seminar02 mpe

7
2. Seminar Energy Methods, FEM Class of 2013 T opic Potential of Internal Energy 24.10.2013 A c c e s s 1 Principal of Minimum of Pot en tial Energy (MPE) postulation: Π = Π i  + Π e  → min  (1) Π i  ... int ernal potential energy stored in the body/syste m Π e  ... poten tial energy due to e xter nal loads, e.g. , body force s, trac tion f orces, etc. problem denition:  nd  Π i  dependent on the deformations and rotations in the elastic body (simpl icat ion: stati c problem, elastic b ody) dw i d Π i  =  V  w i dV  (2) w i  ... volu me specic strain energy densi ty w i  = εx  0 σ x dε x  + εy  0 σ y dε y  + εz  0 σ z dε z  + γ xy  0 τ xy dγ xy  + γ yz  0 τ yz dγ yz  + γ xz  0 τ xz dγ xz  (3) dw i  =  σ :  d ε with  σ = σ x  τ xy  τ xz τ yx  σ y  τ yz τ zx  τ zy  σ z  and  ε = ε x 1 2 γ xy 1 2 γ xz 1 2 γ yx  ε y 1 2 γ yz 1 2 γ zx 1 2 γ zy  ε z Solution steps 1. cho se specic stress condi tion (e.g. plane stre ss, plane strain) 2. set stress-strai n relat ionship (e.g.  Hooke’s law) 3. set strain- displa cement relati onship (e.g. truss , beam, linear Bernoulli) 4. nd displace men t eld over the body which leads to minim um potential of the total system under consideration of boundary conditions 1

Upload: andrei-cioroianu

Post on 04-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

8/13/2019 Seminar02 MPE

http://slidepdf.com/reader/full/seminar02-mpe 1/7

2. Seminar Energy Methods, FEM Class of 2013

Topic Potential of Internal Energy 24.10.2013

A c c e s s

1 Principal of Minimum of Potential Energy (MPE)

postulation:

Π = Πi + Πe  → min   (1)

Πi   ... internal potential energy stored in the body/system

Πe   ... potential energy due to external loads, e.g., body forces, traction forces, etc.

problem definition:   find   Πi   dependent on the deformations and rotations in the elastic body(simplification: static problem, elastic body)

dwi

d

Πi  =

 V  

widV    (2)

wi   ... volume specific strain energy density

wi   =

εx

 0

σxdεx +

εy

 0

σydεy +

εz

 0

σzdεz +

γ xy

 0

τ xydγ xy +

γ yz

 0

τ yzdγ yz  +

γ xz

 0

τ xzdγ xz   (3)

dwi   =   σ  :  dε

with   σ =

σx   τ xy   τ xz

τ yx   σy   τ yz

τ zx   τ zy   σz

 and   ε =

εx1

2γ xy

1

2γ xz

1

2γ yx   εy

1

2γ yz

1

2γ zx

1

2γ zy   εz

Solution steps

1. chose specific stress condition (e.g. plane stress, plane strain)

2. set stress-strain relationship (e.g.  Hooke’s law)

3. set strain-displacement relationship (e.g. truss, beam, linear  Bernoulli)

4. find displacement field over the body which leads to minimum potential of the total systemunder consideration of boundary conditions

1

8/13/2019 Seminar02 MPE

http://slidepdf.com/reader/full/seminar02-mpe 2/7

Minimisation (Extremum) Principal

δ Π = δ  (Πi + Πe) = 0   (4)

variation:   δ  (.) =  ∂  (.)

∂u  · δu  with displacement field  u

•  exact fulfilment of extremum conditions leads to  Eulerian differential equations  ≡  stronglocal form of equilibrium conditions

•  approximate fulfilment of extremum conditions leads to weak form (Ritz-method)

yN  (x) = ϕ0 (x) +ni=1

ai · ϕi (x)   (5)

yN  (x)   ... approximation/ansatz-function for displacement

ϕ0 (x)   ... function for particular solution u = 0  at  ∂ B   (boundary)

ϕi (x)   ... homogeneous solution function for u = 0  at  ∂ B 

ai   ... unknowns

•   requirements:

