psep qual, flight acceptance and qual retest thermal

166
NO. RIV. MO. : : . ATM-850 - ' 'i -' ' PAGI! OP Aerospace :··=> .. ysterns Division PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT DATE 1 - 2 3 - 7 0 This ATM summarizes test data derived from the PSEP Qualification, Flight Acceptance, and the Qualification Retest and compares these data with analytical predictions. The Qualification Retest was conducted so that an investigation could be made in order to determine the possible causes that could have resulted in the Apollo 11 PSEP over -ten1perature condition that occurred on the lunar surface following LM Ascent stage liftoff. Prepared by: Prepared by: W. Kornemann Approved by: /J.Mc Naughton

Upload: others

Post on 24-May-2022

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PSEP Qual, flight acceptance and Qual retest thermal

NO. RIV. MO.

: : . ~ ATM-850

~- -' ~" ~ 'i

-' ' PAGI! OP

Aerospace :··=> .. ysterns Division

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

DATE 1 - 2 3 - 7 0

This ATM summarizes test data derived from the PSEP Qualification, Flight Acceptance, and the Qualification Retest and compares these data with analytical predictions. The Qualification Retest was conducted so that an investigation could be made in order to determine the possible causes that could have resulted in the Apollo 11 PSEP over -ten1perature condition that occurred on the lunar surface following LM Ascent stage liftoff.

Prepared by:

Prepared by: W. Kornemann

Approved by: ~.,.o;;l~ /J.Mc Naughton

Page 2: PSEP Qual, flight acceptance and Qual retest thermal

: ; . ~ PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

CONTENTS

ftt:V. MO.

ATM-850

PAGE ii OF xvii

DATE 1-23-70

Page

l. 0 INTRODUCTION AND SUMMARY

2. () RESULTS AND CONCLUSIONS

2. 1 TEST RESULTS

2. 1. 1

2. l. 2

Qualification Test

2. 1. 1. 1

2. I. l. 2

2. I. 1. 3

2. 1. l. 4

2. l. 1. s

2. l. l. 6

2. 1. l. 7

Thermal Plate and PSE Mounting Plate

Primary Structure

PSE Simulator and Shroud

Isotope Heaters, Shrouds and Masking

Solar Cell Panel and Panel Support Structure

Summary of Qual Central Station Test Temperatures

Qual Central Station Temperature Histories

Flight Acceptance Test

2. l. 2. 1

2. 1. 2. 2

2. 1. 2. 3

2. 1. 2. 4

Thermal Plate and Electronic Components

Structure and Thermal Contra 1 Components

Solar Panels

Summary of Flight Central Station Test Ternperatures

10

10

10

13

13

l3

13

13

13

19

19

20

20

20

22

Page 3: PSEP Qual, flight acceptance and Qual retest thermal

3.0

2. l. 3

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL V ACUOM CHAMBER TT<:ST RF:POR T

CON'rl<:NTS (Cont'c!)

Qualification Retest

2.1.3.1 Qual Retest Objectives

2.1.3.2 Description of Test Events

2.1.3.3 Qual Retest Results

2. 2 COMPARISON OF MEASURED AND PREDICTED THERMAL PLATE TEMPERATURES

2.3 SUMMARY OF T/V CHAMBER TEST CONDITIONS

2.4 CONCLUSIONS

THERMAL ANALYSES

3. 1 THERMAL MODELS

3. 1. 1 Thermal Model for T/V Chamber Test Environment

3.1.1.1

3.1.1.2

3.1.1.3

Noda 1 Designation

Resistance Paths

Thermal Analyzer Computer Program

NO. REV. NO.

ATM-850

PAGE iii OF xvii

DATE l-23-70

2-l:

24

25

25

31

32

32

32

32

39

39

3. 1. 2 Thermal Model for Real Lunar Environment 39

3.2 ANALYSIS METHODS 46

3.3 HEAT INPUTS TO THERMAL MODELS 46

Page 4: PSEP Qual, flight acceptance and Qual retest thermal

NO. RIV. NO.

: : I • ATM-850

PSEP QUAL, .F'LIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

PAGI iy OF xyii

·~· .... Aaloepace ··Systems Dlvltdon

DA T! 1 - 23 -7 0

4. 0

5.0

CONTENTS ( Cont'd)

3. 4 RADIATION PROPERTIES OF PSEP SURFACES

3. S THERMAL CONDUCTIVITY AND THICKNESS 0 F' PSE:P INSULATION MATERIALS

3. 6 SIMULATED REAL MOON

3. 7 EVALUATION OF FLIGHT MODEL PCU AND PDM

THERMAL DISSIPATION

TEST METHODS

4. l QUALIFICATION TEST PROCEDURE

4. 2 FLIGHT ACCEPTANCE TEST PROCEDURE

4. 3 QUALIFICATION RETEST PROCEDURE

4.4 PSEP TEMPERATURE MEASUREMENT LOCATIONS

4. 5 SIMULATED LUNAR ENVIRONMENT TEMPERATURE MEASUREMENT LOCATIONS

TEST MEASUREMENTS

5. l

5. 2

5. 3

QUALIFICATION TEST MEASUREMENTS

FLIGHT ACCEPTANCE TEST MEASUREMENTS

QUAL RETEST MEASUREMENTS

5. 3. 1

5. 3. 2

5. 3. 3

CalComp Plots of PSEP Temperatures

Temperatures and Power Levels at the Four Equilibrium Conditions

Thermocouple Locations

49

49

49

49

54

54

55

56

57

57

63

63

63

82

82

82

82

Page 5: PSEP Qual, flight acceptance and Qual retest thermal

: : . ~ rAarotlpaoe . 'lysteme Dlvllllan

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

CONTENTS ( Cont'd)

6. 0 DISCUSSION

6. l

6.2

6. 3

ANALYTICAL AND TEST RESULTS

THERMAL EFFECTS OF LM ON PSEP

6. 2. l

6. 2. 2

6. 2. 3

Heating of PSEP by LM Ascent Stage

Exhaust Gas Plume

Thermal Radiation Effect of LM Descent Stage on Deployed PSEP

Temperature of PSEP in LM SEQ Bay

PSEP THERMAL DESIGN STUDIES

6. 3. l Thermal Control Configuration

6. 3. 2 Thermal Isolator Design and Selection

6. 3. 3 PSE Mounting Plate Skin Thickness Study

ATM-850

PAGI v OF xvii

DATI 1 - 23 -7 0

100

100

106

106

110

110

113

113

114

114

6. 3. 4 Isotope Heater Locations and Masking Pattern 115

6.4

6 .. 5

HEAT LEAK SUMMARY

LUNAR ENVIRONMENT SIMULATION

6. 5. l Parametric Study of Lunar Environment

Simulation

115

118

118

Page 6: PSEP Qual, flight acceptance and Qual retest thermal

: : . ~

6. s. 2

6. 5. 3

6. 5. 4

NO. RI!V. MO.

ATM-850

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

PAGI! vi OF xvii

DATE 1-23-70

CONTENTS ( Cont'd)

Lunar Envi ronrnent Sitnulation Results

(). s. 2. l Lunar Simulator and Cryowall

6. 5. 2. 2 Solar Radiation Simulation

Effect of Lunar Environn1ent Simulation on

PSEP Performance

Solar Panel Temperature Effect

Page

121

121

131

138

138

6. 6 EFFECT OF PRIMARY STRUCTURE EMISSIVITY ON PSEP PER FOR MANCE 142

6. 7 SPECULAR VS DIFFUSE SOLAR REFLECTION 142

6. 8 PSEP THERMAL DESIGN FEATURES 147

7.0 REFERENCES 149

Page 7: PSEP Qual, flight acceptance and Qual retest thermal

: : I

'' ' ' ' '

" ~ ; ~"

l ·- 1

1-2

1-3

1-4

1-5

2- 1

2-2

2-3

2-4

2-5

2-6

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

LIST 0 I•' I LLUSTHATIONS

'1'itle

PSEP Qual Model Undeploycd tn Lunar Simulation Chamber

PSEP Qual Model Deployed in Lunar Simulation Chamber for Therrnal Vacuum Test

PSEP Flight Model Deployed in Lunar Simulation Chamber for Thermal

Vacuum Test

Deployed PSEP Qualification Model with Plume Heating Protection Shrouds Installed

PSEP Qualification Model in the 20 x 27 Foot Chamber for Thermal- Vacuurn Retest

PSEP Qual Thermal Vacuum Test Temperature Histories

PSEP Qual Thermal Vacuum Test -Thermal Plate Test Temperatures, ° F

PSEP Qual Thermal Vacuurn Test - PSE Mounting Plate Assernbly Test Tempera­

a tures, F

PSEP Qual Thermal Vacuum Test - Primary Structure Test Temperatures, ° F

PSEP Qual Thermal Vacuum Test - PSE Simulator and Shroud Test Ternperatures, ° F

PSEP Qual Thermal Vacuum Test - Isotope Heater and Shroud Test Temperatures, °F

NU.

ATM-850

PAGE Vll OF xvii

DATE l-23-70

4

5

6

6

12

14

14

15

16

16

Page 8: PSEP Qual, flight acceptance and Qual retest thermal

: : . .

2-7

2-8

2-9

2-10

2-11

2-12

2-13

2-14

3- 1

3-2

3-3

3-4

3-5

NO.

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

PAGE viii Of xvii

DATE 1-23-70

LIST OF ILLUSTRATIONS (Cont'd)

Title

PSEP Qual Thermal Vacuum T('St- Insulation Mask Test Ten1peraturcs, ° F

PSEP Flight Therrna 1 Vacuum Test - Therma 1 Plate and Electronics Test Temperatures, 0 V

PSEP Flight Therrnal Vacuum Test - Structure and Thermal Control Component Test Tempera­tures, °F

Primary Structure Temperatures

Thermal Plat<~ Tern pcratures

PSE Mounting Plat<~ Temperatures

PSE Simulator and Shroud Tetnperatures

Isotope Heaters and Shrouds Ternperatures

PSEP Deployed and Undeploycd Assernblies

Primary Components of PSEP Thermal Control System

Thermal Plate, Mounting Plate, and Electronic Components Nodal Designation

Second-Surface Mirrors and Insulation Mask Nodal Designation

PSE Sensor, Isotope Heaters, and Insulation Shrouds Nodal Designation

Page

17

21

21

26

27

27

28

28

33

34

35

35

36

Page 9: PSEP Qual, flight acceptance and Qual retest thermal

: ; I •

Figures

3-6

3-7

3-8

3-9

3-10

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

PAGE ix; OF xvi i

DATE 1-23-70

LIST OF ILLUSTRATIONS {Cont'd)

Title

Primary Structure and PDM Panel Nodal Designation

Thermal Bag Nodal Designation

Solar Panel Nodal Designation

Lunar Subsurface Computer Model for Real Moon Analysis

PCU and PDM Panel Thermal Dissipation vs. Reserve Power for Flight Model

Thermocouple, Thermistor, and Heater Locations (1-14)- PSEP Primary Structure and PDM Resistor Panel

Thermocouple, Thermistor, and Heater Locations {15-40)- PSEP Thermal Plate Assembly

Thermocouple Locations {41-64) - PSEP PSE Mounting Plate Assembly

Thermocouple Locations {(>5-74) - PSEP PSE Sin1ulator and Shroud

Thermocouple Locatiom; {71J-86) - PSEP Isotope Heater and Shroud

Thermocouple Locations {87-91) - PSEP PSE Mounting Plate Masks

Thermocouple Locations {122-145) - PSEP Solar Cell Panel Deployment Linkage

Lunar Surface Simulator Thermocouple Locations

Cryowall Thermocouple Locations

Page

36

37

37

52

53

58

58

59

59

60

60

61

62

62

Page 10: PSEP Qual, flight acceptance and Qual retest thermal

: : I •

Aeroapaca Systems Division

Figures

5-1

5-2

5-3

5-4

5-5

5-6

S-7

5-8

5-9

5-10

5- 11

5-12

5-13

5-14

5-15

5-16

5-17

5-18

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

LIST OF ILLUSTRATIONS (Cont'd)

Title

Qual Test Thermal Plate Temperatures

Qual Test Thermal Plate Temperatures

Qual Test Therrnal Plate/Mounting Plate Temperatures

Qual Test Mounting Plate Temperatures

Qual Test Mounting Plate Temperatures

Qual Test PSE Simulator/ Shroud Temperatures

Qual Test PSE Shroud Temperatures

Qual Test Heater/ Shroud Temperatures

Qual Test Left Insulation Mask Temperatures

Qual Test Right Insulation Mask Temperatures

Ol.tal Test Primary Structure Ternperatures

Qual Test Solar Panel Linkage Temperatures

Qual Test Solar Panel Linkage Temperatures

Qual Test Sol.ar Panel Linkage Temperature::;

Qual Test Electric Heater Powers

Qual Test Electric Heater Powers

Qual Test Electric Heater Powers

Qual Test Effect of PDM Dump on Structure Temperatures

ATM-850

PAGE X OF xvii

DATE 1-23-70

Page

64

64

65

65

66

66

67

67

68

68

69

69

70

70

71

71

72

72

Page 11: PSEP Qual, flight acceptance and Qual retest thermal

NO. RI!V. NO.

ATM-850

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL PAGI xi 0 , xvii VACUUM CHAMBER TEST REPORT J_::!~==~:.===

DA T! 1 - 2 3- 7 0

Figures

5-19

S-20

5-21

5-22

5-23

5-24

5-25

LIST OF ILLUSTRATIONS {Cont'd)

Title

Qual Test Rad iomcter Measuren1ents

Qual Test Thermal Effect of Solar Heating

Qual Test Thermal Effect of Solar Heating

Effect of Lunar Environment Simulation Parameters on Thermal Plate Temperature

Flight Acceptance Test Thermal Plate Temperatures

Flight Acceptance Test Electronics and Internal Thermal Bag Temperatures

Flight Acceptance Test Structure, PDM Panel, and External Thermal Bag Temperatures and Reserve Power

6- l Plume Heat Flux vs. Time After Lift-off for Various Distances Between LM and PSEP

6-2

6-3

6-4

6-5

Temperature vs. Time After Lift-off for PSEP Insulation Mask and Shroud Materials

Temperatures of Various PSEP Components vs. Time After LM Lift-off

PSE Mounting Plate Temperature vs. Distance Between LM and PSEP for Various Sun Angles

Heat Transfer from LM to PSE Mounting Plate vs. Distance Between LM and PSEP for Various Sun Angles

6-6 Thermal Balances on PSEP Qual Model Thermal Plate in T/ V Chamber Test Environment

6-7 Thermal Balances on PSEP Flight Model Thermal Plate in Real Lunar Environment

Page

73

73

74

74

78

79

80

107

108

109

111

112

117

120

Page 12: PSEP Qual, flight acceptance and Qual retest thermal

NO. REV. NO.

: : . . . ATM-850

Aaroepace Systems Dlvlelon

Figures

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

LIST OF ILLUSTRATIONS (Cont'd)

Title

6-8 Thermal Plate Average Temperature vs. Cryowall Average Temperature for Various Levels of Elec­tronics Thermal Dissipation at Lunar Noon in T/V Chan1ber

6-9 Thermal Plate Average Temperature vs. Elec­tronics Thermal Dissipation for Various Cryowall Average Temperatures at Lunar Noon in T/V Chamber

PAGE

DATE

6-10 Thermal Plate Average Temperatures vs. Cryowall Average Temperature at Lunar Night in T/V Chamber

6-11

6-12

6-13

6-14

6-15

Thermal Plate Average Temperature vs. Lunar Simulator Average Temperature for Various Levels of Electronics Thermal Dissipation at Lunar Noon in T/V Chamber

Thermal Plate Average Temperature vs. Elec­tronics Thern1al Dissipation for Various Lunar Simulator Temperatures at Lunar Noon in T / V Chamber

Thermal Plate Average Temperature vs. Cryowall Therrnal Emissivity for Various Levels of Elec­tronics Thermal Dissipation at Lunar Noon in T/V Chamber

Thermal Plate Average Temperature vs. Lunar Surface Simulator Thermal Emissivity for Various Levels of Electronics Thermal Dissipation at Lunar Noon in T / V Chamber'

Thermal Plate Average Tempe:Fature vs. Solar Radiation Heating Rate for Various Levels of Electronics Thermal Dissipation at Lunar Noon in T/V Chamber

xii Of xvii

1-23-70

Page

122

123

124

125

126

127

128

129

Page 13: PSEP Qual, flight acceptance and Qual retest thermal

Figures

6-16

6-17

6-18

6-19

NO. RIV. NO.

ATM-850 PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

PAGI xiii OF xvi i

DATE 1-23-70

LIST OF ILLUSTRATIONS {Cont'd)

Title

Thermal Plate Average Temperature vs. Elec­tronics Thermal Dissipation for Various Levels of Solar Radiation at Lunar Noon in T/V Chamber

Thermal Plate Average Temperature vs. Primary Structure Thermal Emissivity for Various Cryowall Temperatures in the T / V Chamber

Thermal Plate Average Temperature vs. Cryowall Average Temperature for Various Primary Structure External Finishes in T/V Chamber

Comparison of Flight Model Thermal Plate Temperature Predictions Based on Diffuse and Specular Reflection of Solar Radiation

Page

130

143

144

146

Page 14: PSEP Qual, flight acceptance and Qual retest thermal

NO. R!V. NO.

ATM-850

Aaraepace Syetame Dlvllllon

Table

1-l

2-l

2-2

2-3

2-4

2-5

2-6

2-7

3-l

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

LIST OF TABLES

Title

Summary of PSEP Predicted and T/V Test Results

Qual Model C/ S Thermal Dissipations in Watts

Summary of Qual Test Temperatures

Flight Model C/ S Therrnal Dissipations in Watts

Summary of Flight Test Temperatures

Qual Retest Component Average Temperatures at the Four Equilibrium Conditions

Comparison of Measured and Predicted Thermal

Plate Temperatures

Summary of T / V Chamber Test Conditions

List of Nodes for PSEP Thermal Models

PAG!

DATE

3-2 Resistors Applicable to All PSEP Thermal Models in T/V Chamber Test and Real Lunar Environments

3-3 Description of Resistors for Radiation Interchange Between Insulation Shrouds, Insulation Masks, Mirrors, Primary Structure, Solar Panels, Moon,

and Space

3-4

3-5

Resistors Applicable to PSEP Qual Thermal Model in T/V Chamber Test Environment

Resistors Applicable to PSEP Qual Thermal Model in Real Lunar Environment

3-6 Resistors Applicable to PSEP Flight Thermal Model With No Plume Heating Protection in T/V Chamber

Test Environment

xiv op xvii

1-23-70

Page

8

11

18

20

22

23

29

30

38

40

41

43

43

44

Page 15: PSEP Qual, flight acceptance and Qual retest thermal

... Aeloapace ·····8y•tem8 DlvWon

Table

3-7

3-8

3-9

3-10

3-11

3-12

3-13

5-1

5-2

5-3

5-4

5-5

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

LIST OF TABLES

Title

Resistors Applicable to PSEP Flight Thermal Model with No Plume Heating Protection in Real Lunar Environment

Resistors Applicable to PSEP Flight Thermal Model with Plume Heating Protection in Real Lunar Environment

Thermal Dissipation and Solar Radiation for PSEP Qual Model in T /V Chamber

Thermal Dissipation and Solar Radiation for PSEP Flight Model in T /V Chamber

Thermal Dissipation and Solar Radiation for PSEP Flight Model on Moon

Radiation Properties of PSEP Qual and Flight Model Surfaces

Thermal Conductivity and Thickness of PSEP Insulation Materials

DAS Temperature Measurements for PSEP Qual Test at Lunar Noon and Lunar Night Equilibrium

DAS Power Measurements for PSEP Qual Test at Lunar Noon and Lunar Night Equilibrium

HK Temperature Measurements for PSEP Flight Acceptance Test at Lunar Noon Equilibrium

List of Cal Comp Plots for the PSEP Qual Model Thermal Vacuum Retest (Passive Seismic Lunar Simulation Thermal- Vacuum Test)

Temperature of Components

NO. RIV. NO.

ATM-850

PAGI XV 0 , xvii

DATI 1-23-70

45

45

47

47

48

50

51

75

77

81

83

95

Page 16: PSEP Qual, flight acceptance and Qual retest thermal

Table

5-6

5-7

6-1

6-2

6-3

6-4

6-5

6-6

6-7

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

LIST OF TABLES

Title

Power Measurements with Comparison to the Qual Test

Summary of Simulated Thermal Dissipations

PSEP Power /Thermal Dissipation for Qual and Flight Models

Comparison of Qual Test Temperatures to Temperatures Predicted with Qual Thermal Model for No Dump Condition at Lunar Noon Equilibrium

Comparison of Qual Test Temperatures to Temperatures Predicted with Qual Thermal Model for 10 Watt Dump Activated at Lunar Noon Equilibrium

Comparison of Qual Test Temperatures to Temperatures Predicted with Qual Thermal Model at Lunar Night Equilibrium

Comparison of Flight Test Temperatures to Temperatures Predicted with Flight Thermal Model for No Dump Condition at Lunar Noon Equilibrium

Comparison of Flight Test Temperatures to Temperatures Predicted with Flight Thermal Model for 10 Watt Dump Activated at Lunar Noon Equilibrium

Temperatures Predicted with Flight Thermal Model at Lunar Night Equilibrium

NO. RI!V. NO.

