirculant and skew-circulant pre-conditioners for skew-hermitian type Toeplitz systemsrdquo BITNumerical Mathematics vol 31 no 4 pp 632ndash646 1991

[16] R Chan andM K Ng ldquoToeplitz preconditioners for HermitianToeplitz systemsrdquo Linear Algebra and Its Applications C vol 190pp 181ndash208 1993

[17] T Huclke ldquoCirculant and skew-circulant matrices for solvingToeplitz matrix problemsrdquo SIAM Journal on Matrix Analysisand Applications vol 13 no 3 pp 767ndash777 1992

[18] J N Lyness and T SOslashrevik ldquoFour-dimensional lattice rulesgenerated by skew-circulant matricesrdquoMathematics of Compu-tation vol 73 no 245 pp 279ndash295 2004

[19] A Bose R S Hazra and K Saha ldquoPoisson convergence ofeigenvalues of circulant type matricesrdquo Extremes vol 14 no 4pp 365ndash392 2011

[20] A Bose R S Hazra and K Saha ldquoSpectral norm of circulant-type matricesrdquo Journal of Theoretical Probability vol 24 no 2pp 479ndash516 2011

[21] A Bose S Guha R S Hazra and K Saha ldquoCirculant typematrices with heavy tailed entriesrdquo Statistics and ProbabilityLetters vol 81 no 11 pp 1706ndash1716 2011

[22] E Ngondiep S Serra-Capizzano and D Sesana ldquoSpectralfeatures and asymptotic properties for g-circulants and g-Toeplitz sequencesrdquo SIAM Journal on Matrix Analysis andApplications vol 31 no 4 pp 1663ndash1687 2009

[23] S Solak ldquoOn the norms of circulantmatrices with the Fibonacciand Lucas numbersrdquo Applied Mathematics and Computationvol 160 no 1 pp 125ndash132 2005

[24] A Ipek ldquoOn the spectral norms of circulant matrices withclassical Fibonacci and Lucas numbers entriesrdquo Applied Mathe-matics and Computation vol 217 no 12 pp 6011ndash6012 2011

[25] W T Stallings and T L Boullion ldquoThe pseudoinverse of anr-circulant matrixrdquo Proceedings of the American MathematicalSociety vol 34 no 2 pp 385ndash388 1972

[26] R A Horn and C R Johnson Matrix Analysis CambridgeUniversity Press Cambridge UK 1985

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article The Explicit Identities for Spectral ...downloads.hindawi.com/journals/mpe/2014/518913.pdf · MathematicalProblems in Engineering Corollary. Let !7 5 = !5 and !76

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of