–   yN   needs to fulfil kinematic boundary conditions (displacement boundary conditions)

–   yN  does’nt necessarily satisfy natural boundary conditions (traction boundary condi-tions)

2 Example

Formulate the potential of internal energy depending on the nodal displacement components of node 1 (linear-elastic material).

x,u

y,v

1

2 3

I   II

~

x,u

y,v x,uy,v

~ ~

~E, A, I = const.L = L = L

I II

Wanted:   Πi  =  f 

u (1) , v (1) , ϕ (1)

simplification:   GA = ∞

2

8/13/2019 Seminar02 MPE

http://slidepdf.com/reader/full/seminar02-mpe 3/7

3 Solution

Wanted: internal potential energy for a planar Bernoulli-Beam in form of  Πi =  f 

u (1) , v (1) , ϕ (1)

.

specific stress state  (solution step 1)

σx  = 0   σy  = σz  = 0

τ xz  = τ xy  = 0   (no torsion)τ yz  = 0   (no shearing)

stress-strain relationship  (solution step 2)

σx =  E  · εx   (6)

internal potential for each beam (in local coordinates):

Πi =

 V  

   εx0

σxd εxd V   = E 

 V  

   εx0

εxd εxd V   = 1

2E 

 V  

ε2xd V    (7)

strain-displacement relationship  (solution step 3)strains in linear regime (small strains):

εx  =  d u

d x  (8)

kinematic hypothesis due to Bernoulli

y,v

u =u(y=0)0

u(y)=u - y0  

from u (y) = u0 − ϕ · y  and  ϕ =  d v

d x  follows

εx   =  d

d x

u (y = 0)− ϕ · y

=

  d u

d x −

 d2 v

d x2  · y =  u − v · y   (9)

inserting (9) in (7)

Πi   =  1

2E 

 V  

(u − v · y)2

d V 

=  1

2E 

 V  

u 2 − 2 · u · v · y + (v · y)

2

d V    (10)

with dV   = dxdA and A

 dA =  A  and A

 ydA  = 0 and A

 y2dA =  I z

Πi = 1

2EA

 x

u 2 d x + 1

2EI z

 x

v 2 d x   (11)

3

8/13/2019 Seminar02 MPE

http://slidepdf.com/reader/full/seminar02-mpe 4/7

ansatz-functions for displacement field  (solution step 4)

Hermite-polynoms

x

1

L

2

1H   H

2

2

x

1H

  4

3

4

1  H

L

x

H

4

4

4

2

H

L

H 21

 = 1−  x

L  H 4

1 = 1− 3

x

L

2

+ 2x

L

3

H 42

 = L

x

L − 2

x

L

2

+x

L

H 22

 =  x

L  H 4

3 = 3

x

L

2

− 2x

L

3

H 44

 = L

−x

L

2

+x

L

3

boundary conditions

node 2:   u (2) = v (2) = ϕ (2) = 0

node 3:   u (3) = v (3) = ϕ (3) = 0

ansatz functions for beams I and II (local coordinates)

uI   =            

H 21  · uI (2) + H 2

2  · uI (1)

uII   =   H 21  · uII (1) +

            

H 22  · uII (3)

vI   =   

          

H 41  · vI (2) +

            

H 42  · ϕ (2) + H 4

3  · vI (1) + H 4

4  · ϕ (1)

vII   =   H 41  · vII (1) + H 4

2  · ϕ (1) +

            

H 43  · vII (3) +

            

H 44  · ϕ (3)   (12)

transformation local-global coordinate system

uI

uII

~u

~v

  vI

~u

~v

vII

uI (1) =   cosα · u (1)− sinα · v (1)

uII (1) =   cosα · u (1) + sin α · v (1)

vI (1) =   cosα · v (1) + sin α · u (1)vII (1) =   cosα · v (1)− sin α · u (1)

ansatz functions for beams I and II (global coordinates)

uI   =   H 22  ·

cosα · u (1)− sinα · v (1)

uII   =   H 21  ·

cosα · u (1) + sin α · v (1)

vI   =   H 43  ·

cosα · v (1) + sin α · u (1)