ATM-850

xvi OP xvii

DA Tl! 1 - 2 3 - 7 0

Page

97

98

101

102

102

103

103

104

104

Page 17: PSEP Qual, flight acceptance and Qual retest thermal

: ; I ~

Aaroapace Systeme Dlvllllon

Table

6-8

6-9

6-10

6-11

6-12

6-13

6-14

6-15

6-16

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

LIST OF TABLES

Title

Predicted Temperatures for Flight Model with a Mirror Solar Absorptivity of 0. 08 in a Real Lunar Noon Environment

Comparison of Predicted and Test Heat Leaks for PSEP Qual Model in T /V Chamber

Predicted Heat Leaks for PSEP Flight Model with Plume Heating Protection in a Real Lunar Environment

Radiometer Readings and Sensitivities for PSEP Qual Test

EnergyAbsorbed by Radiometers for PSEP Qual Test

Mirrored Radiometer Readings at Thermal Equilibrium Conditions

Radiometer Backgrounds and Sensitivities for PSEP Qual Test and Retest

Energy Absorbed by Radiometers in the PSEP Qual Test and Retest at Lunar Noon - One Sun -Equilibrium

Effect of Lunar Environment Simulation on PSEP Thermal Performance

MO. RIV. MO.

ATM-850

P'AGI xvi i OF xvii

DATI 1-23-70

Page

105

116

119

133

134

137

139

140

141

Page 18: PSEP Qual, flight acceptance and Qual retest thermal

: : I ~ PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO.

ATM-850

PAGE 1

REV. NO.

Of !50

DATE 1-23-70

1. 0 INTRODUCTION AND SUMMARY

In October, 1968, Bendix Aerospace Systems Division was con­tracted by MSC to provide a simplified scientific experiment package to replace the relatively complex Apollo Lunar Surface Experiments Package (ALSEP) on the Apollo 11 flight. The primary reason for de­veloping this new package, referred to as the Early Apollo Scientific Experiments Package (EASEP), was to significantly reduce the experiment deployment effort required by the Apollo 11 astronauts. Two experiments comprised the EASEP: 1) the Passive Seismic Experiment Package (PSEP) which was to record seismic events during the lunar day with power supplied by two solar cell panels and 2) the Laser Ranging Retro­Reflector ( LRRR) which was to reflect a laser beam to the beam's originating location on earth. This report relates only to the PSEP, with the specific purpose being to summarize the results from the Qual­ification (Qual) and Flight Acceptance tests in the Bendix 20 1 x 27' thermal vacuum (T/V) chamber which simulated the lunar environment.

The primary PSEP performance and system requirements were to design an experiment which would require minimum crew deployment effort and which would operate through at least one lunar day. A sec­ondary design goal was lunar night survival by maintaining electronics temperatures above minimum allowable levels and thereby permitting operation during subsequent lunar days. In order to achieve these pro­gram objectives, an overall thermal control design was incorporated which was based on the following requirements and constraints:

1. Completely passive thermal control.

2. Average thermal plate temperature during the lunar day would not exceed 140 °F.

3. Average thermal plate temperature during the lunar night would not fall below -65 °F.

4. Isotope heater power of 30 ± 0. 25 watts would be used for lunar night survival.

Page 19: PSEP Qual, flight acceptance and Qual retest thermal

NO. R!V. NO.

: : . ' ATM-850

'i' ,' ' 'ii \ ?

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

,, '

PAG!

DATE

5. No dust or debris contan1ination of thermal control surfaces.

G. The deployment distance of PSEP fron1 LM would be 70 to I 00 feet.

7. PSEP would operate prior to LM as cent.

8. The PSEP non-operating temperatures in the LM SEQ bay would stay within 0 oF to I GO "F.

l-23-70

9. Minimum deployment effort would be required by the astronauts.

Two I5 watt radioisotope heaters provided sufficient power for lunar night survival, while layers of aluminized Kapton over insulation masks and shrouds provided protection against plume heating from the LM ascent stage exhaust.

The PSEP development program required Qualification (Qual) and Flight Acceptance T/V tests. Both tests showed that PSEP was thermally adequate and met all thermal performance requirements.

The PSEP design more than met mission objectives as the package transmitted useful engineering data into the sixth lunar day following turn on (146 days). However, the Flight model exhibited a thermal anomaly in the sense that the thermal plate average temperature exceeded the antic­ipated lunar noon level by approximately 50°.F.

An investigation into the cause of the anomaly resulted in the con­clusion that the high thermal plate temperatures were caused by a degradation of PSEP thermal control surfaces during LM ascent, with the contamination of the second surface mirrors by lunar dust and/or descent stage debris being the probable primary cause. One of the requirements stated in the PSEP Exhibit B specification and CP 100500 (Part I) was that no allowance would be made in the design for the effect of dust on the performance of PSEP. Based on th<-~ findings of the post­Apollo Il thermal anomaly team, the PSEP actual deployment distance of 9G feet from LM was not sufficient to preclude the effect of dust or debris.

Page 20: PSEP Qual, flight acceptance and Qual retest thermal

: :. I • PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO.

ATM-850

PAGE 3

RIV. MO.

OF 150

DATE 1-23-70

Since the ALSEP thermal control system is insensitive to dust and is well protected against contamination by debris at any deployment distance from LM, no similar thermal anomaly was anticipated or observed for the ALSEP package when deployed at a distance greater than 500 ft.

The two Qualification and one Flight Acceptance tests, which were performed during the PSEP program in the Bendix thermal vacuum chamber, are described briefly below:

1. Qualification Test - The Qual model was subjected to an accelerated lunar day-to-night cycle with the objective of verifying the system 1 s thermal performance in lunar day and night environments.

2. Flight Acceptance Test - A lunar noon condition was imposed on the flight model with the purpose of verifying system start-up and operation in a lunar day environment.

3. Qualification Retest - The Qual model was retested as part of the thermal anomaly investigation, with the primary objective of evaluating the effect on PSEP thermal performance by the observed higher-than-predicted primary structure temperatures which occured during lunar operation. Secondary objectives were to verify the low thermal conductance of the thermal plate isolator bolts, verify the Solar Simulation in the T /V chamber, and evaluate the thermal effect of the Kapton plume heating protection.

Figures 1-1 to 1-3 illustrate the Qual and the Flight models de­ployed in the T/V chamber. Two photographs of the Qual retest model are shown in Figures 1-4 and 1-5.

Two lunar noon equilibrium operating conditions, listed below, were established during both the Qual and Flight tests for verifying the PSEP thermal design:

1. Lunar noon with no PDM (Power Dissipation Module) power dump.

2. Lunar noon with a 10 watt PDM power dump.

Page 21: PSEP Qual, flight acceptance and Qual retest thermal

Figure 1-1. PSEP Qual Model Undeployed in Lunar Simulation Chamber

Figure 1 - 2 PSEP Qual Model Deployed in Lunar Simulation Chamber for Thermal Vacuum Test.

4

Page 22: PSEP Qual, flight acceptance and Qual retest thermal

PS

EP

QU

AL

, F

LIG

HT

AC

CE

PT

AN

CE

A

ND

QU

AL

RE

TE

ST

TH

ER

MA

L

VA

CU

UM

CH

AM

BE

R T

ES

T R

EP

OR

T

MO

. H

Y.M

O.

AT

M-8

50

PAG

I 5

DP 1

50

DA

TI 1

-23

-70

. c<"' I

-

Page 23: PSEP Qual, flight acceptance and Qual retest thermal

Figure 1 - 4. Deployed PSEP Qualification Model with Plume

Heating Protection Shrouds Installed.

Figure 1 - 5 · PSEP Qualification Model in the 20 by 27 Foot Chamber for Thermal Vacuum Retest.

6

Page 24: PSEP Qual, flight acceptance and Qual retest thermal

NO. REV. NO.

ATM-850 PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT 7 150

PAGE Of

DATE 1-23-70

A PDM power dump refers to a decrease in power dissipation at the thermal plate with an accompanying increase in dissipation on a panel attached to the exterior of the primary structure. Lunar night equilibrium was established only for the Qual test as there was no requiren1ents for verifying lunar night thermal perforn1ance during Qual Retest and the Flight Acceptance Test.

Based on results from the first Qual test program, an additional 37 second-surface mirrors on the Flight model were exposed in order to center the lunar day to night thermal performance swing of PSKP between +140° and -65°F. As shown in Table 1-1, which gives a brief summary of T/V test results, a 13 oF reduction in the thermal plate average tem­perature was realized at lunar noon by the Flight model in the T /V chamber. Actually, only I 0 oF of this improvement is valid since solar heating of the solar panels was not simulated during Flight testing, which caused the thermal plate to operate 3 °F lower in temperature than for the predicted lunar environment. The reason for omitting solar heating of the panels is discussed in Section 2. I. 2. A corresponding 5 oF decrease in thermal plate temperature was predicted for lunar night on the moon due to the additional exposed mirror area.

Table 1-1 also compares Qual and Flight thermal plate test tempera­tures with predicted lunar performance at lunar noon and night equilibrium conditions. The temperatures compared favorably with the specification values of 140 °F maximum at lunar noon and -65 °F minimum at lunar night. The small differences between test and predicted lunar performance tem­peratures indicates that the lunar environment simulation in the T/V chamber was excellent. Predictions were based on undegraded or uncon­taminated thermal control surfaces.

To protect PSEP mask and shroud insulation materials from heating effects by the LM exhaust gas plume, one and two layers of 5 mil aluminized Kapton were installed over all flight model insulation materials after com­pletion of T /V testing, which caused a predicted 10 °F increase in the thermal plate average temperature at lunar noon and no effect at night.

Two changes were incorporated into the Qual model prior to the thermal vacuum retest in order to make the Qual and Flight models equivalent. The first change was the addition of the aluminized Kapton

Page 25: PSEP Qual, flight acceptance and Qual retest thermal

: : I ~

'% >t / \ ,,

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

TABLE 1-1

NO. RIV. NO.

ATM-850

PAGI 8 Ofl 150

DATI 1-23-70

SUMMARY OF PSEP PREDICTED AND T/V TEST RESULTS .---

Lunar Noon Lunar Night Description Date [Temperature, °F Temperature, °F Remarks

--···" -------·-- -------.. -·-.... ___ ,.... ____ .. , __

l. Qualification April 143 -.50 With radiator area of ' Test Result 1969 l. 9ft2

2. Flight April 130 - Thermal plate radiator Acceptance 1969 was inc rea sed for the

Flight model from l. 9£t2

to 2. 15ft2 in order to i center the temperalure range between + 140 °F and -65 °F J

3. Flight Pre- April 134 -58 With original second I diction 1969 surface teflon shroud (Without and correlated for actual Kapton) lunar performance

4. Flight Pre- May 144 -58 With Kapton shroud iiction 1969 added (WithKapton)

5. Qual Retest September 146 - Actual retest result With Flight 1969 from BxA chamber tests Configuration during September 1969

6. Qual Retest Septembel 152 - Actual retest results Results with 1969 with primary structure Structure at (P/S) temperature at 200°F actual lunar surface

conditions

7. Chamber D October 143 - Preliminary results Test Results 1969 from MSC using carbon with P/S at arc solar simulation 200°F in Chamber D

8. Lunar Surface July to 190 -52 1st day maximum ther-Flight Results September mal plate maximum

1969 temperature and 3rd day temperature at 0° sun angle (lunar night) at turn on.

PSEP Specifi- March 140 -65 rj cation (Without 1969 Kapton)

~ I

Page 26: PSEP Qual, flight acceptance and Qual retest thermal

NO.

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

PAGI!

DATE

plume heating protection system, while the second was the exposure of an additional 37 second surface mirrors by eliminating sections of the thermal plate masks.

9

As shown by the Table 1-1 comparison of the Flight test results (with 3 oF added to account for Solar heating of the Solar panels) to the Qual retest results, a 13 °F increase in average thermal plate temperature can be attributed to the addition of the Kapton plume heating protection. This is in good agreement with the predicted 10 °F increase. Qual retest results also showed that the structure temperatures experienced on the moon, which were about 40"'F higher than test levels, had only a 6°F effect on the PSEP thermal performance and therefore that the isolator bolts were effective in isolating the thermal plate from influence by the structure. Also, the solar simulation in the T /V chamber was verified.

Chamber D test results, shown in Table 1-1 for information pur­poses, agree quite well with the Qual and Flight test values from the Bendix T/V chamber.

This report also presents studies which were conducted to determine effects of various T /V chamber test parameters and conditions on the thermal performance of PSEP in the chamber and on the moon. Results from these studies are presented in Section 6 and show that the chamber lunar environment simulation was very satisfactory.

Sections 3, 4 and 5 contain general descriptions of test methods, of test results, and of the thermal models used for analytical predictions.

While this document presents thermal vacuum test results from the PSEP Qualification test, Flight test, and Qualification retest, ATM 851 presents the results from the thermal anomaly investigation and the correlation of flight data with predicted temperatures.

RIV. NO.

Of 150

Page 27: PSEP Qual, flight acceptance and Qual retest thermal

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO.

ATM-850

PAGI 10

RIV. NO.

OP 1 50

DA Tl 1 - 2 3 -7 0

2" 0 RESULTS AND CONCLUSIONS

2. 1 Test Results

Predicted and test temperatures for the PSEP Qual, Flight Acceptance, and Qual Retest T /V chamber test phases are summarized. Anayltical predictions and subsequent post-test correlations with chamber test results were performed for equilibrium conditions at lunar noon with no PDM dump, lunar noon with a l 0 watt PDM dump, and lunar night. Over-all test results revealed favorable temperature distributions on all PSEP components, and excellent temperature correlation was obtained with predicted values. All PSEP component temperatures were within operating limits established prior to testing.

Temperature predictions for PSEP operation in a real lunar environment are presented and compared with chamber test values.

2. l. 1 Qualification Test

An accelerated lunar day-to-night test cycle was imposed on the PSEP Qual Model in the BxA 20 ft. x 27 ft. thermal vacuum chamber between 4/6/69 and 4/10/69. The model was a non-operating system which used mass and thermal simulation for Central Station electronics, Passive Seismic Experiment (PSE), radioisotope heaters, antenna, and Dust Detector Experiment. Solar cell panel assemblies, along with the structural and thermal control subsystems, reflected the PSEP Flight Model design. Lunar noon and night conditions were simulated with chamber lunar surface average temperatures of approximately 250°F and - 300°F, respectively. Lunar noon Solar heating of the second-surface mirrors, insulation masks, heater shrouds, and the PSE shroud was simulated with infrared lamps at a level corresponding to one sun on the mirrors. Electrical heaters were used to drive the solar panels to their predicted lunar noon temperatures of 21 0°F + 1 0°F and to simulate power dissipated by the PSE sensor, isotope heaters, and Central Station (C/S) electronic components. The following simulated lunar operating conditions were established to verify the PSEP thermal design:

Page 28: PSEP Qual, flight acceptance and Qual retest thermal

ftU. KI:Y. ftU.

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

PAGI 11 Of

DATI l-23-70

1. Lunar noon equilibrium with no PDM power dump (established at l2:30 on 4/8/69).

2. Lunar noon equilibriun1 with a l 0 watt PDM power dump (established at 18:30 on 4/8/69).

3. Lunar night equilibrium with only the isotope heaters operating (established at 08:30 on 4/10/69).

Figure 2-1 shows the ten1perature versus tin1.e response for various PSEP and T /V chamber con1ponents and depicts major events which occurred during testing. Specific temperatures at lunar noon and night for PSEP Qual components are presented in the following sections. Central Station thermal dissipations corresponding to the lunar noon and night test data are listed in Table 2-l.

TABLE 2-1

QUAL MODEL C/S THERMAL DISSIPATIONS IN WATTS

Lunar Noon Lunar Noon Description No Dum_E_ 10 w. Dump Lunar Night

C/S Electronics and PSE Sensor 31. 97 26.22 0

Isotope Heaters 29.57 29.63 30.53

Heat Leak from PDM Panel to Primary Structure 1. 63 3.42 0

Since there was no PDM panel on the Qual Model, a heat leak from the panel to the primary structure was estimated and simulated with electrical heaters.

150

Page 29: PSEP Qual, flight acceptance and Qual retest thermal

"' ... g! ~ g_ !d ~-~

j i j !·-.. ~ 0.; ~ '0 E g., -"-

3 G~li:()

eo I,!?"' IL

,..-·· .., 0 J~ "' "' o· o:!l

"" :z:; ::> s· g3 ... 0 ... .. z E il=

~& til

~ .H

' 4 -· ,...

0 . -0 .., J8 J~ ..

a.o ~ ... 0,/l o:;: oco

~= -l g. ~0 • g. • fol .... Sr.~ g ... t8 ~ ... ~~ z .. ... ~ ...

~! j~ j~ .s~ I It ! ' i ! ' ! I I

I I . I I I

Z50 ""r"

... 0

l I -zoo

1 ___ , l-50

I 100

!.~ 50

0 (!> .. ~ -"'-~ ..

" 4 ~AAA "":(' ..

I>< X c,.E l!l<>

1- ; ,,JJ.:"' ~"'

* 1!1

0 X

.Q v

:0: -50

I Q ... --100 ~

.'ii ... -150 e

l( >!><-

0.

e Q .... -ZOO

-zse

-300

-350

I +m H-+ t.~ 4'/6/b9 ' 4/ /69

0 10 zo

Figure 2-1.

~A-•"'"' ~'lOX"" " ' I I P<)()(l(l .. ·, I I ~XX ' I ..... . . ·a I" .. t- --r- i ~·--t ~F· -...

T I ' i ~"' &' " l> '

"' Ia. ' i I ' I i " ...... I I ' I !

)( ~ i ~~. I

I "'s., j "~*""'"t.tAA.op~A.>"!"'".u.~.._-J.-Iaot<fe H4 ""'"·· I I : ' I I

><i "'Eo

Poe.,~~-~1 i : i I GJ. ·sa ..... : -·

~ --+--- t- t--+- --~!-- . --:-i l I ; ! ; 0 ! i I

I --+----------I x><x,

! . 1 I

j 1

; o-tLunat Surfit

''"-X>(). ~~b

I j f l l I L<i~.l(._.Primflry 5q1

I

I I ' I I ! I i I I

'+-.+t *:t+ t+t++ l+t++ I .

I I

1 I ++ l I 0 +

' ' I

30

I

1

:

1 4fa16 I

40

Elapaed Time

lib 00;>) pt·~~:~tYX> , :I ' , 14/~/

50 ~ 70

Hour a

I '- .i _..,_ ~L~16J ' i' 11 ' ''( '- _i ''

80 90 100

----··-·· er Top {Chnl ZHL

t-e Average

PSEP Thermal Plate Temperature Specification Limits

-r ·im Average {Intermediate Zon.,f"'

cture Right Side

b Average·-·-

-

-'lj::X:. I $ll f-3 Ncrq

~ VJ ro I I "-l-oo ON1.11

0 0 ..., -PSEP Qual Thermal Vacuum Test Temperature Histories 1.11

0

Page 30: PSEP Qual, flight acceptance and Qual retest thermal

MO. RI!V. MO.

2. 1. 1. 1

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

Thermal Plate and PSE Mounting Plate

ATM-850

PAGI 13

DATE I- 23-7 0

Figures 2-2 and 2-3 illustrate the distribution of test ten1peratures over the thermal and mounting plates at lunar noon and lunar night. Thern1al plate temperatures ranged from 150°F at noon (no dump) to -56°F at night (neglecting those temperature measurements adjacent to the tie-down bolts). Average thermal plate temperatures were 143°F at noon with no dump, 139°F at noon with the 10 watt dump activated, and - 50°F at night.

Similarly, mounting plate temperatures ranged from 156°F at noon (no dump) to -56°F at night with averages of l42°F, l38°F, and -46°F.

2. 1. 1. 2 Primary Structure

Primary Structure equilibrium temperatures, which ranged from 170°F at noon ( 10 watt dump activated) to -194°F at night, are shown in Figure 2-4. Averge temperatures for the structure sides and bottom were 161°F at noon with no dump, I63°F at noon with the 10 watt dump activated, and -192°F at night.

2. 1. 1. 3 PSE Simulator and Shroud

Figure 2-5 shows temperature measurements over the PSE simulator and shroud external surface. The PSE reached a maximum temperature of 134°F at noon with no dump and dropped to - 53°F at nigh,t.

2. 1. 1. 4 Isotope Heaters, Shrouds and Masking

Figure 2-6 shows the temperature distribution over the isotope heaters and over the external surfaces of the heater shrouds. Heater temperatures ranged from 205°F at noon to I 0°F at night. Figure 2-7 presents temperatures on the insulation masks, which ranged from 77°F at noon to -I86°F at night.

2. I. I. 5 Solar Cell Panel and Panel Support Structure

Temperatures of the solar cell panels and panel support linkages are presented in Section 5.

2. 1. I. 6 Summary of Qual Central Station Test Temperatures

Table 2-2 summarizes measured temperatures for the various PSEP Central Station components at lunar noon and lunar night.

150

Page 31: PSEP Qual, flight acceptance and Qual retest thermal

PSEP DAS T/C CHNL 15 168 16 169 17 170 18 171 19

' 172

20 173 21 174 22 175 23 176 24 177 25 178 26 179 27 180 28 181 29 182 30 183 31 184 32 185 33 186 1 34 187 35 188 36 189 37 190 38 191 39 192 40 193

.t. 20 140 137

(-66) IHI

396 I II> Ill

(-::<i~)

I !>; 40 4 (-:Jill

I 144 1-f(,

14o30 D ~ 31 (-45) £ (---)

21 1\\\\\\\\\§\wl .t. 141! 145

(-SB) 150 141! 22

(-'H>)A

1>;1 6 I·IH 32

(-lll)

Figure 2-2. PSEP Qual Thermal Vacuum Test -Thermill Plate Test Tempt'r.olur"s, 0 P

135

134 (:53)

142 42 IIH ll.

137 (-49) 64 132.

(:sl)

41 143 137

(-48)

Figure 2-3. PSEP Qual Thermal Vacuum Test -

1·11! 141 .t. -- 29 (---)

ISO A

~ 27 (---)

1·111 23 1·11 &(~)

ATM-850 Page 14 of 150 l-23-70

I l!! Ill

<=->

16

MaHs

SituuJ.:ttor

t-Ill 15 l.l9

(-=-97)

Ct•ntra.l Station A1uu•nthly (Sin1ul.1tur)

xxx Lunar Noon - No Dump (l ': 30 on4/!!/ ··) xxx Lunar Noon-lOW. Dump(Hl:30 on 4/8/6'l)

(xxx)I,unar Niqht (08:30 on 4/10/69)

Tht•rn1th't>upll'

136

Top View

Edg<' Mounted Tht•rmo<"oupl<'

PSEP, DAS PSEP DAS 135 T/C CHNL T/C CHNL

(:sf) 41 194 53 206 42 195 54 207 43 196 55 208

48 44 197 56 209 14l 45 198 57 210 139 46 199 58 211

(-47) 47 200 59 212 48 201 60 213 49 202 61 214 50 203 62 215 51 204 63 216 52 205 64 217

xxx Lunar Noon-No Dump(l2:30 on 4/8/69) xxx Lunar Noon-10W.Dump(l8:30 on 4/8/69)

(xxx)Lunar Night (08:30 on 4/10/69) PSE Mounting Plate Assembly Test Temperatures, Op

Page 32: PSEP Qual, flight acceptance and Qual retest thermal

164 165

( -194)

PSEP DAS TIC CHNL

1 154 2 155 3 156 4 157 5 158 6 159 7 160 8 161 9 162

10 163 11 164 12 165 13 166 14 167

146 147

(-174)

157 156

{-176)

Thermocouple

9 145 147

{-170)

150 II 5 .. ~. 150 169

(-174) 170 (-192)

155 .

155 (-191) 152

153 f!tz (-191)

156 Heater

152 153

{-172)

10 11

154 154

{-170)

158 12 158

158 159

(-185)

(-161)

ATM-850 Page 15 of 150 1-23-70

XXX Lunar Noon - No Dump (i 2:30 on 4/8/69) XXX Lunar Noon- 10 W. Dump {18:30 on 4/8/69)

(XXX) Lunar Night {08:30 on 4/1 0/69)

Figure 2-4. PSEP Qual Thermal Vacuum Test -Primary Structure Test Temperatures, °F

Page 33: PSEP Qual, flight acceptance and Qual retest thermal

ATM-850 Page 16 of 150 1-23-70

Th<!rmocouple .

CJ

Ill (:52)

Ill

PSI!:P Ttc 65 66 67 68 69 70 7l 72 73 74

DAS CHNL

41 • 85 (-187)----(-Z07)

218 219 220 221 222 223 224 225 226 227

PSE Simulator PSE Shroud

XXX Lunar Noon- No Dump (12:30 on 4/8/69) XXX Lunar Noon- 10 W. Dump (18:30 on 4/8/69)

(XX)C) Lunar· Night (08: 30 on 4/10/691

Figure 2-5. PSEP Qual Thermal Vacuum Test -PSE Simulator and Shroud Test Temperatures, °F

Tht>rmo(·ouplt>- ----+===:::;:---------~

Ht~atPr Lt·ads 76 (82) 189 191 186 185

0 (iii') (iS) 77 (83)

0 198 204 195 197 (20) (29)

\ 78 (84)

7 42 9 44

(-199)(-ffi)

Electric Isotope Heater

HTR NO. 1 HTR NO. 2 ~ 80 (86) 69 n ______ __.

-~.!Q!fT ___ LEFT 69 71 PSEP

T/C 75 76 77 78 79 80

DAS PSEP CHNL ·T C

228 (81) 229 (82) 230 (83) 231 (84) 232 (85) 233 (86)

XXX XXX

(XXX)

DAS CHNL (-tTil (-ti9l

234 n

235 236 '237 238 239

Isotope Heater Shroud

Lunar Noon- No Dump (IZ:30 on 4/8/69) Lunar Noon- 10 W. Dump (18:30 on 4/8/69) Lunar Night (08:30 on 4/10/69)

Figure 2-6. PSEP Qual Thermal Vacuum Test -Isotope Heater and Shroud Test Temperatures, °F

Page 34: PSEP Qual, flight acceptance and Qual retest thermal

~ 87

I I

69 891 69

-. --(151)

63 64

(-186)

Thermocouple \

\

\

91

75 76

( -155)

Mask, Left Rear Corner Mask, Right Rear Corner

:PSEP I I

DAS i T/C CHNL I 87 240

88 241 89 242 90 243 91 244

lCXX Lunar Noon - No Dump (12:30 on 4/8/ 69) XXX Lunar Noon - 1 Ow. Dump (18:30 on 4/8/ 69)

(XXX) Lunar Night (08:30 on 4/10/ 69)

Figure 2-7. PSEP Qual Thermal Vacuum Test -Insulation Mask Test Temperatures, °F

-1:):> I Ill~

N (Jq '7 U..J ('!) ;:::., I I ~-oo 0~1.11

0 0

""" ,_. U1 0

Page 35: PSEP Qual, flight acceptance and Qual retest thermal

: : . . PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO.

ATM-850

PAGE 18

RIV. NO.

OP 150

DATE 1-23-70

TABLE 2-2

SUMMARY OF QUAL TEST TEMPERATURES r----------------------------------r-------------------------------------------

Temperatures - °F

Component Lunar Noon Lunar Noon No Dump 10 W. Dump Lunar Night

t-----------------------------t-------__;,_--11-------~~------------~

Thermal Plate, average

Mounting Plate, average

Primary Structure Sides and Bottom, average

Primary Structure Top Flange, average

PSE Simulator, average

PSE Shroud External Surface, average

Isotope Heater No. 1, average

Isotope Heater No. 1 Shroud External Surface, average

Isotope Heater No. 2, average

Isotope Heater No. 2 Shroud External Surface, average

Mounting Plate Left Rear Mask, average

Mounting Plate Right Rear Mask, average

143

142

161

153

133

32

195

52

200

63

61

76

139 -50

138 -46

163 -192

153 -175

132 -52

32 -202

192 17

52 -156

194 25

63 -145

61 -174

76 -158

Page 36: PSEP Qual, flight acceptance and Qual retest thermal

NO. REV. NO.

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CI-IAMBER TEST REPORT

ATM-850

PAGE 19 OF

DATE 1 - 2 3 - 7 0

2. 1. 1. 7 Qual Central Station Temperature Histories

Temperature histories for various PSEP Qual Central Station com­ponents are presented in Section 5. 1.

2. l. 2 Flight Acceptance Test

The Flight acceptance test was conducted between 4/11/69 and 4/22/69. However, after 4/15/69 the purpose of testing was to check the performance of specific electronic components. Since this report is concerned only with the over-all PSEP thermal performance, the Flight results presented here are for that portion of the test prior to 4/15/69.

Between 4/13/69 and 4/15/69, the PSEP Flight model was subjected to a simulated lunar noon environment in the T /V chamber with the lunar sur­face average temperature at 25 0 oF. The model was an operating system except that electrical heaters simulated the power dissipated by the isotope heaters. Also, solar heating of the solar panels was not simulated to avoid the out­gassing of material from the electrical heaters which was experienced in the Qual test. During the Qual test, outgas material condensed and formed un­desirable oil films on PSEP equipment. Since solar panel solar heating was not simulated during the flight acceptance test, the Flight model thermal plate average temperature was about 3oF lower during testing than if solar heating of the solar panels had been simulated. Solar heating of the second- surface mirrors, insulation masks, heater shrouds, and the PSE shroud was simulated with infrared lamps at a level corresponding to one sun on the mirrors.

The following simulated lunar operating conditions were established to verify the Flight model thermal performance.

1. Lunar noon equilibrium with a 10 watt PDM power dump (estab­lished at 09:00 on 4/15/69).

2. Lunar noon equilibrium with no PDM power dump (established at 16:05 on 4/15/69).

Specific temperatures at lunar noon for PSEP Flight components are presented in the following sections, while corresponding Central Station thermal dissipations are listed in Table 2-3.

150

Page 37: PSEP Qual, flight acceptance and Qual retest thermal

MO. REV. MO.

: ; I • PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

PAGE 20

Of Aaroepace Systems Dlvllllon

DATE l-23-70

TABLE 2-3

FLIGHT MODEL C/S THEHMAL DISSIPATIONS IN WATTS

Description No Dump 10 w. Dun1p

C/S Electronics 31. 2 25.6

PSE Sensor 0.7 0.7

Isotope Heaters 30.0 30.0

PDM Panel Resistors 5.0 1 o. 5

2.1.2.1 Thermal Plate and Electronic Components

Figure 2-8 depicts the distribution of test temperatures over the thermal plate and electronic components for the no dump and 10 watt dump test phases at lunar noon. Temperature measurements ranged from 120°F to l38°F over the thermal plate for the no dump condition. Average thermal plate temperatures were 130°F with no dump and 124oF with the 10 watt dump activated. Similarly, electronics temperatures varied from 125°F to 167oF for the no dump condition and averaged 136oF with no dump and 128°F with the 10 watt dump activated.

2. 1. 2. 2 Structure and Thermal Control Components

Lunar noon equilibrium temperatures for the primary structure, PDM panel, and thermal bag are presented in Figure 2-9. Structure tem­peratures, which ranged from 15 5o F to 160 oF at noon, averaged 157 o for both the dump and no dump conditions. The PDM panel temperature decreased from 180°F to 165°F when the 10 watt dump was deactivated.

2. 1. 2. 3 Solar Panels

The solar panel temperatures, which averaged about 92 oF during lunar noon testing, were significantly below the predicted 21 oo F ± 10 oF since solar heating of the panels was not simulated.

150

Page 38: PSEP Qual, flight acceptance and Qual retest thermal

{XXX) XXX

r-------, 1 Transmitter B J L------1' ------,

1 '' r: 127 1 I \ Transmitter A ...J

(120)

I . \ L-===-=-=--=-, ituyer(. Dlpl.exer \ r Dip1exer I

[ 11125~'!!-~J I Filter _J __ _ -=:..-"'-----..., L----= r .., r 1 r---- -, 1 L-.., 1 Command J J Data J I Command 1 I Receiver 125 1 1 Processor 1

1

I Decoder 1 I _j 1 1 I L------ L 141 I 140 _j r---.,,----, -1__1nr F====-~..., I I Ll r---UI I Passive I I PCU Ill J I J J Seismometer I I 167 I PDU !Analog I r I I If 155 I !Multiplex 1 I I I lj J IConverterJ 1-, I , 11 r L_:~_j137~ .J) l _jl ___ _j L ___ _ '--- (138)

Lunar Noon (No Dump)

Thermal Plate Top View

f r -.., 1 I Transmitter B I

I' L ______ _j (115)

1 ' r------, I ~I 122 I

1 LTransmitter A ..J irner(Diplexer r-=--=--===-, r-'! _Switch ) 1 Diplexer I L-(118)·---' L Filter _j r-------, r-=--==-=- r---L.

I Command I 1 J -~ I Reciever 119 I 1 Data I I Command I

L I J Processor I I Decoder I ______ ..J l 1 I 4 I r----, __ __ 135 1 L 13

I r .., I _j _____ _j

I ---- ~--------, I I L r----(126) I PCU II ""1 I J 1 Passive I I II PDU I JAnalog I ,-J Seismometer I I 137 II I !Multiplex I I I ~ 11 148 J J Converter: 1.-, l : It r 1 145 1 1 ) ''- ...J L ___ _j L ___ _j132! ~

-- (131) L. ___ _

Lunar Noon

(lOW Dump)

Figure 2-8. PSEP Flight Thermal Vacuum Test -Thermal Plate and Electronics Test Temperatures, °F

155 ....... (152)

157 (156)--....__

Primary Structure

/ 155

(156)

Thermal Bag

/

-~

XXX (XXX)

--137 (130)

Lunar Noon, No Dump Lunar Noon, 10 W Dump

160 --(160)

st

Figure 2-9. PSEP Flight Thermal Vacuum Test -Structure and Thermal Control Component Test Temperatures, °F

-""CJ~ I Ill 1-j NO'<

~ \.JJ CD I I -.JNoo o ..... Ul

0 0 to+,

..... Ul 0

Page 39: PSEP Qual, flight acceptance and Qual retest thermal

: : . ~ PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

MO.

ATM-850

22 PAGI!

RI!V. MO.

150 OF

DATI! 1-23-70

2. 1. 2. 4 Summary of Flight Central Station Test Temperatures

Table 2-4 gives a brief summary of measured temperatures for the various Flight Central Station components at the lunar noon equilibrium con­ditions.

TABLE 2-4

SUMMARY OF FLIGHT TEST TEMPERATURES (°F)

Component No Dump 10 w. Dump

Thermal Plate, average 130 124

Electronics, average 136 128

Primary Structure, average 157 157

PDM Panel 165 180

Thermal Bag, Exterior 154 152

Thermal Bag, Interior 137 130 ---

2. l. 3 Qualification Retest

The PSEP Qualification Retest was conducted in the Bendix T /V chamber with the same test setup used in the original Qual test. PSEP was placed in the same location on the lunar surface simulator and in the same location under the IR lamp array as in the original test. The number of thermocouples on PSEP was reduced, for cost and time reasons, to the point where only that data required was obtained. The equilibrium conditions were the same as in the original qualification test, with two additions: 1) A thermal equilibrium condition with the primary structure sides at the 195 oF actual lunar noon temperature and 2) a thermal equilibrium condition with unheated solar panel simulators.

Table 2-5 lists the average temperatures of the PSEP components at the four thermal equilibrium conditions.

Page 40: PSEP Qual, flight acceptance and Qual retest thermal

I I

TABLE 2-5

QUAL RETEST COMPONENT AVERAGE TEMPERATURES AT THE FOUR THERMAL EQUILIBRIUM CONDITIONS

Average Temperature - a F

One Sun One Sun With With Cool

No One Heated Solar PSEP Component Sun Sun Structure Panels

Thermal Plate near Components 132 146 152 151

Thermal Plate near Bolts 135 148 156 155

Solar Cell Panels (center T /C 1 s Only) 190 194 194 150

Primary Structure (sides and bottom) 156 162 196 194

Primary Structure Flanges 146 153 178 176

PSE Mounting Plate 129 142 149 148

Left Mask over Mirrors 9 43 51 51

Isotope Heater Number 2 Shroud 40 61 65 65

PSE Simulator (one T ;'C only) 123 139 145 145

PSE Shroud-Top (one T /C only) -120 -55 -50 -43

PSE Shroud-Side (Upper Section) 24 34 35 33

PSE Shroud-Side (Lower Section) 43 58 61 56

Isotope Heater Number 1 Top (one T /C only) 186 202 210 209

Isotope Heater Number 2 Top (one T /C only) 210 225 233 232

Isotope Heater Number 1 Shroud Top (one T /C only) -52 2 7 11 --

0 ,.. -t

"' -I N w I -J 0

<!l>1J >z(Ji ()t:;1tr:l c:o1J C:c:o ~>C: ol'> ~:;or" >rr. ~~t"Ij tJjt:::Jl' ,.,_., ...... n'JlO ::o;-j:r: ;-j;-jl--3

M:I!> CJiMn f-3 ::0 1 ?'n :;o;:::..M M>1J t-cjl'l--3 0 > ::0 z f-3 ()

r:;

~~ I~ ~

,~ I~ 0 .. ' -U"1

0

z !:t

~ .. :c z !::»

Page 41: PSEP Qual, flight acceptance and Qual retest thermal

MO. REV. HO.

: ; I ~ PSEP QUAL, FLIGHT ACCEPTANCE

AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

PAGI 24

01'

Aaroepace Syateme Dlvllllon

DATE I -23-7 0

2.1.3.1 Qual Retest Objectives

The primary objectives of the Qual retest were as follows:

l. Establish the effect of the higher -than-predicted primary structure temperatures on the average thermal plate temperature.

2. Determine the effect of the Kapton shrouds on the average thermal

plate temperature.

Secondary objectives were to verify the low thermal conductance of the thermal plate isolator bolts, verify the T /V chamber solar simulation, and investigate the effect of solar cell panel temperature on the PSEP thermal

performance.

2. 1. 3. 2 Description of Test Events

PSEP was subjected to the following four thermal equilibrium con­

ditions in the Bendix T /V chamber:

l. Lunar noon with no solar simulation, normal solar panel temperatures ( 185 °F), and no additional heat to the primary

structure (13:30 on 9/24/69).

2. Lunar noon with solar simulation, normal solar panel tem­peratures ( 185 oF}, and no additional heat to the prin1ary

structure (00:30 on 9/25/69).

3. Lunar noon with solar simulation, normal solar panel tem­peratures (185°F), and 195"F primary structure (13:30 on

9/25/69 ).

4. Lunar noon with solar simulation, solar panels at 150°F, and primary structure at l95°F (19·30 on 9/25/69).

2. l. 3. 3 Qual Retest Results

The thermal performance of the PSEP qualification model during the thermal vacuum retest was similar to its performance in the original qualification test. The addition of the Kapton shrouds (for plume heating

ISO

Page 42: PSEP Qual, flight acceptance and Qual retest thermal

: ~ . . PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO.

ATM-850

PAGI 25

RIV. NO.

Of 150

DATI 1-23-70

protection) raised the average thermal plate temperature 13 "F, while the exposure of 37 additional second surface mirrors reduced the average ther­mal plate temperature l0°F. These two changes produced the 3"F net in­crease in the Qual retest thermal plate average temperature over the Qual test results at the lunar noon (no dump) condition with normal primary struc­ture and solar panel temperatures.

With the increase of the primary structure to 195 oF (the actual lunar noon temperature experienced by the flight model on the lunar surface), the average thermal plate temperature increased only 6°F. These results are summarized in Tables 1-1 and 2-6.

The PSEP component temperature distributions at the four thermal equilibrium conditions are shown in Figures 2-10 through 2-14.

2. 2 Comparison of Measured and Predicted Thermal Plate Temperatures

A brief comparison of measured and predicted thermal plate tem­peratures for the Qual, Flight, and Qual Retest models is shown in Table 2-6. Predicted values were obtained with analytical thermal models of the PSEP deployed in the T /V chamber and on the moon. As shown by the table, an estimated 6 to 8 oF degradation in lunar noon thermal plate performance was predicted due to non-perfect mirror radiation properties and to predicted degradation of mirror solar absorptivity over the life of the PSEP mission. All values were based on no plume heating protection on the insulation mask and shroud material, except where plume heating protection is denoted. Plume heating protection consisted of two layers of 5 mil Kapton over all PSEP insulation surfaces normal to the direction of LM exhaust gas flow and one 5 mil layer over insulation surfaces parallel to the flow.

The 130°F and 124oF thermal plate temperatures from the Flight T /V chamber test would have been approximately 3 oF higher if solar heating of the solar panels had been simulated. The Flight model with plume heating protection was the final PSEP design.

2. 3 Summary of T /V Chamber Test Conditions

Table 2-7 summarizes T /V chamber conditions for the Qual test, Flight Acceptance test, and Qual Retest. Lunar surface and cryowall tem­peratures are averages of numerous measurements. The table indicates the various equilibrium conditions established for each test. Note that lunar night equilibrium was established only for the Qual test.