 + H 44  · ϕ (1)

vII   =   H 41  · cosα · v (1)− sinα · u (1)  + H 4

2  · ϕ (1)   (13)

⇒ 3 global unknowns  u (1),  v (1),  ϕ (1) to be determined by MPE

Πi =  f  (u (1) , v (1) , ϕ (1))

total internal potential by sum of both beams and insertion of ansatz-functions

Πi   = ΠI

i + ΠII

i

=  1

2EA

 x

u

I

2d x +

 1

2EI 

 x

v

I

2d x +

 1

2EA

 x

u

II

2d x +

 1

2EI 

 x

v

II

2d x   (14)

4

8/13/2019 Seminar02 MPE

http://slidepdf.com/reader/full/seminar02-mpe 5/7

derivations of ansatz-functions

u

I  =   H 2

2

·

cos α · u (1)− sin α · v (1)

u

II  =   H 2

1

·

cos α · u (1) + sin α · v (1)

v

I  =   H 4

3

·

cos α · v (1) + sin α · u (1)

 +  H 4

4

· ϕ3 (1)

v

II   =   H 4

1

· cos α · v (1)− sinα · u (1)  +  H 4

2

· ϕ3 (1)   (15)

with

H 21

=   −1

L

H 22

=  1

L

H 41

=   − 6

L2 + 12

 x

L3

4

2

=   −

4

L + 6

 x

L2

H 43

=  6

L2 − 12

 x

L3

H 44

=   −2

L + 6

 x

L2  (16)

⇒   insertion into  Πi   and integration

5

8/13/2019 Seminar02 MPE

http://slidepdf.com/reader/full/seminar02-mpe 6/7

Appendix: Derivation of an ansatz-function

i

k

u(i)

u(k)

v(k)

v(i)

x(i)   (k)   Idea:   Build up the ansatz-function by power serieswith the nodal displacements as free parameters, i.e.

unknowns.

axial displacement   u (x)

two unknowns  u (i) and  u (k)  →  linear approach with two parameters  a and  b

u (x) = a · x + b

boundary conditions:

u (x = 0) =  u (i)   →   b =  u (i)

u (x =  L) = u (k)   →   a =  u (k)− u (i)

L

lead to

u (x) =  u (k)− u (i)

L  · x + u (i)

=

1−  x

L

   H 

2

1

·u (i) +  x

L

  H 2

2

·u (k)

vertical displacement  v (x)

4 unknowns  v (i),  v (k),  ϕ (i) and  ϕ (k)  →  cubic approach with 4 parameters

v (x) =   a · x3 + b · x2 + c · x + d

ϕ (x) =   v (x)

= 3a · x2 + 2b · x + c

boundary conditions

v (x = 0) =  v (i)   →   d =  v (i)

ϕ (x = 0) = ϕ (i)   →   c =  ϕ (i)

v (x =  L) = v (k)   →   a · L3 + b · L2 + ϕ (i) · L + v (i) = v (k)

ϕ (x =  L) = ϕ (k)   →   3a · L2 + 2b · L + ϕ (i) = ϕ (k)

6

8/13/2019 Seminar02 MPE

http://slidepdf.com/reader/full/seminar02-mpe 7/7

lead to

a   =  ϕ (k) + ϕ (i)

L2  − 2

v (k) − v (i)

L3

b   =   −ϕ (k) + 2ϕ (i)

L  + 3

v (k)− v (i)

L2

finally leads to

v (x) =

ϕ (k)

L2  +

 ϕ (i)

L2  − 2

v (k)

L3  + 2

v (i)

L3

· x3 +

ϕ (k)

L  − 2

ϕ (i)

L  + 3

v (k)

L2  − 3

v (i)

L2

· x2

+ϕ (i) · x + v (i)

=

2

x3

L3 − 3

x2

L2 + 1

· v (i) +

−2

x3

L3 + 3

x2

L2

· v (k)

+

x3

L2 − 2

x2

L  + x

· ϕ (i) +

x3

L2 +−

x2

L

· ϕ (k)

=   H 4

1   · v (i) + H 4

3   · v (k) + H 4

2   · ϕ (i) + H 4

4   · ϕ (k)

7