Page 43: PSEP Qual, flight acceptance and Qual retest thermal

h ll p

1./ c

1 2

3

4 5 6

7

8

9 10 11 12

13 14

ATM-850

Thermocouple Page 26 of 150 1-23-70

Copper/ Constantan --

159. 3 165. 9 2Ul. 4 197. 7

DAS

CHNL

124 125

126

127 128

129 130 131 i 132 133 i

134

135

136 137 ~

j

I ~

0 [l

XXX. X XXX. X XXX. X XXX. X

145. 8

142. 8 139. 3

150. n 147. 2

175. 5 174.3

173. 3 172. 1

9 138. 4 146. 0 175. 1 146. 3

143. 7 "173. 6 153. 5 151. 5 178. 1 179.0 II 5 175. 1 175. 8 ~.l,

164. 8 152. 8 171. 0 160. 0 6 202.5 181. 5 14 200.4 178. 1

~ -.1

151. 6 153. 7

158.6 151. 6 160. 1

179. 1 158.0 184. 0

176. 8 183. 4 181. 9

f$z 181. 7

~;0 u~=~ i Lunar Noon, No Sun (13:30 on 9/24/69) Lunar Noon With Sun (00:30 on 9/25/69)

~o

Q ,_, ~o BAD

T/C

Lunar Noon With P/ S Heaters on (13 :30 on 9/25/69)

158. 6 164. 5 ..... A, L..V ~, I

198.4

Lunar Noon With P/ S Heaters on and Solar Panels 0££ ( 19:30 on 9/25/69

PSEP QUAL THERMAL VACUUM RETEST

1ARY STRUCTURE TEST TEMPERATURES- °F Figure 2-10

Page 44: PSEP Qual, flight acceptance and Qual retest thermal

..

PSEP DAS T/C CHNL 15 160 16 161 17 162 18 163

,19 164 20 165 21 166 22 167 23 1611 27 169 30 170 34 171 37 172 40 173

ATM-850 Page 27 of 150 1-23-70

~ Tht•nnocnnplt· ru ------------.t.·TiiJ"l7.' 6 BAD

!.'.<;, H 140. 7 T/ C

1311. r; 39 A 14'1. 4 1'7

.t. 20 BAD T/C

147. 7 141>. 7

127. H 141. 4 147. II 40 ~ 147. ()

[J~ I PSr:

134. 7

1411. 2 30 D 154. 7 lA 153. II

~I= 140.~ 152. 7 161. 3 159. 9

141. l.

I S5. '! 22If>4. 1 lA 163. l

31

ll. 32

AID Conv

IU A 140. I A 141. 7--~ 29 153. 5 27154. 3

159. 9 162. 2 23 159.1 161.2"'

--234ZZ03 Central Station Assembly (Simulator)

16

llll.ll 141. () 14'1. <)

1411.6

15 140. ll 4. 15l. 8

160.4 159. l

PSEP QUAL THERMAL VACUUM RETF.ST XXX. X Lunar Noon N" s,., (13:30 on 9/Z4{6q) XXX. X Lunar Noon With Sun (ll<l:311 on 9/25/6'1 XXX. X Lunar Noon With P/S Heaters on (13:30 on <JU5/6<J)

THERMAL PLATE TEST TEMPERATURES .. oF XXX. X Lunar Noon With 1'/S Healers on and Solar Panels Off (19:30 on 91 l5/6'l)

43

42 c

1-+·-+-+·- t-~~· ·-+--

t:i. 57

131.3 144.9 151. 3 150. 6

Fil'(urc l- II

l.l. 64

44

t:i.61 ~ 47 1-+--1--+--l

.. 1-+1-+-+-- ·-f-1-f-1-· 0 41 [ t-+-- T--i--1--1°1--1--l--1-......1 t:i.

r-r- -+-+-+'-r-- __ --~-s6-r~~~-r~~3r:r-----~~~~J_JLJ~4a 0,,

i

t+l~, ~~· : ( HE;jTER\

;{j-s§~ .. ·: -~alz I IJIIIJ ~ .

... f-·+-·+-+--+~

liD i

'

I-1- ;~

(t:i. 53

--+·+-+--- -+--+--+-l

- ·-· --

I I I I ... .....!........---I T I 'I TBf IL-...J....._L..,!--1-L L49 Z34Z 104, Sheet Z PSE Mount1ng Plate Assembly

XXX. X L1mar Noon, No Sun (13:30 on 9/24/6'1) XXX. X Lunar Noon With Sun (00 :3fl on 9/ Z">/ (,<))

Edge Mounted Tht•rmocouple

PSEP, f-T/C

59 64

DAS CHNL 174

175 I

PSEP QUAL THERMAL VACUUM RETEST XXX. X Lunar Noon With P/S Heater• on (13:30 on ')/l.">/(•'1) • XXX. X Lunar Noon With P/S IleatcrH on and Solar l'am•IH (Jff (1'):30 on <J/Z<;/(,'l

PSE MOUNTING PLATE ASSEMBLY TEST TEMPERATURES- °F Jt'irnt~'" ? . 1?

Page 45: PSEP Qual, flight acceptance and Qual retest thermal

Tht!rmocouple Copper I Constantan

ll'j, l.

1311. (, 14~. 2 14<;. 4

65

66 69 t:. t:.

0

PSEP T C 65 70 71 73

146 147

DAS CHNL 1311 13'1 140 141 208 211'1

147

49.3 ~H. 7 61. 3

lll.4 3~. 3

71 3S. ~ t:. 33. 3

74 A

PSE Simulator PSE Shroud

XXX. X Lunar Noon, No Sun (13 :30 on <J/24/69) XXX. X Lunar Noon With Sun (00:30 on ')/2~/69

3l. ~ 34.4 33. ~

XXX. X Lunar Noon With P/S Heaters on (13:30 on 9/25/6'1)

ATM-850 Page 28 of 150 1-23-70

XXX. X lAmar Noon With P/S Heaters on and Solar Panels Off (19:30 on 9/25/69)

PS~~p QUAL THERMAL VACUUM RETEST

PSE SIMULATOR AND SHROUD TEST TEMP~:RATURES- 0 I•'

lo : f \o ~ 75

185. 9 ZOI. 7 Z09. <;

209. 9 224. 5 232.6

208. 7 232. 2

75 ~81)

Tht•rrrlot·ouplt· Cupp(• r /ConHlanl.lll

Ht~att•r L•·adH

(e2)

77 (83)

HTR NO. 1 RIGHT

PSEP DAS T/C CHNL

7<; 142 78 143

HTR NO_ 2

_ _!.J!F=,...:::T--1 PSEP DAS ·'t C CHNL

(HI) 144 (84)" 145 (liS) 207

(e3)

Electric Isotope Heater

l•'i~oturc 2- 13

t:. eo

21. 5

\4~.6

49.6 48. 3

7e (84) -51. 7

1.8 6. 8

78 \7 (84)

t-----------------1

79 (85)

79

eo ::J (85)

{e6) 58. 0

~<1~========~~ 75. 6 1- 81. 3

Isotope Heater Shroud 81. z

XXX. X Lunar Noon, No Sun (13:30 on 9/24/69) XXX. X Lunar Noon With S= (00:30 on 9/25/69) XXX. X Lunar Noon With P/S Heaters on (13:30 on 9/25/69)

PSEP QUAL THERMAL VACUUM RETEST XXX. X Lunar Noon With P/ S Heaters on and Solar Panels Off (19:30 on 9/ 25/69)

ISOTOPE HEATER AND SHROUD TEST TEMPERATURES- °F Figure 2-14

Page 46: PSEP Qual, flight acceptance and Qual retest thermal

TABLE 2.-6

COMPARISON OF MEASURED AND PREDICTED THERMAL PLATE TEMPERATURES

..n. .L .LV.L -o ::J v

Page 29 of 150 1 -23-70

Therrnal Plate Average Temperature - °F Noon Noon Swing Swing

Description No Dump 10 W. Dump Night No Dump 10 W. Dump

Qual T/V Chamber Test 143 139 -50 193 189 Performance

Qual Predicted T /V Chamber 140 1 32. -49 189 181

Performance - Mirror

11(/f = . 06/. 80 ( 1)

Qual Predicted Lunar 144 140 -53 197 193 Performance - Mirror ~,, = .06/.80 (1)

Flight T/V Chamber Test 130 124 --- --- ---Flight Predicted T IV 134 128 -55 189 183

Chamber Performance -

Mirror -</f :: . 06/.80 ( 1)

Flight Predicted Lunar 1H 128 -58 192. 186 Performance - Mirror

ol./e = . 06/. 80 ( 1)

Flight Predicted Lunar 142 136 -58 200 194 Performance - Mirror

f/(/E. = .08/.80 (2)

Flight Predicted Lunar 144 138 -58 202 196 Performance with Plume Heating Protection-

Mirror ol./E = . 06/. 80 ( 1)

Flight Predicted Lunar 150 144 -58 208 202 Performance with Plume Heating Protection -Mirror el./1;. :: . 08/. 80 (2)

Qual Retest T/V Chamber 146 --- --- --- ---Performance (Normal Structure and Solar Panel Temperature

Qual Retest T/V Chamber 152 --- --- --- ---Performance (Structure at

195°F and Solar Panels at Normal Temperatures)

NOTES: ( 1) Nominal or estimated effective radiation properties for over-all mirror

surface -- includes effect of gaps between mirrors and around mounting plate edges.

(2) Radiation properties for "degraded" mirror surface over the life of the mission.

(3) Lunar performance values were determined as follows: Temperatures were obtained with the analytical thermal model for a real lunar environment. These predictions were then adjusted by the amount of difference between expected chamber and actual test figures for the PSEP model in the T/V chamber.

Page 47: PSEP Qual, flight acceptance and Qual retest thermal

TABLE 2-7

SUMMARY OF T/V CHAMBER TEST CONDITIONS

PSEP Test Qualification Flight Acceptance Qual Retest

Condition Noon Night Noon Night Noon Night

Lunar Surface Temp., OF 250 -300 250 - 250 - -Cryowall Temp., OF -300 -300 -300 - -300 -Solar Simulation, watts /£t2 130 0 130 - 130 -Chamber Pressure, torr 1o-6 1o-6 1o-6 - Io-6 -Lunar Noon Eguilibrium Conditions Established

No Solar Simulation Yes - No - Yes -Solar Simulation (One Sun) Yes - Yes - Yes -

<;x:."d ::t>ZCil Ot:JM c::::o"d c::::c::::o ~::r>C:::: ot-t> ....... ~ t:-< ...:... ::0 ~

> ~~'=j tJ:jt;rjt

Solar Simulation (One Sun) Yes - Yes - No -with 1 0 Watt Dump

Solar Simulation (One Sun) No - No - Yes -with Primary Structure Heated

~ L______________ --- ,_

NOTE: One sun equals 130 watts/ft2

incident radiation.

t=jCil() ::of-j:r: f-jf-jf-j MJ::;x:. C!.lMCJ f-j::On ::o~M M;x:."d 1)L<f-j 0 > ::0 z f-j n

M

10 .. • ,. ,. > -t Cl !

Ill "' f-j ~

....... w I

I 0 00 N \Jl w 0 I -J 0 0 "'II :I

" ~ - ::1 \Jl c 0

Page 48: PSEP Qual, flight acceptance and Qual retest thermal

: ; . . PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

PAGI 31

KI:Y. rcu.

OF 150 Aaroepaoe Systema Dlvllllon

DAT! 1-23-70

2. 4 Conclusions

1. Thermal vacuum testing showed that the flight model thermal performance was well within the specification -65 "F to 140°F thermal plate temperature range.

2. The 10 watt PDM dump on the Flight model improves (lowers) the lunar noon thermal plate temperature by 6 oF.

3. The addition of the Kapton plume heating protection shrouds caused a 13 oF increase in the PSEP Flight thermal plate average temperature.

4. The higher -than-predicted primary structure temperatures experienced on the moon caused a 6 oF increase in the thermal plate average temperature.

5. The isolator bolts were very effective in isolating the thermal plate from influence by the primary structure.

6. The T /V chamber solar simulation adequately simulated solar heating of PSEP components on the lunar surface.

7. The Qual retest established that the PSEP thermal design was not the cause of the thermal anomaly experienced on the moon.

8. The Qual retest re-verified the PSEP thermal performance and the adequacy of the thermal design.

Page 49: PSEP Qual, flight acceptance and Qual retest thermal

NO. REV. MO.

ATM-850 PSEP QUAL, FLIGHT ACCEPTANCE

AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT ftAGI 3 2 OP _l1Q

DATI! l-23-70

3.0 THERMAL ANALYSIS

All predicted temperatu~es in this document were derived with thermal analysis models of PSEP in the T/V chamber and on the lunar surface. The models have the capability of computing steady-state and/or transient response temperatures as a function of such critical parameters as C/S thermal dissi­pation, solar heating, and second-surface mirror area.

Brief descriptions of the PSEP nodal division, of the resistors con­necting the nodes, and of the various heat inputs are presented in following sections along with some analysis techniques.

3·1 Thermal Models

Figures 3.1 and 3.2 illustrate deployed assembly and primary components of PSEP, while References 1 and 2 provide details on physical characteristics and functions of each component except for the second-surface mirrors, isotope heaters, PSE mounting plate, solar panels, and insulation shrouds. The second­surface mirrors consist of 8 mil thick Corning 7940 fused silica with silver vacuum-deposited on one side. There are 310 one inch square mirrors fastened to the upper surface of the PSE mounting plate, with the purpose of minimizing absorbed solar energy while radiating the heat dissipated by the C/S elec­tronics and heaters to space.

Two isotope heaters are fastened to the top surface of the mounting plate to maintain the C/S electronics at temperatures above critical levels during lunar night. The PSE mounting plate is a honeycomb structure which pro­vides support for the PSE sensor. Filtered silicon solar cells are supported in six panels and generate power for PSEP operation during the lunar day. These panels are deployed in two groups of three at a distance from the C/S so as not to interfere with the rejection of thermal energy to space by the ~irrors (see Figure 3-1). Insulation shrouds over the PSE sensor and heaters serve to isolate these three components from environmental effects.

Thermal models for temperature predictions at operating conditions in the vacuum chamber and on the real lunar surface are described below.

3. 1. 1 Thermal Model for T/V Chamber Test Environment

The thermal model consists of a network of isothermal nodes connected by heat transfer resistance paths which is processed by a computer program. Solar and thermal heat loads are input to specific nodes.

NQd_~l Designation

PSEP components were divided into isothermal nodes as ident­ified in Figures 3-3 to 3-8 and as listed in Table 3-1. The horizontal portion of the lunar surface simulator was treated as one node (99), while the simulator

Page 50: PSEP Qual, flight acceptance and Qual retest thermal

n IU

1) C

) v \Y'Cl

~~~ (·, ~"\ n J .d

AT

M-8

50

P

ag

e 3

3 o

f 15

0

l-23

-70

CJJ ())

·r-i r-1

~ ()) CJJ CJJ ..:X:

'0

())

~

0 r-1 0.. ())

'0

~

p

'0

~

ttl

'0

())

~

0 r-1 0.. ())

0 Ill ril U

l Ill

Page 51: PSEP Qual, flight acceptance and Qual retest thermal

Mounting Brackett:; for PSE Sensor

ATM-Ij!JU

Page 34 of 150 1-23-70

CJ Heater Shrouds & Masks

0 lJ Q <8>

Isotope 0 Heaters . .'

Second-Surface Mirrors

Thermal Plate

..._.,_---(Mounting Central Station Electronics)

Detector

Figure 3-2. Primary Components of PSEP Thermal Control System

Boom and Handle Assembly

Page 52: PSEP Qual, flight acceptance and Qual retest thermal

XXX (XXX) 1'\ote;

Thermal Plate and Mounting Plate Nodes (Solid Line Outline) Electronic Component Nodes (Broken Line Outline) Thermal Plate Nodes are 116-129 Mounting Plate Nodes are 16-29 Electronic Component Nodes are 130-141

128 129 .--- 28---,

29 I (138) ' 127

"" tb=======t 27

/ \I (137) I

(lf21 ( (141) \

______ _j

r------, r'='--_ -=- ~-<14•1---' r-----, 126

I r----U5 I I 26 1241 (136) l I (135) 25 I (134) .__, ML _j I ! !

1123

., L_ _ _r-' '--· ·--' r------..., lr--.., r-;~-l I 120 I I II 122 L, I 23 I 22 1 I 21 I I 20 1

j i

I (132) I I

I (130) I {131 l I I (133) I I ~ I I Ll I

1161 I I I ) '161 111----...l L ___ _j L _____ /

\ '----J ll7 liB 119

17 18 19

Top View

Figure 3-3. Thermal Plate, Mounting Plate, and Electronic Components Nodal Designation

Right-Hand Insulation Mask

Left-Hand

8

Top View

Notes: (I) Second-surface mirror nodes are represented by un-shaded areas.

{2) Shaded areas outline the top views of the insulation masks and shrouds.

(3) The insulation mask outlines shown are for the Flight model. Masks for the Qual model were larger.

Figure 3-4. Second-Surface Mirror and Insulation Mask Nodal Designation

-"0> ' PJ t-l

N (JQ '7 U)(l)~ I I -.]IJ.)(X)

0\.11\.11 0 0 ..... ,_. \J1 0

Page 53: PSEP Qual, flight acceptance and Qual retest thermal

~.

Heater #Z Shroud and Mask -.;;

§--H•ato' *'

PSE Sensor

#1 Shroud8 and Mask

.. "1,

R Heater #I~

Figure 3-5. PSE Sensor, Isotope Heaters, and Insulation Shrouds Nodal D.eaiqnation

PDM Panel Insulation

161

14 7 - Aluminum Skin

Primary Structure

143

Figure 3-6. Primary Structure and PDM Panel Nodal Designation

PDM Panel

-~> I Ill l-3 N (JQ '7 l.ol(b~ I ~ 0

I l>loo "'Ul 0 0 1-+, -Ul 0

Page 54: PSEP Qual, flight acceptance and Qual retest thermal

148 - Inner Fiberglass I Shell

149- Outer Surface of Multilayer Insulation Bag

Figure 3-7. Thermal Bag Nodal Designation

~ -13

Right Solar Panel

Left Solar Panel

Figure 3-8. Solar Panel Nodal Designation

...... 1:1~ I ~ 1-j N (JQ ~ VJ (I) ;:.., I ...., 0

I woo ....,Ul 0 0 ...... ...... U1 0

Page 55: PSEP Qual, flight acceptance and Qual retest thermal

ThPrmal ModpJ

Nodt• :-Jo.

4 5 6

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

TAb: .. · '-1

LIST OF NODES FOR PSEP THERMAL MODELS

Description

PSE Insulation Shroud Heater #1 Insulation Shroud Heater #2 Insulation Shroud Second-Surface Mirrors on Left Side of Mounting Platp Insulation Mask on Left Rear Corner of Mounting Plate Second-Surface Mirrors at Rear of Mounting Platt> Insulation Mask on Right Rear Corner of Mounting Plat<' Second-Surface Mirrors on Right Side of Mounting Plat(• St>cond-Surface Mirrors at Front of Mounting Plate Back Surface of Left Solar Panel Back Surface of Right Solar Panel Front Surface of Left Solar Panel Front Surface of Right Solar Panel Radioisotope Heater #1 Radioisotope Heater #2 PSE Mounting Plate

PSE Sensor

Thprmal Modt>l

Nodf' :'-Jo,

*

·-::;o ::Sl

·:•,z .. ,,3

'''54 ···55

'''56 .,.,7 :·5K ·::59

'''60

'''63 '''64 '''6o '''66

67 '''6B :•69 '''70 .,,71

·:::::96

99 100 116 117 llB 119 120

]J,,~l ription

Lunar Subsurfa1 ,, l\todt'l

Lunar Surface Simulator Lip Lunar Surface Simulator or Real Lunar Surface T /V Chamber Cryowall or Space Thermal Plate

J Applicable only to thermal model on lunar surface.

,;,~~Applicable only to thermal model in T/V chamber.

ThPrmal Mod€'1

Nod(• No.

121 122 123 1M 125 126 1n 1H 1~ 130 131 132 133 134 135 136 1TI 138 139 1~

141 1~

1« 145 146 1~

1M 18

~w ''"''''161 *•1M

Dt>scription

Thermal Plate

Power Control Unit (P. C. U. ) Power Distribution Unit (P. D. U.) Analog Multiplex Converter Passive Seismomett•r Command Decodt•r Digital Data Processor Command Rect>iver Transmitter A Transmitter B Timer Diplexer Filter Diplexer Switch Primary Structure Front Primary Structure Right Side Primary Structure Rear Primary Structure Left Side Primary Structure Bottom Thermal Bag Internal Surface Thermal Bag External Surface PDM Panel Insulation PDM Panel Front Surface PDM Panel Rear Surface

' I

':'~''·Nat applicable to Qual thermal model in T/V chamber.

>-1-cJ!l;> I llJ l-3 N OQ '7 I.J.) ('!) ;::::., I I -...Jv.>oo oool.n

0 0 I-t> ,_. l.n 0

Page 56: PSEP Qual, flight acceptance and Qual retest thermal

NO. ltiY. NO.

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL

VACUUM CHAMBER TEST REPORT

ATM-850

PAGI! 39

DUI! 1 - 23 -7 0

lip was considered a second node (96). A single node (100) represented the T/V chamber cryowall. Nodes 160, 161, and 164, which represent the PDM panel _insulation and PDM panel, applied only .for the .flight model since the panel :1nd insulation were not installed on the Qual model.

3.1.1.2 Resistance Paths

Conduction and radiation resistors interconnect all nodes tn form a network analogous to an electrical circuit, where voltage and cur­rent are replaced by temperature and heat trans.fer rate, respectively. General techniques used to evaluate resistors are presented in Re.ferences 2 and 3. Tables 3-2 to 3-8 summarize resistor values for Qual and Flight nodes in both T/V chamber test and real lunar environments. For each resistor, a table identifies the thermal analyzer resistor number, the nodes connected by the resistor, the components involved, the type of heat transfer involved, and the resistor value. Table 3-2 lists resistors common to all thermal r.nodels,with a .few exceptions noted. Tables 3-3 to 3-8 present resistors which apply only to radiation interchange between the PSEP insulation shroud~, insulation masks, mirrors, structure, solar panels, moon (or lunar simulator), and space (or cryowall). A description of these radiation interchange resis­tors is presented in Table 3-3, while Tables 3-4 to 3-8 list thermal model resistor values .for the various Qual and Flight models in the T/V chamber test and real lunar environments. Consequently, a complete set of resistors for any model is comprised of the values from Table 3-2 and from one of the Tables 3-4 to 3-8.

As noted in Table 3-2, resistors 68 and 69 which represent the resistances of the two insulation masks are different .for the Qual and Flight models. This resulted from the exposure of 37 additional mirrors and consequent reduction in mask sizes on the Flight model.

Thermal Analyzer Computer Program

Data on nodes and resistors were input to the "Thermal Analyzer" computer program (described in reference 4) along with in.formation on solar, electronic, and PDM panel heating. For steady-state computations the program, which employs a finite di.f.ference technique, performs successive energy balances on each node to establish node temperatures until the heat flow at each node is zero. For transient solutions the program determines the .finite time steps required for a stable solution and calculates the temper­ature response of each node over a specified time interval.

Thermal Model for Real Lunar Environment

The thermal model for the actual lunar environment is basically equivalent to the previous model with the .following exceptions:

1. A lunar subsurface model, described in Section 3.6, replaced the test lunar sur.face simulator model.

150

Page 57: PSEP Qual, flight acceptance and Qual retest thermal

fABLE 3-2

RE:S!STORS APPLICABLE TO ALL P.SI<..:P THERMAL \lODE 1.5 1::\ T \ CHAMBER TEST AND REAL LUNAR ENVIROI'\MEI'\TS

R<''·' Cone!. or Jt,·-.,htur \,,1u,·i11 No. '\or!t•s Descriptio1l Rad. ll<'.~• riptiun 1 ("C>t ~ \i<Hlll

Jt,-17 \ \!ountJng Plah· ):udt' Connections Jr,-2.3 11-lt-17 -U. lh-19 11:1-21 19-20 2.0-21 20-26

10 21-22 I I 21 -25 12 22-21 I 3 ZZ-24 14 23--24 15 2.4-25 16 24-29 17 25-26 18 25-2H 19 26-27 20 27-28 21 21:1-29 22 16-1161 il.!ounting Plate to Thermal Plate 23- 17-117 24 18-1 I 8 25 19-I 19 26 20-120 27 21-121 28 22-122 29 23-123 30 24-124 31 25-125 32 ,26-126

Cond. 1.735 1. 976 1. 147 4. 088 l 828 2. 566 2.. 462. 4. 890 2. 236 3. 630 ]. 741 2. 274 2. 774 1. 34] 5. 374

. 95'2 4. 034 !. 567

. 990 2. 462 2. 234

. 310

. 632

. 397

. 236

.481 I. 219

. 943

. 593

.453 1. 098

.482

Note: (1 J Conduction resistors are normal resistances with the units of hr-oF/Btu, while radiation resistors are reciprocals of resistance (conductance) with the units of !t2 .

Res. No. I Nodes Des<. ription

Cond. orl Resistor Value (I

Rad. Test & Moon

I~

IM !M IH I~

I~

I~

110 Ill 112 113 !17 IIH 119 120 121 Ul

'2:Jll3 ~2)1 24

14,

143 IH 145 l4b 147 148 J4Y !50 !51 152 !53 !54 !55

:\"ok

l 16-12:1 Thermal Plate :\ode Connections I Cond. 117-122 (Cont.) I lll-121 119-I 2.0 124-129 125~128

126-127 123-124 122-124 121-125 120-126 140-125 Electronic Components to Thermal

140-12.8 Plate ~ 141~124

Hl -129 lO-lL Solar Pan(•! !'\ode Conncttions II -!l t 161 ~lt>4 PD\1 Panel ]\;ode Conne<..tion 145-164 Stru1 turP to PD:'I.l Pan PI 143-Jlt.J Primary Stru<..turl' to Thermal I Rad. 14 )-117 Plate 1·-!3-llK l-11-119 H..J-119

H4-J20 144 -121)

144-12.7 145-JD 145-ll.H 146-12.9 146-12:4 1-lb-12. :l 1-±6-116

rn l)o(•S not 'lpplv for U•:;tl \1o<!Pl m T/V Chamber.

. 838 L 283

. 806

. 598

. 588

'659 . 598 '677

1. 037 . 651 . 484

5. 000 5. 000 5. 000 5, 000

, OS • OS • OS

4

2~~:10- 7 l33xl o~ 7

208xlo-7

283xl o-7 134xJo- 7

9xio-6 9xJo-6

134xJ0-7 207xio-7 187xio-7 250xlo-7

9lxlo-7 9lxl o-7 136xJo~7

33

34

" 16 37 lK 39 40 4! 42 41 44 45 46 47 48 49 so 5! 53 54 55 56 57 58 59 60 61 63 65 66 67

Res,

27- I l.7

2.H-!lH

29-1 L'l

\Jountil·~ l'Ltt<• to 1 ht·rn1,d l'l.ttt·

t 12.7 -1-l'i! T1wrnt.d boJ., 129-1-15 12.9-146 12:9-146 1!6 -i46 116-1431

119-143' 119-144 127-J-1.4

!4-17 ,J!,•ater ! to !\!ount:n)..! I'Jat(' 15-19 ll•·<tkr 2 to :-.tounting l'latL" 30-l7 30-2:1:1 30-ZJ 30-20

I'SI·: ,,.,r, '""'"'"'"'',,a,,.

4-16 I Mirrors to Mounting Plate 4-22 4-23 4-24 4-29 6-28 6-27 8-19 8-20 8-26 9-18

l-30 IPSE Shroud 2-14 Heater#] Shroud 3-15 Heater liZ Shroud

No. I Nodes Description

!56 !57 !58 !59 !60 !61 !62 !63 !64 165 !66 167 !68 169

(3)170 (4)170

171 172 173 174 !75 176 177 178 179 180 !81 JBl 183

12)184 193 194 195 196 197

1I6-148IThermal Plate to Th<-rmal Ba~ 1I 7-148 118-148 119-14~

120-148 121-148 122-148 123-148 l24-14H 125-148 126--148 127-148 128-148 129-148 !48-149 Tht'rmal Ba).! Node Conn1'< tion !4B-H9 t 143-149 Prim<1ry Strulhlr< !o "!lwrt11.d 1\.o~..:

JH-H(J l 145-149 146-149 147-149 143-141 Stru<..turc :-o;o(ho <. {!Ill\•·• l10t11">

144-145 145-146 146-143 147-143 147-144 147-145 !47-146 145-160 Stru~·ture to PD;\1 Fand ln5UL!tll>II ]35-14.3 C.!blt101: ff()l11 f·:Jt•<.trUill< ("<JH')JIJI\<'Ilt,_,

J34-J43tuSt!"u\lUrc l 131-14) 132-14} 130-143

Notes (3) Lunar Noon Only (4) Lunar N1ght Only

( ond. . ~.: : ~ '

92. 0 '12. 0 9.2. 0 <Jl.IJ

q • ()

oJ ,0

'• ()

q ,IJ

' . 0

271.

.27t•

·•.l'i

IS

" II rl'i7

. 050

.050

.067

.O'iO

.050

.050

.050

.050

.n5o

.f)G1

1!3.! 14!.5 141. 5

!.ond. oi Ht'~Jstor \alu£> ,J) Had. 1 est 1.. /\.loon

Had.

( ond.

t n,,<\,

l

• ()";<1()0

, O'J 1 ;.,

• f!H~OO

I 0't'J0 . 07.J.'.'J .0-.';>"t'i

o:,oo P">i'dJ

o.~ .~-; o . Ou J :s . 074~., . l0 1h0 . 1002.5 , 01;0SO

I 0, 5·!

5 J. 70 . OJ /')0

. OJ "J.!O

. ()] l/10

. OJ(d,o

. l Oli'iO IS. 891 16.700 21.040

I'· 990 J.-±111>

''I

'!·•..: ,j ·iU('

'1-:'.IJ t·•i.(l

1[,'

H<'h.

i\o. :\o<i<'& !Jcslnption

i;H 15-2:9 I.,·ft lnsulat~on ,\Jask ()ll 5-2.9 Ldt Insulatwn ,\Ja~k ,,y 17-.'.1 H1~ht Insulat~on Mask 69 7-27 R1ght In.sn1dtiOn :-.1.1sk 76 ] lO-llb ElPctronh Con1poncnts to lh(·rm<~l

77 I30-l2.3 r~IatP

7H I)] -117 7'7 1 n -!.'..'. .'-10 J l.'.-11 i\ ,'{j I 32-121 ,,2: 11l-11'l .'-l l 1 )\. 120

.'l~ 1 H-120 K'> I .J-l -12:6

Kt> I :\5-121 i\7 ]-15-12.5 HH I >9-124 K9 1 3')- 12.9 90 1 H>-124 91 1311 -ll9 92 137-128 93 116-1J7jThPrmal Plat(' Nud(' Conne~·tions ')4 1 17-11 H 95 1 I ll-11 ':l 96 12:0-121 97 121-12.2 98 12.2-J 23 ')9 12:4-125

100 12:5-126 1 OJ 127-12:8 102 128-129

o::Qual Model Only "Flight Model Only

Res. No. Xod<':< n('lll"ription

C und. or! R(·si,tur Vabe :1) Had. T(•st 1.. Moun

LoiH!. J 93. 54 122:.

')HZ:. I I. HiD I. ~'>0

.'.00

..:uo 4. s 30 h. ,'\00 2.(,6() 2:. !,(,0

1 630 4. HHO

32:. ISO H. 037 5. 000 5, 000 I. 670

• 11:10 • 11:10 . 760 . 7l7

1. 052 1. 549 1. 070 l. 119 I. 703 1.617 I. 151 I. 025

Concl. or! Resistor Value (l) Rad. Tf'st & Moon

I 33-14 31 Cabling from ElPttronic: Components to Structurr (Cont.) '

19H Com!. II l 2.. 1

(5))Z.O

~~ ~wo 15)35! (5)35l 15)353 (5)354 (5)355 {5HS6 (5)157 (5)358 (5)359 (5)360 ~)HI

('i )362

(5)06' (5)"3(,4 ('i)36'i ( 5 ) ~I 'tJ

(l);t,-;

(5 )JuS ('i)'ll!·l

(51'70 1 .; ) ~ 7 I

:"\o!<''-'

147-61 147-99 61-71 71-70 71 -60 70-69 70-59 69-68 69-58 68-67 68-57 67-66 67-56 66 ~65 66 -5'i 65-b4 65 -'i4

64 -b 3 ()4 -5) 6 l-t•Z

61-'3.!. t>Z.-'-,0 h2 :;1

f'l-"9

St ructurP to Moon

t Rc>al Moon Subsurface Modd

~I Ht•,d \:oo:: , •. 1 l \" ( h~n1b\"r T••st Only

. 10000 33. 3

. 894 J. 788

12. 'iOO 2. 012.

! 2. 500 2. 459

I 0, 000 2. 905 H. 130 3.576 7, /40 4. ~17 5. 550 7. 375 3. ,<;40

11.1>22. z.. 500

27. 715 1. "l()Q

-H7 . '500

'iO. 00(1

:t> 1-3 ~ I CJ (Jt

0

1:) Ill

(lQ ([I

*'" 0

0 ....., ..... (Jt

0

Page 58: PSEP Qual, flight acceptance and Qual retest thermal

TABLE 3-3

DESCRIPTION OF RESISTORS FOR RADIATION INTERCHANGE BETWF.EN INSULATION SHROUDS, INSULATION MASKS, MIRRORS,

PRIMARY STRUCTURE:, SOLAR PANELS, MOON, AND SPACE

Resistor Nodes

I -2 1-3 I-4 I -5 I -6 I -7 I -8 I -9 I -I 0 I-ll I -I 2 I -I 3 I -I 43 I -144 I -146 I -96 I -99 I -I 00 2-}

2-4 2-':i z_r, 2-8 2-9 2-10

2-I I 2- I 46 2.-96 2-99 2-l 00 J-4

Description

PSE Shroud to Heater #1 Shroud PSE Shroud to Heater #2 Shroud PSE Shroud to Second-Surface Mirrors PSE Shroud to Left Insulation Mask PSE Shroud to Second-Surface Mirrors PSE Shroud to Right Insulation Mask PSE Shroud to Second-Surface Mirrors PSE Shroud to Second-Surface Mirrors PSE Shroud to Left Solar Panel Back PSE Shroud to Right Solar Panel Back PSE Shroud to Lf.ft Solar Panel Front PSE Shroud to Right Solar Panel Front PSE Shroud to Primary Structure PSE Shroud to Primary Structure PSE Shroud to Primary Structure PSE Shroud to Lunar Simulator Lip PSE Shroud to Lunar Simulator or Moon PSE Shroud to T 1 \' Chamber Cryowall or Space Heater #l Shroud to Heater #2 Shroud HPatpr #1 Shroud to Mirrors H('ater #1 Shroud to Left Insulation Mask Heatt>r #I Shroud to Mirrors Heater #I Shroud to :\.1irrors Ht•atC'r #1 Shroud to Mirrors Heater frl Shroud to Left Solar Pant>! Back HPater fil Shroud to Right Solar PanC'l Rack Ift·atf'r #I Shroud to Primary Structure Heah•r ~1 Shroud to Lunar Simulator Lip Hr·at<'r #l Shroud to Lunar Simulator or Moon Hl:'ater Fl Shroud to Cryowall or Space Ht'att•r #2 Shroud to Mirrors

Resistor Nodes

3-6 3-7 3-8 3-9 3-10 3-ll 3-144 1-96 3-99 3-100 4-5 4-6 4-8 4-9 4-10 4-l I 4-I 2 4-I 3 4-146 4-96 4-99 4-I 00 5-9 5-I 0 5-ll 5-9(>

S-99 5-100 6-8 6-9 6-10 6-I 1 6-96 6-99 6-100

Description

Ht>at{'r #2 Shroud to Mirrors HeatPr #2 Shroud to Right Insulation Mask Heat<'r 112 Shroud to Mirrors H<•att>r #2 Shroud to Mirrors Heater #2 Shroud to Left Solar Pant> I Back Hf'ater #2 Shroud to R ig:ht Solar Panel Rack Heater #2 Shroud to Primary Structurf' Ht>ater ,.z Shroud to Lunar Simulator Lip H(•ater u2 Shroud to Lunar Sirnulator or ;\loon H('att>r #2 Shroud to Cryowall or Spact• Sf'cond-SurfacP 1\lirror~ to J,,•ft Jn~nlatton ,\1a:,;k Sf'cond-Surfact• ~lirror:. to J\1irrors SPcond-Surfat t' :">.1irrors to :\Hrror:,; SPcond-Surfal t• Mirrors to .\1irrors Sf'cond-Surfact• l\lirrorfi to Ldt Solar Pazwl Back St•cond-Sudan· Mirrorf' !o Hight Solar Pant•! HaC'k Second-Surfa, I' Mirrors !o l.t•ft ,o..,olar Panel Front S~cond-Surfac:t• ,\firrnrs to H_igh! Solar Panel Front Second-SurfaLt' :0..1Jrror.~ to f>rimar:; <:;! ructurf' Second-Surfa,·t· fl.-lirror.o..: to Lunar <..:111 ·tlator l,ip

S£'cond-S1lrfa, t· \1trror:- In l.unar '-,iJl•llla!or or \loon

S(·,·ond-SurfaL't' :\1trrors to ( rvow-tl! nr Spa,-,, Lt•ft fnsulation ,\la.sk to :-.tirror~ Lt·ft ln:-ulation t-.1ask to Ll'ft Solar Pant·! Ha, k Lf•ft lnsulati()n ,\lask to Right Solar Pant'! llal k l.t·ft Insulation r>.fask to Lunar Simulator 1.1;1

Lt·ft Insulation Mask to Lunar Simulator or :-.loon Lt·fl Insulation fl.-·task to C:ryowall 11r Spact• St·,·ond-Surfa('r' Mirrors to Mirrors SPcond-Surfact• Mirrors to Mirrors St•('Ond-Surface Mirrors to Left Solar Pa1wl !lad; S<•c:ond-Surfat ,, Mirrors to Right Solar flallt·l f'.a<. k St•• ond-Surfa, t• ~1irrors to Lunar Sinwlator Ltp St•cond-SurfacP Mirrors to Lunar Simulalor or i'vfoon S<>cond-Surfact• Mirrors to Cryo'Aall or Spa('('

Resistor Nodes

7 -I 0 7 -I I 7 -?9 7-1 on H-9 8-I 0 H-I I H-144 8-96 8-99 8-100 ~-1 0 9-l I 9-96 9-99 9-100

I 0-1 I 1 0-I 2 I 0-11 I 0-143 10-144 1 O-l..J.5 1 0-1-!6 I 0-H>l I 0-I (,4 I O-Q6

I 0-99 I 0- I 00 1 I -I 2 ll-11 I I -14l 1 I -144 11-J-1.5 I I -146 I!- I 61 I I -164

Description

Right Insulation Mask to Left Solar Panel Back Right Insulation Mask to Right Solar Panel Back Right Insulation Mask to Lunar Simulator or Moon Right Insulation Mask to Cryowall or Space Second-Surface Mirrors to Mirrors Second-Surface Mirrors to Left Solar Panel Back Second-Surface Mirrors to Right Solar Panel Ba(·k Second-Surface Mirrors to Primary Structure Second-Surface Mirrors to Lunar Simulator Lip Second-Surface Mirrors to Lunar Simulator or Moon Second-Surface Mirrors to Cryowall or SpacP Second-Surface Mirrors to Left Solar Panel BaC'k Second-Surface Mirrors to Right Sola; Panel Back Second-Surface Mirrors to Lunar Simulator Lip Second-Surfact> Mirrors to LW'lar Simulator or Moon Second-Surface Mirrors to Cryowall or Spact> Left Solar Panel Back to Right Solar Pant>] Back Left Solar Pan<'l Back to LE'ft Solar Pant>l Front Left Solar Panel Back to Right Solar Pant·! Front Left Solar Panel Back to Primary Structurf' Left Solar Panel Back to Primary Structure Left Solar Panel Back to Primary Strudurt· Left Solar Panel Back to Primary Structun• Left Solar Panel Back to PDM Panel Left Solar Pan£'1 Back to PD;vf Pam• I Left Solar Panel HaC'k to Lunar Simulator !.1p Left Solar Panel f3ack to I.tmar Sin1ulator or ~[oon Lc~ft Solar Panel Back to Cryowall or Spau• Right Solar Pand Back to Left Solar Panel Front Right Solar Pant' I Rack to Right Solar Pan{'} Front Right Solar f.:lan<'l Back to Primary StruL-tiJrP Right Solar Pam·l nack to Primarr Strudttn· Right Solar Pan('] Ba('k to Primary Strndur(• Right Solar Pan<'l Back to Primary Stru...-turv Right Solar Panel Back to PDM Pa'<el Right Solar Pant·! Rack to PD:Vi Pa1wl

> 1--j

~ I (JJ

Ul 0

1-t:J lll

()Q ('D

*"" ._....

0

"""" ....... Ul 0

Page 59: PSEP Qual, flight acceptance and Qual retest thermal

Resistor Nodes

Il-96 11-99 11-100 1 2-13 12-143 12-144 12-146 12-96 12-99 12-100 13-143 13-144 13-146 13-96 13-99 13-100

143-144 143-146 143-96 143-99 143-100 144-96 144-99 144-100 145-160 145-164 145-96 145-99 145-100 146-96 146-99 146-100 147-96 147-99 147-100 160-164 160-99 160-100 161-96 161-99 161-100 164-96 164-99 164-100

TABLE 3-3 (Cont. )

Description

ATM-850 Page 42 of 150 1-23-70

Right Solar J>ane1 Back to Lunar Sitnulator I ,ip Right Solar Pand Back to Lunar Simulator or Moon Right Solar J>and Back to Cryowall or Spact~ Left Solar Panel Front to Right Solar Pane I Front Left Solar J.:laneJ f<,ront to Primary Structure Left Solar Panel Front to Primary Strucfure Left Solar Panel Front to Primary Structure Left Solar Panel Front to Lunar Simulator Lip Left Solar Panel Front to Lunar Sirnu lator or Moon Left Solar Panel Front to Cryowall or Space Right Solar Panel Front to Primary Structure Right Solar Panel Front to Primary Structure Right Solar Panel Front to Primary Structure Right Solar Panel Front to Lunar Simulator Lip Right Solar Panel Front to Lunar Simulator or Moon Right Solar Panel Front to Cryowall or Space Primary Structure to Primary Structure Primary Structure to Primary Structure Primary Structure to Lunar Simulator Lip Primary Structure to Lunar Simulator or Moon Primary Structure to Cryowall or Space Primary Structure to Lunar Simulator Lip Primary Structure to Lunar Simulator or Moon Primary Structure to Cryowall or Space Primary Structure to PDM Panel Insulation Primary Structure to PDM Panel Insulation Primary Structure to Lunar Simulator Lip Primary Structure to Lunar Simulator or Moon Primary Structure to Cryowall or Space Primary Structure to Lunar Simulator Lip Primary Structure to Lunar Simulator or Moon Primary Structure to Cryowall or Space Primary Structure to Lunar Simulator Lip Primary Structure to Lunar Simulator or Moon Primary Structure to Cryowall or Space

PDM Panel Insulation to PDM Panel PDM Panel Insulation to Lunar Simulator or Moon PDM Panel Insulation to Cryowall or Space PDM Panel to Lunar Simulator Lip PDM Panel to Lunar Simulator or Moon PDM Panel to Cryowall or Space PDM Panel to Lunar Simulator Lip PDM Panel to Lunar Simulator or Moon PDM Panel to C ryowall or Space

Page 60: PSEP Qual, flight acceptance and Qual retest thermal

Res. No.

400 401 402 403 404 405 406 407 408 409 410 4ll 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

TABLE 3-4

RESISTORS APPLICABLE TO PSEP QUAL THERMAL MODEL IN T.t V CHAMBER TEST ENVIRONMENT

Value Res. Value Res. ' Nodes ft2 No. Nodes ft~ No. Nodes

1 2 0.02955 436 4 9 0.00174 471 10 145 1 3 0.03547 437 4 10 0.01138 472 10 146 1 4 0.05935 438 4 11 0.00199 473 10 96 1 5 o. 01092 439 4 146 0.00069 474 10 99 1 6 0.02438 440 4 96 0.00209 475 10 100 1 7 0.01267 441 4 99 0.03047 476 11 12 1 8 0.03357 442 4 100 0.66277 477 11 13 I 9 0.05793 443 5 10 0.00221 478 ll 143 1 10 0.03227 444 5 11 o. 00050 479 ll 144 1 11 o. 03924 445 5 99 0.00600 480 ll 145 1 12 0.00095 446 5 100 0.15503 481 11 146 1 13 0.00095 447 6 10 0.00156 482 ll 96 1 143 0. 00061 448 6 II 0. 00138 483 11 99 1 144 0.00231 449 6 96 0.00056 484 II 100 1 146 0.00202 450 6 99 0. 00776 485 12 l3 1 96 o. 03759 451 6 100 0.18800 486 12 96 1 99 0.42879 452 7 11 0.00147 487 12 99 1 100 1. 65349 453 7 99 0.00453 488 12 100 2 3 o. 00256 454 7 100 0.10412 489 13 96 2 4 0.02098 455 8 9 0.00097 490 13 99 2 8 0.00063 456 8 10 0. 00092 491 13 100 2 9 0.01444 457 8 11 0.00525 492 143 96 2 10 0.00528 458 8 96 0.00101 493 143 99 2 ll 0. 00182 459 8 99 0. 01449 494 143 100 2 96 0.00374 460 8 100 0. 28642 495 144 96 2 99 0.04263 461 9 10 0.00146 496 144 99 2 100 0.16407 462 9 11 0.00155 497 144 100 3 4 0. 00643 463 9 96 0.00099 498 145 96 3 8 0.01499 464 9 99 o. 01211 499 145 99 3 9 0.01415 465 9 100 0.15993 500 145 100 3 10 0.00183 466 10 ll 0. 01339 501 146 96 3 11 0.00536 467 10 12 0.00102 502 146 99 3 96 0.00361 468 10 13 0.00102 503 146 100 3 99 0.04142 469 10 143 o. 00640 504 147 99 3 100 0. 15974 470 10 144 0.00095 505 147 100 4 8 0.00075

\"alue ft 2

0.0034o 0.05040 0.04545 1.01l'l3 o. 78528 0.00102 0.00102 o. 005b 1 0.04794 0.00445 0.00101 0.04548 1. 01666 0.78320 0.00270 0.26004 0.92489 4. 28049 0.2b004 0.92489 4.28049 0.02217 0.29860 0. 32816 0.00768 0.31028 0.22177 0. 01744 0.23393 o. 26266 0. Oll62 0. 33837 0.24547 0.05829 0.00628

---

TABLE 3-5

RESISTORS APPLICABLE TO PSEP QUAL THERMAL MODEL IN REAL LCNAR ENVIRONMENT

Res. \"alu., I Xo. w~ j )i odes

Res. Value Res. No. Nodes ft2 No. Nodes

400 1 2 o. ozos1l 436 4 6 0.00038 472 10 146 401 I 3 0.035441 437 4 8 0.00073 473 10 161 402 1 4 ll. 05Q23j 403 I - o. n1r.19o I 404 I t ll.0:?.43SI 405 1 7 0.01Zo6 406 1 8 0.03353

438 4 9 0.00172 474 10 164 439 4 10 O. OII31 475 10 99 440 4 11 0.00193 476 10 100 441 4 146 0.00065 477 II 143 442 4 99 0.02892 478 11 144

407 1 9 0.05790 443 4 100 0.66680 479 II 145 408 l 10 o. 03184 444 5 10 0.00219 480 II 146 409 1 11 0.03881 445 5 II 0.00049 481 II 161 410 1 143 0. 00046 446 5 99 0.00526 482 II 164 411 1 144 0. 00211 447 5 100 o. 15636 483 II 99 4I2 1 146 0. 00182 448 6 8 0.00021 484 ll 100 413 1 09 0.55438 449 6 9 o. 00036 485 12 99 414 1 100 I. 56716 450 6 10 0.00154 486 12 100 415 2 3 0.00255 416 2 4 o. 02081

451 6 II 0.00136 487 13 99 452 6 99 0.00709 488 13 100

417 2 - 0.00036 453 6 100 0.18949 489 143 144 418 2 8 o. 00063 454 7 10 0.00039 490 143 146 419 2 9 0.01444 420 2 10 0.00524

455 7 II 0.00146 491 143 99 456 7 99 0.00421 492 143 100

421 2 ll 0.00178 457 7 100 0. 10481 493 144 99 422 2 146 0.00030 458 8 9 0.00097 494 144 100 423 2 99 0.05512 459 8 10 0. 00090 495 145 160 424 2 100 0.15564 460 8 II 0.00523 496 145 164 425 3 4 0.00642 426 3 6 0.00023

461 8 144 0.00028 497 145 99 462 8 99 0.01427 498 145 100

427 3 7 0.00032 428 3 8 0.01499

463 8 100 0.28792 499 146 99 464 9 10 0.00144 500 146 100

429 3 9 0.01415 465 9 II 0.00153 501 147 100 430 3 10 0.00179 466 9 99 o. 01358 502 160 164 431 3 11 0.00532 432 3 144 0.00029 433 3 99 0.05352

467 9 100 0.15962 503 160 99 468 10 II 0.01258 504 161 99 469 10 143 0.00597 505 161 100

434 3 100 0.15142 435 4 5 0.00020

470 10 144 o. ood6s 506 164 99 471 10 145 0.00194 507 164 100

-- -

Va1~e ft

0.04845 o. 00116 0.00126 I. 28502 0.56517 o. 00522 0.04605 0.00124 o. 00072 o. 00150 0.00157 I. 28471 0. 56621 1. 40987 4.05983 I. 40987 4.05983 0.00028 0.00034 0.34790 0. 30068 0.33880 0.19779 0.00109 0.08575 0.07950 0.07685 0. 37854 0. 21363 0.06501 0.01919 0.00031 0.13459 o. 13237 0.00716 0.00480

- 1:1 :a I IU I-N CJQ !(: VJ (b ...

~~b owo

0 c ..... -IJl 0

Page 61: PSEP Qual, flight acceptance and Qual retest thermal

Res. No.

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 4lt' 417 418 ~19

420 421 422 423

424 425 426 427 428 429 430 431 432 433 434 433

TABLE 3-6

RESISTORS APPLICABLE TO PSEP FLIGHT THERMAL MODEL WITH NO PLUME HEATING PROTECTION IN

T /V CHAMBER TEST ENVIRONMENT

Value

Nodes ft2

Value Res.

ft2 No. Nodes

1 2 o. 02950 436 3 144 0.00031 1 3 0.03547 437 3 96 0.00361 1 4 o. 05687 438 3 99 O. O.J 134 I 5 0.00835 439 3 100 o. 15887 I 6 0.03473 440 4 ( 0.00054 I 7 0.00170 441 4 8 0.00080 1 8 0.03729 442 4 9 0.00161 1 9 o. 05602 443 4 10 0.01091 1 10 0.03224 444 4 11 0. 00191 1 11 0.03917 445 4 12 o.ooo2; 1 12 0.00095 446 4 13 0.00025 1 13 0.00095 447 4 146 0.0006(, 1 143 0.00061 448 4 96 0.00199 I 144 0.00230 449 4 99 0.0289() 1 146 0.00202 450 4 100 o. 63557 1 96 o. 03756 451 5 10 0.00169 1 99 0.42786 452 5 11 0.00031l I I 00 1. 65648 453 5 96 0.00031 2 3 0.00255 454 5 99 o. 0045 3 2 4 0.01994 455 5 100 0.11864 2 5 0. 00027 456 6 8 0.00035 2 6 0.00028 457 6 9 o.ooo:;o 2 8 0. 00070 458 6 10 0.00222 2 9 0.01397 459 6 11 0.0019f, 2 10 0.00528 460 6 96 0.00079 2 11 0.00182 461 6 99 o. 01093 2 146 0.00032 462 6 100 0.26799 2 96 0.00373 463 7 99 o.ooot>o 2 99 o. 04235 464 7 l 00 o. 01401 2 100 0.16550 465 8 9 0.00105 3 4 0.00616 466 8 10 0.00102 3 6 0.00033 467 8 11 0.00584 3 8 0.01666 468 8 144 0.00034 3 9 0.01368 469 8 96 p. 00111 3 10 0.00183 470 8 99 0.01'>94 3 11 0.00536 471 8 100 0.31814

Values Res. 2

No. Nodes ft

472 9 10 0.00141 473 9 11 0.00150 474 9 96 0.00095 475 9 99 0.01164 476 9 100 o. 15473 477 10 11 0.01339 478 10 12 0.00102 479 10 13 0.00102 480 10 143 0.00640 481 10 144 0.00093 482 10 145 0.00196 483 10 146 0.05040 484 10 161 0.00126 485 10 164 0.00088 486 10 96 0.04543 487 10 99 1. 01579 488 10 100 0.77996 489 11 12 0.00102 490 11 13 0.00102 491 11 143 o. 00561 492 11 144 o. 04794 493 11 145 0.00123 494 11 146 0. 00101 495 11 161 0.00159 4% II 164 0.00108 497 II 96 0.04546 498 11 99 1. 01636 499 II I 00 0.78111 :;oo 12 13 0.00270 501 12 143 0.00036 502 12 144 0.00029 503 12 146 0.00033 504 12 96 0.25998 505 12 99 0.92278 506 12 100 4.27647

Res. No. Nodes

507 13 143 508 I 3 144 509 13 146 510 13 96 511 13 99 512 13 100 513 143 144 514 143 146 515 143 96 516 143 99 517 143 100 518 144 96 519 144 99 520 144 100 521 145 160 522 143 164 523 145 96 524 143 99 525 143 100 526 146 96 327 146 99 528 146 100 529 147 96 530 147 99 5 31 147 100 532 160 164 533 160 99 534 160 100 :; 35 161 96 536 161 99 537 161 100 538 164 96 539 164 99 540 164 100

Value

ft2

0.00036 0.00029 0.00033 0.25998 0.92278 4.27647 0.00038 0.00045 0.02216 0.29842 0.32692 0.00767 0.31017 0.22061 0.00072 0.07741 0. 00517 0.06683 0.08308 0.01162 0.33824 0.24400 0.00044 0.05829 0.00604 0.01270 0.00283 0.00328 o. 00904 o. 11282 o. 14201 0.00052 0.03294 0.03836

-'1:1> I I» ...:) N (JQ !::>' y)CD;::a. I~ ~~

I CD Ul

0 0 .... .... c.n 0

Page 62: PSEP Qual, flight acceptance and Qual retest thermal

TABLE 3-7

RESISTORS APPLICABLE TO PSEP FLIGHT THERMAL MODEL WITH NO PLUME HEATING PROTECTION IN REAL LUNAR ENVIRONMENT

Res. Value Res. Value No. Nodes ft2 No. Nodes ft2

Res. Value No. Nodes ft2

400 1 2 0.02951 436 4 6 0.00053 472 10 146 0.04845 401 I 3 0.03543 437 4 8 0.00078 473 10 161 0.00116 402 1 4 0.05677 438 4 9 0.00160 474 10 164 0.00085 403 1 5 0. 01135 439 4 10 o. 01085 475 10 99 1. 28498 404 1 6 0.03469 440 4 11 0.00185 476 10 100 0. 56423 405 1 7 0.00227 441 4 146 0.00062

; 406 1 8 0.03724 442 4 99 0.02772 1407 1 9 0.05599 443 4 100 0.63938

477 11 143 o. 00522 478 11 144 0.04605 479 11 145 0.00121

408 1 10 0.03177 444 5 9 0.00028 480 11 146 o. 00072 ,409 1 11 0. 03873 445 5 10 0.00228 481 11 161 0.00150 '410 1 143 0.00046 446 5 11 o. 00051 482 11 164 0.00105 411 1 144 0.00210 447 5 99 0.00581 483 11 99 1. 28468 412 1 146 0.00181 448 5 100 0.16079 484 11 100 0.56549

'413 1 99 o. 55406 449 6 8 0.00034 1414 1 100 1. 55876 450 6 9 0.00050

485 12 99 1. 40987 486 12 100 4.05983

/ 415 2 3 0.00255 451 6 10 0.00220 ! 416 2 4 0.01993 452 6 11 0.00194

1417 2 5 0.00388 453 6 99 0.01010

418 2 6 0.00027 454 6 100 0.27004

487 13 99 1. 40987 488 13 100 4.05983 489 143 144 0.00028 490 143 146 0.00034

1419 2 8 0.00066 455 7 11 0.00026 420 2 9 o. 01397 456 7 99 0.00076

491 143 99 0.34790 492 143 100 o. 30067

1::: 2 10 o. 00524 457 7 100 0.01880 2 11 0. 00178 458 8 9 0.00104

423 2 146 0.00030 459 8 10 0.00099 424 2 99 o. 05513 460 8 II 0. 00581

1425 2 100 0.15601 461 8 144 0.00032 426 3 4 0.00615 462 8 99 0.01585 427 3 6 0.00032 463 8 100 0.31975

493 144 99 o. 33880 494 144 100 0. 19775 495 145 160 0.00072 496 145 164 o. 07741 497 145 99 0.07941 498 145 100 0.07679 499 146 99 0.37854

428 3 8 0.01665 464 9 IO 0.00140 500 146 100 0. 21357 429 3 9 o. 01368 465 9 11 0.00148 501 147 100 0.06501 430 3 10 0.00179 466 9 99 0. 01313 502 160 164 0. 01270 431 3 11 0.00532 467 9 100 o. 15427 503 160 99 0.00027 432 3 144 0.00029 468 10 11 0.01257 504 161 99 0.13459 433 3 99 0.05352 469 10 143 o. 00597 505 161 100 o. 13236 434 3 100 0.15145 470 10 144 0.00068 506 164 99 o. 00549 435 4 5 0.00036 471 10 145 0.00192

L-.,__ __ 507 164 100 0.00390 l I ___

TABLE 3-8

RESISTORS APPLICABLE TO PSEP FLIGHT THERMAL MODEL WITH PLUME HEATING PROTECTION IN REAL LUNAR ENVIRONMENT

Res. Value No. Nodes ft2

Res. Value Res. Value No. Nodes ·ft2 No. Nodes ft2

400 1 2 0.05158 435 4 8 0.00038 470 10 164 0.00085 401 1 3 0.06199 402 1 4 0.07351

436 4 9 0.00078 471 10 99 1. 28231 437 4 10 0.01049 472 10 100 0.55671

403 1 5 0.01476 438 4 !I 0.00149 473 11 143 0.00522 404 1 6 0. 04564 439 4 146 0.00060 474 11 144 0.04604 405 1 7 0.00298 406 1 8 0.04810

440 4 99 0. 02213 475 11 145 0.00121 441 4 100 0.62361 476 11 146 0.00071

407 1 9 0.07235 408 1 10 0. 04150

442 5 10 0.00221 477 11 161 0.00149 443 5 11 0.00045 478 11 164 0.00105

409 1 11 o. 05062 444 5 99 0.00476 479 11 99 I. 28152 410 1 143 0.00059 411 1 144 0.00275

445 5 100 0. 15784 480 11 100 0.55659 446 6 9 0.00024 481 12 99 1. 40987

412 1 14t 0.00237 447 6 10 0.00205 482 12 100 4.05983 413 1 99 o. 72410 448 6 11 0.00176 483 13 99 1. 40987 414 1 100 2.03706 449 6 99 0.00762 484 13 100 4.05983 415 2 3 0.00428 416 2 4 0.02625

450 6 100 0.26304 485 143 144 0.00028 451 7 11 0.00025 486 143 146 0.00034

417 2 5 o. 00511 452 7 99 0.00059 487 143 99 o. 34786 418 2 8 0.00064 453 7 100 0.01834 488 143 100 0.30057 419 2 9 0.01828 454 8 9 0.00051 489 144 99 o. 33863 420 2 10 0.00682 455 8 10 0.00081 490 144 100 0.19727 421 2 11 0.002lb 456 8 11 0.00552 491 145 160 0.00072 422 2 146 0.00039 457 8 144 0.00030 492 145 164 o. 07741 423 2 99 0.07047 458 8 99 0.01220 493 145 99 0.07940 424 2 100 0. 19949 459 8 100 o. 30946 494 145 100 0.07676 425 3 4 o. 00777 460 9 10 0.00106 495 146 99 0. 37838 426 3 6 0.00022 461 9 11 0.00109 496 146 100 0.21314 427 3 8 o. 02196 462 9 99 0.00751 497 147 100 o. 06501 428 ) 9 o. 01784 463 9 100 0.13843 498 160 164 0.01270 429 3 10 0.00217 464 10 II 0.01239 499 160 99 0.00027 430 3 11 0.00685 465 10 143 0.00597 500 161 99 0.!3458 431 3 144 0.00037 466 10 144 0.00067 50! 161 100 0. 13234 432 3 99 0.06776 467 10 145 o. 00192 502 164 99 0.00548 433 3 100 0.19179 468 10 146 0.04844 503 164 100 0.00388 434 4 ( 0.00027 469 10 161 o. 00116

-----· -~>

I Ill t-i NOQ !;:I' WeD;::..

~~& OOic.,n

0 0 ..... ..... U1 0

Page 63: PSEP Qual, flight acceptance and Qual retest thermal

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL

VACUUM CHAMBER TEST REPORT

NO. RIV. NO.

ATM-850

PAGI 46

DATI ] -23-70

2. Actual moon and space temperatures were used.

3. The bottom of the PSEP C/S rests on the lunar surface. During T/V testing, however, the bottom was supported 1.75 inches above the lunar surface simulator by several insulation blocks.

Tables 3-1 to 3-8 list nodes and summarize resistor values for the real moon analysis.

3.2 Analysis Methods

Analysis methods used to construct the thermal models are not presented here as they are outlined in detail in References 2 and 3.

3-3 Heat Inputs to Thermal Models

Five basic heat inputs to the thermal models exist:

1 • Thermal dissipation from C/S electronic components.

2. Thermal dissipation of PSE sensor.

3- Thermal dissipation from isotope heaters.

4. Thermal dissipation at the PDM panel.

5- Solar Radiation.

Values for these heat sources at the lunar noon and night equilibrium conditions are listed in Tables 3-9 to 3-11 for the Qual and Flight models. The heat sources are defined along withthe thermal model nodes which receive the thermal dissipation. The computer tables which distribute the heat to the nodes are also designated. Solar radiation to the mirrors and to the insula­tion masks and shrouds during testing was simulated by infrared heaters sus­pended above PSEP in the chamber. Solar heating of the lunar surface simulator was simulated by infrared heaters attached to the underside of the simulator. The importance of solar heating and other areas of lunar environment simulation is discussed in Reference 3.

For the Qual test, the heat leak from the PDM panel to the primary structure was simulated with heaters attached to the rear structure surface since the Qual model had no PDM panel. Also, the PSE sensor thermal dissipa­tion of 0.7 watts was distributed among the electrical heaters which simulated the electronics.

Page 64: PSEP Qual, flight acceptance and Qual retest thermal

I

! !

TABLE 3-9

THERMAL DISSIPATION AND SOLAR RADIATION FOR PSEP QUAL MODEL IN TiV CHAMBER

Thermal Diss./Solar Rad. - Watts l~oon !'lOOn

:\"ode Heat Source Table No Dump 10 w. Dump

130 P. C. u. 1 14. 17 8.47 1 31 P. D. U. 2 1. 51 1. 50 132 Analog Multiplex Converter 3 1. 51 1. 50 133 Passive Seismometer 4 3.80 3. 80 13-! Command Decoder 5 1. 52 1. 49 133 Data Processor 6 . 635 . 635 136 Command Receiver 7 . 635 . 635 !38 Transmitter B 8 8. 19 8. 19 -- .. Electronics Total - 31. 97 26.22 1 Solar Radiation Absorbed 11 25.90 25.90

by PSE Shroud z Solar Radiation Absorbed 12 3.78 3.78

by .Heater Iii Shroud 3 Solar Radiation Absorbed 13 3. 81 3.81

by Heater ,z Shroud 4 Solar Radiation Absorbed 14 8.41 8.41

by Mirror Node 4 3 Solar Radiation Absorbed 15 5.90 5.90

by Left Insulation Mask b Solar Radiation Absorbed 16 2-29 2.29

by Mirror Node 6 7 Solar Radiation Absorbed 17 4. 32 4.32

by Right Insulation Mask 8 Solar Radiation Absorbed 18 3.80 3. 80

by Mirror Node 8 9 Solar Radiation Absorbed 19 3. 10 3. I 0

by Mirror Node 9 14 Radioisotope Heater #1 24 14.75 14.77 15 Radioisotope Heater #2 25 14.82 14.86 145 Heat Leak from PDM Panel 29 1. 63 3.42

-

:"OTES: !. Absorbed solar radiation by second-surface mirrors

is based on a mirror solar absorptivity of 0. 06. Above values were obtained from Peference 16 and the Qual test results.

2.

3. Thermal dissipation from the PSE sensor is included in the values for the electronics.

A'!

Night

0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

15.24 15.29

0

TABLE 3-10

THERMAL DISSIPATION AND SOLAR RADIATION FOR PSEP FLIGHT MODEL IN T /V CHAMBER

Thermal Diss./Solar Rad. - Watts Noon l\/oon

Node Heat Source Table No Dump 10 1\". Dump

130 P. c. e. 1 13.78 8.18 131 P. D. l'. 2 1. 58 1. 58 132 Analog Multiplex Converter 3 1. 47 I. 47 133 Passive Seismometer 4 3.70 3. 70 13-! Command Decoder 5 1. 16 !. 16 135 Data Processor 6 .53 . 53 136 Command Receiver 7 .74 .74 138 Transmitter B 8 8.24 8.24 --- Electronics Total - 31.20 25.60 lf,J Pl1M Panel 10 5. 00 10.50 I Solar Radiation Absorbed II 25.3-! 25.34

by PSE Shroud 2 Solar Radiation Absorbed 12 3.78 3.78

by Heater "1 Shroud 3 Solar Radiation Absorbed 13 3.78 3.78

by Heater •2 Shroud 4 Solar Radiation Absorbed 14 8. 09 8. 09

by Mirror Node 4 5 Solar Radiation Absorbed 15 4.45 4.45

by Left Insulation Mask 6 Solar Radiation Absorbed 16 3.40 3.40

by Mirror :'\ode 6 7 Solar Radiation Absorbed 17 .56 .56

by Right Insulation Mask 8 Solar Radiation Absorbed 18 4. 31 4.31

by l\1irror Xode 8 9 Solar Radiation Absorbed 19 3.13 3. 13

by Mirror :"ode 9 12 Solar Radiation Absorbed 22 0 0

by Left Solar Panel 13 Solar Radiation Absorbed 23 0 0

by Right Solar Panel 14 Radioisotope Heater "1 24 15.00 15.00 15 Radioisotope Heater ··2 25 15.00 15.00 30 PSE Sensor 30 .70 .70

-

:'llOTES: 1. Absorbed solar radiation by second-surface mirrors

is based on a mirror solar absorptivity of 0. 06. 2. Above electronics and PDM panel thermal dissipations

are based on Reference 17.

Night

0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

15.00 !5.00

0

i

-'1::1> I Ill l-3 N OQ !7 wca;::.. !..,~& 0--.JUI

0 0 .... -Ul 0

Page 65: PSEP Qual, flight acceptance and Qual retest thermal

NO. II!Y. NO.

: : . . PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

PAGI 48 OF 150

Aerospace Systems Division DATI 1-23-7 0

Node

130 131 132 133 134 135 136 138 ---161 1

2

3

4

5

6

7

8

9

12

13

14 15 30

TABLE 3-11

THERMAL DISSIPATION AND SOLAR RADIATION FOR PSEP FLIGHT MODEL ON MOON

Thermal Diss./Solar Rad. Noon Noon

Heat Source Table No Dump 10 w. Dump

P. c. u. 1 13.78 8. 18

P. D. u. 2 1. 58 l. 58

Analog Multiplex Converter 3 l. 47 l. 47

Passive Seismometer 4 3. 70 3. 70 Command Decoder 5 l. 16 l. 16

Data Processor 6 .53 .53

Command Receiver 7 .74 .74 Transmitter B 8 8.24 8.24

Electronics Total - 31.20 25.60 PDM Panel 10 5.00 1 o. 50 Solar Radiation Absorbed 11 38. 15>:< 38. 15':' by PSE Shroud 1 02. 40>:<>:< 1 02. 40':":' Solar Radiation Absorbed 12 6. 09':' 6. 09':' by Heater #1 Shroud 16. 3 5 ;.,~, 16. 35>!<>!<

Solar Radiation Absorbed 13 6. 09~' 6. 09'!' by Heater #2: Shroud 16. 50~":' 16. 50>!<>:<

Solar Radiation Absorbed 14 8. 00>!< 8. 00':' by Mirror Node 4 7. 7 6':":' 7. 7 6>:<>:<

Solar Radiation Absorbed 15 4. 54>:< 4. 54':' by Left Insulation Mask 14. 12>!<>:< 14. 12':":' Solar Radiation Absorbed 16 3. 25':' 3. 25':' by Mirror Node 6 3. 25 >!<>!< 3. 25 ':":' Solar Radiation Absorbed 17 . 59>!< . 59':' by Right Insulation Mask 1. 7 6>!<>!< 1. 7 6':":' Solar Radiation Absorbed 18 4. 22>!< 4. 22':' by Mirror Node 8 4. 1 O>:<>:< 4. 1 O>:<>:<

Solar Radiation Absorbed 19 3. 02':' 3. 02>!<

by Mirror Node 9 2. 81 >!<>:< 2. 81 >!<>!<

Solar Radiation Absorbed 22 341. 3 341. 3 by Left Solar Panel Solar Radiation Absorbed 23 341. 3 341. 3 by Right Solar Panel Radioisotope Heater #1 24 15.00 15.00 Radioisotope Heater #2 25 15. 00 15. 00 PSE Sensor 30 .70 .70

NOTES: 1. ~'No plume heating protection. 2. ~'~'Plume heating protection system installed. 3. Absorbed solar radiation by second-surface mirrors

is based on a mirror solar absorptivity of 0. 06. 4. Above electronics and PDM panel thermal dissipations

are based on Reference 17.

- Watts

Night

0 0 0 0 0 0 0 0 0 0 0

0

0

0 0 0

0

0

0

0

0

0

15.00 15.00

0

Page 66: PSEP Qual, flight acceptance and Qual retest thermal

ATM-850 PSEP QUAL, FLIGHT ACCEPTANCE

ANLJ QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

3.4 Radiation Properties of PSEP Surfaces

PAGE

DATE

49 0,

1-23-70

Radiation properties listed in Table 3-12 were used to evaluate radi­ation resistors for the Qual and Flight models, respectively. These values were sometimes difficult to establish accurately and may vary over the oper­ational life of PSEP. However, good analytical predictions have been obtained with the listed properties.

3.5 Thermal Conductivity and Thickness of PSEP Insulation Materials

Values of thermal conductivity and thickness used in the thermal models for the various PSEP insulation materials are listed in Table 3-·13.

3.6 Simulated Real Moon

For analysis predictions of PSEP steady-state thermal performance in an actual lunar environment, the lunar surface was simulated by a 1000 ft. x 1000 ft. "node" with a value of 1.0 for both solar absorptivity and thermal emissivity and at uniform temperatures of 250°F for noon and -300°F for night. In addition, the following modification was employed. When PSEP is deployed, the section of lunar surface directly under the primary structure will not be at the temperature of the remaining lunar surface since it exchanges heat with the structure bottom while being blocked-off from solar heating and from heat exchange with space. This lunar section is therefore strongly influenced by· subsurface strata as well as by the surrounding lunar surface.

Consequently, the moon in the vicinity of PSEP was divided horizontally and vertically into a series of nodes (see Figure 3-9) to provide for this effect. "Infinite" nodes, which are unaffected by PSEP and which are at fixed temperatures, are connected to "active" nodes which are located directly be­neath the primary structure. Active nodes are allowed to attain equilibrium temperatures along with nodes in the PSEP thermal model. Construction of this lunar "subsurface" model is described in Reference 5.

3.7 Evaluation of Flight Model PCU and PDM Thermal Dissipations

Thermal dissipations by the PCU and Power Dissipation Module (PDM) are plotted versus "reserve power" in Figure 3-10, where reserve power is defined as the difference between Central Station input power and PCU input power. Reserve power was obtained from HK measurements and thus provided the basis for evaluating PCU and PDM thermal dissipations. Figure 3-10 was constructed from information contained in Reference 17.

150

Page 67: PSEP Qual, flight acceptance and Qual retest thermal

I

I ' I

TABLE 3-12

RADIATION PROPERTIES OF PSEP Ql'AL AND FLIGHT MODEL S"CRFACES

Description of Surface a E Surface Finish Material -----

PSE Shroud Exterior . 15* . 60'~ 2. 0 mil FEP Teflon . 47 *'' . 80''''' 5. 0 mil Kapton

Heater Shroud Exterior I . 15''' . 60'' 0. 5 mil Kapton . 47'''' . 80''"'' 5. 0 mil Kapton

Heater Mask Exterior I . 15'' . 60':''' l. 0 mil Kapton . 47*'' . 80'''' 5. 0 mil Kapton

Second-Surface Mirrors . 06 . 80 Corning 7940 Fused Silica

Insulation Mask Exterior . 15 ,, . 60'' SiO over Aluminized Mylar . 47'';' . 80"'' 5. 0 mil Kapton

Solar Panel Back . 30 .30 Anodized

Solar Panel Front .80 .83 Filtered Silicon

Lunar Simulator --- . 891 Black Paint

Lunar Simulator Lip --- . 826 Black Paint

Real Lunar Surface I 1.0 I 1.0 ---

T /V Chamber Cryowall I --- I . 914 I Black Paint

j Space I 1.0 I 1.0 ---t

Thermal Plate Bottom I ---

I . 05

I Aluminized

Primary Structure Exterior, . 20 .90 Sl3-G White Paint Except Bottom

Primary Structure Interior I --- I . 05 I Aluminized and Bottom

Description of Surface Surface Finish •Material -----

ThL'rmal Bag Interior ---

Thermal Rag Exterior I --- I .50 ---

PDM Panel Insulation .l:i . 05 Aluminized Mylar

PDM Panel Front . 20 .90 Sl3-G White Paint

PDM Panel Back . 20 .80 Black Anodized

'·' No Plume Heating Protection

''"' Plume Heating Protection

a = Solar Absorptivity ( = Thermal Emissivity

::-<OTES: (I) The 0. 06 second-surface mirror solar absorptivity is an effective value since it accounts for gaps between the mirrors.

(2) The 0. 60 value for Teflon thermal emissivity was used for temperature predictions. However, after the analyses were completed, an improved value of 0. 70 was obtained. A brief investigation indicated that no significant difference in tempera­ture predictions would occur by replacing the 0. 60 figure with 0. 70.

-'U~ I IU 1-: NCJQ

~ I.N('D I I -..JUlcx OOv

0 c ..... .... U1 0

Page 68: PSEP Qual, flight acceptance and Qual retest thermal

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RF.TFST THERMAL VACUUM CHAMB KR TJ:.~ST REPORT

TABLE 3-13

THERMAL CONDUCTIVITY AND THICKNESS OF PSEP INSULATION MATERIALS

Description/Location of Insulation

PSE Shroud - 10 layers of aluminized mylar on sides with 40 layers of alumin­ized mylar and 9 layers of silk netting on base

External layer of FEP Teflon over PSE shroud

External layer of Kapton over PSE shroud (plume heating protection onFlight model)

Heater shrouds and masks - 40 layers of aluminized mylar and 32 layers of silk netting

External layer of Kapton over heater shrouds and masks

External layer of Kapton over heater shrouds and masks (plume heating pro­tection on Flight model

Thickness Mils

500 (sides) (,6 7 (base)

2

5 (top) 10 (sides)

667

0. 5 (shrouds) 1. 0 (masks)

5 (top of shrouds and masks) 10 (shroud sides)

PSE mounting plate masks - 20 layers 333 of aluminized mylar

External layer of Kapton over mounting I plate masks

External layer of Kapton over mounting 1 0 plate masks (plume heating protection on Flight Model)

I 0 layers of aluminized mylar around edge 167 of PSE mounting plate and on cutouts for solar panel support brackets

External layer of Mylar on mounting 0. 25 plate edge insulation.

NOTE: Each layer of aluminized mylar is 0. 25 mils thick.

NO. IIY. MO.

ATM-850

PAGI 51 OP 150

OAT I l - 2 3 - 7 0

Thermal Conductivity

Btu/ft hr0£ w-­

l0-4

Io-3

. 035

. 097

. 097

. 097

10- 3

. 097

. 097

lo- 3

• 086

:

,, !

l ' :

Page 69: PSEP Qual, flight acceptance and Qual retest thermal

Active Nodes

ATM-850 Page 52 of 150 1-23-70

99 60 59 58 57 56 55 54 53 52

51

so

Figure 3-9. Lunar Subsurface Computer Model for Real Moon Analysis

Page 70: PSEP Qual, flight acceptance and Qual retest thermal

50 r I I

~40 t ; I

I ' I i

§ 30 .... ..... I ~ , :'j Po. ..... Cll Ill .... 0 20 1.-.... I :1!

E 1-4 «.! ~

E-t 10

0

0

No Dump 10 Watt Dump Activated

Note: These curves apply for a 36 watt PCU regulator.

4 8

/

/ /

/

Thermal Dissipation/~ / /

/ \

PDM Panel

_,/

/ //

//

----__.,....., _______ _ ~~-

12 16 20 24 Reserve Power-- Watts

28 32 36

Figure 3-10. PCU and PDM Panel Thermal Dissipation vs Reserve Power for Flight Model

40

> 1-j

~ I ex; i.J'I 0 .. '"C Ill ·~ (l)

i.J'I w 0 ...... .... (Jl

0

Page 71: PSEP Qual, flight acceptance and Qual retest thermal

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

PAGE 54 OF

~ Systems Division DATE 1-23-70

4. 0 TEST METHODS

4. 1 Qualification Test Procedure

A PSEP deployed system thermal vacuum Qualification (Qual) test was pc rformcd in the Bendix 20 ft. x 27 ft. lunar environment simulation chamber. The lunar environment was simulated by chamber pressure, cold shroud ( cryowall) temperature, lunar surface ten1perature, and solar radiation. After the environmental system and PSEP turn-on were verified, the four steady-state conditions listed below were established.

1. Lunar noon with no sun and no power dump. (Equilibrium established at 02:30 on 4/8/69)

Temperature of lunar simulator and lips = 250 ± l0°F

Temperature of cryowall " -280 ± 40° F

Simulated electronics and heaters turned on.

2. Lunar noon with one sun and no power dump. (Equilibrium established at 12:30 on 4/8/69 ).

Temperature of lunar simulator and lips = 250 ± 10°F

Temperature of cryowall = -280 ± 40° F

Simulated electronics and heaters turned-on.

3. Lunar noon with one sun and 10 watt dump activated. (Equilibrium established at 18:30 on 4/8/69).

Temperature of lunar simulator and lips := 250 ± 10°F

Temperature of c ryowall -280 ± 40 oF

Simulated electronics and heaters turned on.

150

Page 72: PSEP Qual, flight acceptance and Qual retest thermal

:· : t • PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO. RI!V.H<l

ATM-850

P'AGI 55

DATE 1-23-70

4. Lunar night (Equilibrium established at 08:30 on 4/I0/69)

Temperature of lunar simulator and lips - -300 ± 2.0 oF

Temperature of cryowall . -280 ± 40° F

Simulated electronics turned- off

Simulated isotope heaters turned-on.

-5 A pressure of 5 x 10 Torr or less was maintained for the duration

of the test by the chamber pumping system. Space was simulated with the chamber cryowall cooled by liquid nitrogen {LNz) and having a thermal emissivity in excess of 0. 90. The lunar surface was simulated by an aluminum structure with "lips" which had an emissivity greater than 0. 89. The lunar surface night temperature was achieved by pumping LN2 through the surface, and lunar noon temperatures were achieved with an array of infrared lamps attached to the structure. Solar radiation was simulated with an array of tungsten filament quartz lamps supported above the PSEP model, and the level of energy absorbed by the surfaces was monitored and controlled by a radiometer calibrated to read energy absorbed by second-surface mirrors.

4. 2 Flight Acceptance Test Procedure

The lunar noon environment simulation for the Flight Acceptance test was similar to that for the Qual test. Since no lunar night testing was performed, only the following three steady- state conditions were established.

1. Lunar noon with no sun and no power dump. (Equilibrium established at 22:00 on 4/14/69)

Z. Lunar noon with one sun and 10 watt power dump. (Equilibrium established at 09:00 on 4/15/69).

3. Lunar noon with one sun and no power dump. (Equilibrium established at 16:00 on 4/15/69)

An Integrated Systems Test (IST) was performed at the lunar noon condition of one sun and no power dump.

Page 73: PSEP Qual, flight acceptance and Qual retest thermal

: : I ~ PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850 I PAGI 56 Of

Aaloapace Systema Division DATE 1 - 2 3 -7 0

4. 3 Qualification Retest Procedure

The PSEP Qualification Thermal- Vacuum Retest was conducted in the Bendix 20 by 27 foot space simulation chamber with the same test setup that was used for the original qualification test. PSEP was placed in the same location on the lunar surface simulator and in the same location under the IR lamp array as was used in the original Qual test. The number of thermocouples on PSEP was reduced, for cost and time reasons, to the point where only that data required was obtained ..

The environmental conditions were the same as in the original qualification test, with two additions. A thermal equilibrium condition with the primary structure at actual lunar noon temperatures ( 195°F) and a thermal equilibrium condition with the solar panel simulators cool were added.

As in all ALSEP and EASEP T IV tests, the cryowall was held at - 300°F. The lunar surface simulator was +2 50°F for lunar noon conditions and -300°F for Lunar Night conditions. The solar simulation is discussed in detail in Section 6. S. 2. 2.

Two thermal equilibrium conditions without PSEP in the chamber and four equilibrium conditions with PSEP in the chamber were conducted as follows:

I. Lunar night without PSEP in the chamber (10:00 on 9119169).

2. Lunar noon with no solar simulation and without PSEP in the chamber (12:30 on 9119169).

3. Lunar noon with no solar simulation, PSEP in the chamber, Solar panel normal temperatures (185°F) and no additional heat to the primary structure (13:30 on 9124169).

4. Same as preceding except addition of solar simulation ( 0 0: 3 0 on 9 I 2 5 I 6 9).

5. Lunar noon with solar simulation, PSEP in chamber. Solar panel normal temperatures (185°F) and primary structures at 195°F (13:30 on 9125169).

150

Page 74: PSEP Qual, flight acceptance and Qual retest thermal

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850 I PAGI 57 OP

DATe 1-2.3-70

6. Lunar noon with solar sinHllation, PSEP in chamber. Solar panels at 150°F and primary structure at 195°F (19:30 on 9/25/69).

The PSEP Qualification Retest Model with Kapton shrouds is shown in Figure l-4. The general position of PSEP in the same simulation chamber is shown in Figure 1-5.

4. 4 PSEP Temperature Measurement Locations

The PSEP Qual model was instrumented with 115 thermocouples for temperature measurements with the Data Acquisition System (DAS), while the flight model had 35 thermistors for Housekeeping (HK) temperature measurements. Figures 4. I through 4. 7 show the thermocouple and some of the thermistor locations as well as the locations of the electrical heaters used to simulate the Qual test electronics and PDM panel thermal dissipations. Thermocouple identification numbersfor C/S components are denoted on the figures and in the figure titles. Of the thermistor locations not shown, two are on interior and exterior surfaces of the thermal bag, one is on the PDM panel, two are on the solar panels, three are on the dust detector, and 19 are on the electronic components.

4. 5 Simulated Lunar Environment Temperature Measurement Locations

The lunar surface simulator was instrumented with 57 thermocouples as shown in Figure 4-8, while figure 4-9 depicts the distribution of 40 thermocouples over the T /V chamber cyrowall.

150 _,

Page 75: PSEP Qual, flight acceptance and Qual retest thermal

Heater, Strip Style Thermocouple Semiflexible Copper/Constantan 233411-2 (100 + lOJL.) 30 Gage; 14 Required 2 Required -

\ (Qual model only)

Co1 ='w:lfi A~

Thermistor; 4 Required

10~ I In 11 t:!l

a HK 15 u iB '-A.l. 5

HK 59 II ... II" fd6 12~ ~[;]1 HK 8i

PSEP T/C

1 2 3 4 5 6 7 8 9

!0 11 12 13

~

DAS : CHNLi

154 1

155 ' 156 I

157 158 159

1 160

I 161 162 163 I

1 164

I I 165 j 166 I

16i

14 n

_ _____f!j;z_ ~

u~=~ u Note: HK 88, which is located

on the PDM panel for the Flight model, is not shown.

Figure 4-1. Thermocouple, Thermistor, and Heater Locations {1-14) -PSEP Primary Structure and PDM Resistor Panel

PSEP T/C 15 16 17 18 19

' 20 21 22 23 24 25 26 27 28 29 30 3.1

32 33 34 35 36 37 38 39 40

Heater. Strip Style, Semiilexible 2333411-2 (lO()J\-); 1.2 Required (Qual model only)

DAS CHNL

168 169 170 171 172 173 174 175 176 177 178

1791 180 lBlj 182 1

183: 18< 1ss: 186. 187 188 189 190 1911 192! 193

Thermocouple, Chrome!/ Constantan 30 Gage; 26 Required

A 18

39£ Thermistor;

5 Required

21 l:.

II l;J

PSE

A/ 30)0

40 4

.t. 32

A 29

4 27

16

lJ I

1 22 23 I I A. .t. i

x::=: 2342203 Central Stat: on Asserr.bly (Sirr.ulator)

J':ote: Outlines of the electronic componer.ts are shown only to illustrate the simulation of the components with the heaters. HK measurement locations on the electronics are not shown.

Figure 4-2. Thermocouple, Thermistor, and Heater Locations(l5-40) - PSEP Thermal Plate Assembly

-"d::t:: I Ill ~

N CIQ ~ \.>.) (!) ;:::. I I ooJUlo: OOJ\J

0 c .... -Ul 0

Page 76: PSEP Qual, flight acceptance and Qual retest thermal

42

41

c:

\

Th('rrnocoupll'

/- Chrotnt•l/Constantan H> Gag<>; l4 Rt>quirt>d

Edgt· Mnuntt•d Tht•J"llltll'OUplt•

---- --·--PSEP, DAS PSEP DAS

T/C CHNL T/C CHNL 41- -i94 --53 206 42 195 54 207 43 196 55 208 0 ~3 48 44 197 56 209

49 Sheet 2 PSE Mounting Platt• Asst•mbly

Figure 4-3. Thermocouple Locations (41-64) -PSEP PSE Mounting Plate Assembly

Tht~rmocr,up]e

Copptr /Constantan 1() Gag<'; I 0 Required

65

"

66 69 /':. /':.

D p

PSEP DAS T C CHNL 65 218 66 219 67 220 68 221 69 222 70 223 7l 224 72 225 73 226 74 227

7l /':.

45 46 47 48 49 50 51 52

74 6

PSE Simulator PSE Shroud

Figure 4-4. Thermocouple Locations (65-74) -PSEP PSE Simulator and Shroud

198 57 210 199 58 211 200 59 212

"l' 213 202 61 214

HI_ -~t _ 215 216 I

211 I . --~

~ ..1. ~V.L-V...JV

Page 59 of 150 1-23-70

Page 77: PSEP Qual, flight acceptance and Qual retest thermal

75 ~81)

Th .. rmocouplt• Copper I Con•Lanlan '$0 Gag .. , 6 Requir"d p"r

HTR (IZ Total)

Healt•r Leads (82)

77 (83)

HTR NO. 1 HTR NO. 2 RIGHT LEFT

PSEP DAS PSEP DAS T/C CHNL ·T C CHNL

75 228 (81) 234 76 229 (82) 235 77 230 (83) 236 78 231 (84) 237 79 232 (85) 238 80 233 (86) 239

7~--~--~~~--~

(83)

Electric Isotope Heater

A 80 (86)

eo (86)

<rL

78 (84) n

Isotope Heater Shroud

Figure 4-5. Thermocouple Locations (75-86) -PSEP Isotope Heater and Shroud

Thermocouple ---Copper/Constantan

30 Gage; 5 Requi rt•d

Mask, Left Rear Corner

PSEP, I Do\S : T/C afNL! 87 240 88 241 89 242 90 243 91 244

Mask, Right Rear Corner

Figure 4-6, Thermocouplq Locations (87-91) -PSEP PSE Mounting Plate Masks

79 (85)

79

Fl (85)

.n. ..L .lV.L-O;:}V

Page 60 of 150 1-23-70

Page 78: PSEP Qual, flight acceptance and Qual retest thermal

\ I I

t ___ --

Thermocouple Copper I Constantan 30 Gage; 6 Required Per Linkage (24 Total)

J

H

. '

·~ \' \\ \\

\\ \~

! Left Front Left Rear RigLt. Front Riqht Rear I .

PSEP I DAS '. CODE i PSEP . DAS PSEP !JAS jPSEP DAS I I i

' T/C1CHNL T/C c·INL T/C ICHNL 1 T/C iCHNL F 122! 245 128 251 134 I 257 G 123 246 129 252 135 ' 258 H 124 247 130 253 136 259 I 125 248 131 254 137 260 J 126 249 132 255 138 261 K 127 250 133 256 139 262

------------------ -~- ----

Note: HK 27 and HK 42 are not shown but are located on the left and right solar panels, respectively.

Figure 4-7. Thermocouple Locations (122-145) -PSEP Solar Cell Panel Deployment Linkage

140 263 141 264 142 265 143 266 144 267 145 268

~-

-'1::1> I PI ., N OQ '7 UJCD>:>. I I -.JO'-oo o-\.11

0 0 ..... ...... \)1

0

Page 79: PSEP Qual, flight acceptance and Qual retest thermal

IT LS 44 LS 21 ol 0

LS 43 LS 2.0 o I 0

_ot 0 LS 42 LS 19

o 1 o LS 41 LS 18

LS 46

0

LS 23 0

LS 8 0

LS 7 0

0 LS6

0 LS 17

0 LS 36

0

LS39

LS H LS 57

0 0

LS 24 LS 25 0 0

LS o LS 10 0 0

LS 2 LS 3

0~~0 ~'i~~ ~CIS~

o'"''"'''~ o LSS

0 LS 16

0 LS 35

0

LS 38

LS 4

0 LS 15

0 LS 34

0

LS 48

LS 56

0

LS 26 0

LS II 0

LS 12 0

0 LS 13

0 LS 14

0 LS 33

0

LS 49

L~ (.I

11 0

LS 28 LS 54 0 lo

LS 29

ro513 0

0 I o LS 30 LS 52

0 fO LS 31 LS 51

Figure 4-8. Lunar Surface Simulator Thermocouple Locations

West c====\ cw 11 Yew 1l r:==}

V:ew of Cryowai.l !.oo._!ng Sorth

Eaot

View of Cryowall Lookint South

Figure 4-9. Cryowall Thermocouple Locations

East

-1j)o I SIJ ...,:: N (JQ !::0 VJ CD ;:::. I -. I ....., ...,. ex ONu-

0 c 1-4> .... U1 0

Page 80: PSEP Qual, flight acceptance and Qual retest thermal

: ; . . PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL

ATM-850 1 V AClHJM CHAMBER TEST REPORT

PAGE 63 OF

~ Systems Division DATE l-23-70

5. 0 TEST MEASUREMENTS

5. I Qualification Test Measurements

Figures 5-1 through 5-14 show DAS temperature rneasurements versus time for the various PSEP Qual components. Power input to the electrical heaters is presented in Figures 5-IS to 5-I7, and Figure 5·-18 shows the effect of the 10 watt PDM panel dump on primary structure temperatures. Radiation absorbed by the test radiometers and the effect of the simulated solar heating on PSEP components are depicted in Figures 5-I9 to 5-21. The effect of lunar environment simulation paran1eters (lunar surface simulator, cryowall, and solar heating) on therrnal plate temperature is indicated in Figure 5-22. Significant test events are labeled on each figure.

Data Acquisition System (DAS) data at lunar noon and night equilibrium conditions are listed in Tables 5-1 and 5-2.

5. 2 Flight Acceptance Test Measurements

Figures 5-23 to 5-25 show HK temperature measurements versus time for the PSEP Flight model thermal plate, electronics, thermal bag, and primary structure. Reserve power is also plotted in Figure 5-25. Not all measurements are illustrated in the figures- -generally just maximum and minimum values are shown in order to bracket the range of temperature data. The specified equilibrium events are somewhat misleading since thermal equilibrium was generally not achieved but only approached. Consequently, equilibrium refers to conditions just prior to initiating a new phase of the test.

Housekeeping (HK) data at lunar noon equilibrium conditions are listed in Table 5-3. One sun and no sun refer to the on and off conditions of the tungsten filament quartz lamps which simulated solar radiation.

The power input to the PSEP Central Station remained a constant 37. 2 watts during lunar noon testing, while the reserve power varied from 3. 6 watts with the I 0 watt dump activated to I3. 7 watts with no dump.

150

Page 81: PSEP Qual, flight acceptance and Qual retest thermal

0 0

0 oro

0 0

0 0

0 oro '

BENDIX AtROSPHC~ SYSTEMS DIVISION PROGRAM f'SU' lt.SI NO. 51 TF.~>T ORH 114/0G/69 ltRI'l TIME 000001 TfST TITU I'Sf.P [JlJRLif IUIT!l1N Mfl!lfl IHtRMRL VRr.lJlJM TEST

I'J I II f'SlP 2~ HH RMHI Pt. A J l · PCIJ U.H .. 181 PSU' J 01 IHt.HMAL PLAJl·OfllA !'HOC

LUNAR NOON lOUILIBHIUM NO SUN SUN

NO DUMP NO DUMP

• ~~=

m m

(!) 165 f'Slt' 32 IHlHMHI PLATE ·NlRR PSl ~ 19,' f'SEP J9 THERMAL PLATE ·NEAR XMlR

DUMP LUNAR NIGHT EOUILI8RIUM

0 ~ ~ ao

"' ' 0 ~ ~ ' o ::3' '3' ::3'

ATM-850 Page 64 of I 50 1-23-70

0 0 0 0

't-+ 2=--.-=o-=o--2:+~-.-=o-=-o --3+6-. -=-oo---~t-8-. o-o---6+-o-. o-o---1+-2=-. o-o--~8f-~ .-o-o--s-l6-.-o-o--t-+0-8-.-oo--t-+2.::o:.... o-o--t32. cl ELAPSED TIME FROM 000001 ON 04/06/69 !HOURSJ I

Figure 5-l. Qual Test Thermal Plate Temperatures

0 0

0 vo

0

~

...... a:o cr:o w· Q.o

:r w o-g

0 oro '

BENDIX AEROSPACE SYSTEMS DIVISII'JN PROGRAM PSEP TEST NO. 51 TEST DATE 04/06/69 ZERI'l TIME 000001 TESf TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

-------------- ----------····--···- -----------------------, l'l 183 PSEP 30 THERMAL PLATE-PSE ELEC (!) 190 PSEP 37 THERMAL PLATE-SWITCH

.o. 186 PSEP 33 THERMAL PLATE-CHO RCVR ~ 191 PSEP 36 THERMAL PLATE-NEAR XHTR

LUNAR NOON EOUIL16RIUH NO SUN SUN SUN

NO NO DUMP 10 HAJJ OUMP

• •

m m ~ ~

LUNAR NIGHT lOUIL !BA!UH

m OD

' c:o ,_. m 0 ~ ~ ...... 0 ~ ::I' ::I

c:o+----~o:__ __ +----~-----~----f-o::._ ___ -f-.------4------f---::--::---f-o--::------'t2.00 2~.00 36.00 ~8.00 60.00 72.00 8~.00 96.00 108.00 120.00 132.(

ELAPSED TIME FROM 000001 ON 04/06/69 lHOURSJ

Figure 5-2. Qual Test Thermal Plate Temperatures

Page 82: PSEP Qual, flight acceptance and Qual retest thermal

BENDIX AER~SPRCE SYSTEMS OJVJSJ~N PROGRAN PSIP TEST TITLE

I

TEST NO. 51 TEST DATE 04/06/69 ZER~ TIME 000001 PSEf QURLIF !CRT JON M~DEL THERMAL VRCUliM TEST

~ 206 PSEP 55 PSE MIG PLATE-NEAR HTR 2 .a 210 PSEP 57 PSE MIG PlATE-UNOER PSE

LUNAR NOON EOU I LI BR I UM NO SUN SUN SUN

(!) 209 PSEP 56 PSt MIG PLATE-UNOER PSE ~ 196 PSEP 43 PSE MIG PLATE-LEFT REAR

0 0 NO OUHP NO OUHP 10 HATI OUMP

LUNAR NIGHT ECUILIBRIUH

0 Ill

0 0

0 0+---~~~----~~--~

U..o -o

~ .

~+------+--~~,_-----1---w a: :::> t-­cro a::o ~.,;T------+------~-----;-

:1: w t--g

0

'?+------+------+-------1---~-- ---- --- ··-·

0 0

0 0

"' "' ' 0> 0

' ~ 0

~

' ~ 0

ATM-850 Page 66 of 150 1-23-70

1 1+2-.0-0----2~ij-.-00----3,S-.-OO ____ ,ijB-.-0-0-----160~.-0-0----7~2.-0-0----B~4-.0-0----9~B-.0-0----1+0-B-.0-0---1~2-0-.0-0--~132.( ELAPSED TIME FR~M 000001 ~N 04/06/69 (H('JURSJ

Figure 5-S. Qual Test Mounting Plate Temperatures

0 0

0 N

0 0

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. 51 TEST DATE 04/06/69 ZERO TIME 000001 TEST TITLE PSEP QURLIFICATJ~N MODEL THERMAL VACUUM TEST

~ 217 PSEP 64 PSE MTG PLATE-UNDER PSE C!J 216 PSEP 65 PSE SIMULATOR-TOP A 223 PSEP 70 PSE SHROUD-TOP ~ 226 PSEP 73 PSE SHROUO-BRCK SlOE

LUNAR NOON EQUILIBRIUM NO SUN SUN SUN LUNAR NIGHT

NO OUHP NO OUHP 10 WRIT OUHP EQU I LI BR I UH ~ ~ ~ ~ ----- -

/' ~ -- "'

--

--0 ~ ~ v \

~ ~~ "' 0 0

0 u.JO CX::o ::I­t- I

a: a: Y.lo n..o :1:. u.J~ I- I

C) 0

0

"' 112.00

v \ / r 'il::: r-.- __.d'/

I ( \ --

~I I 1\ VI y

~ m'-......1 ~ / "' "' ' ' ' ,... 0> I( 0 0

' ' =- ~ j5 0 0

2ij.00 36.00 48.00 60.00 72.00 64.00 96.00 108.00 120.00 132.( ELAPSED TIME FR~M 000001 ON 04/06/69 (H~URSJ

Figure 5-6. Qual Test PSE Simulator/ Shroud Temperatures

Page 83: PSEP Qual, flight acceptance and Qual retest thermal

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. 51 TEST DATE 04/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

,......-· -------

0 0

0 N

0 0

~223 PSEP 7D P6f SHROUD-TOP ~ 22~ PSEP 71 PSE SHROUD-fRONT & 226 PSEP 73 PSE SHROUD-BACK S I Of ~ 227 PSEP 7~ PSE SHROUD-RIGHT

LUNAR NOON EQUILIBRIUM NO SUN SUN SUN LUNAR NIGHT

NO OUKP NO DUMP 1D WATT DUKP EQUILIBRIUM ~ ~ ~ ~

SlOE SlOE

.---

.o LLJO a:· ;::,~ t-1 a: a: LUo o...o x:· w~ t- I

0 0

--v'\ /

t / / 'I

~( lll 's-.1 .... ,... 0 .... "" 0

PI

! H A I

~~ If; ~ lr-- / "' "' :::: "' 0 :::: ....

"" "' 0 0 0

"' I 12.00 2 .DO 36.00 ij8.00 60.00 72.00 8ij,QQ 96.00 108.00 120.00

g .. ~ N 0

lr!g ;::, . t-0 a: a: LUo o...o z:· LU~ I-I

g .;

ELAPSED TIME FROM 000001 ON 04/06/69 (HOURSJ

Figure 5-7. Qual Test PSE Shroud Temperatures

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. Sl TEST DATE 04/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

m23ij PSEP 81 ISOTOPE HTft NO 2-TOP (!) 237 PSEP 8~ HTR NO 2 SHROUD- TOP & 238 PSEP 85 HTR NO 2 SHROUD-SlOE • 208 PSEP 55 PSE KTG PLATE-NEAR HTA 2

LUNAR NOON EQUILIBRIUM NO SUN SUN SUN LUNAR NIGHT

NO DUHP NO DUHP 10 WATT OUHP EQUJLIBAIUK ~ ~ ~ ~

l;:= - \\ ;; ~ --- •"-~ ~ ' ;:: -1~ I-/

t;= [--.__

!~f \\ ........ r--- 1 \ ""' N \ "'

-.....__ r-- 1 01

"' U>

~-::::

"' :::: .... "' "' "" 0 0 0

N I 12.DD 2 .DO 38.00 ij8.DO 60.00 72.00 8ij,QQ 96.00 108.00 120.00

ELAPSED TIME FROM OOODOI ON 04/06/69 (HOURSJ

Figure 5-8. Qual Test Heater/Shroud Temperatures

13

13

2.(

2.(

ATM-850 Page 67 of 150 1-23-70

Page 84: PSEP Qual, flight acceptance and Qual retest thermal

0 0

0 N

0 0

0 0

<;::o

0 LLJO a:o ::;:)­t-1 a: a: l.Uo 0..0 :a:· LLJ~ t- I

0 0

0

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. 51 TEST DATE 0~/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

r---- -------- ----------~-----

l!l 196 PSEP ~3 PSE MTG PLATE-LEfT REAR (!) 240 PSEP 67 LEfT MASK-TOP fRONT • 241 PSEP 66 LEfT MASK-TOP CENTER ~ 242 PSEP 69 LEfT MASK-TOP REAR RIGHT

LUNAR NOON EQUJL!BRJUH NO SUN SUN SUN LUNAR NIGHT

NO OUHP NO DUMP 10 HATT DUMP EQU l Ll BR I UM

~ ~ ~ ~ ·-

,..------ -----~\ ~

~ v v ~~ rf ~ ·-

lf ~ r-- 1 1\ r---

1"-l --- ---- -··--- \; ~

1-----·--- ----v 1---~

- --------"' "' "' "' "' "' ' ' ::: r- "' 0 0 ~ ' ' 3' 3' .,. 0 0 0

ATM-850 Page 68 of 150 1-23-70

"' 112.DO 2~.00 36.00 ~8.00 80.00 72.00 84.00 96.00 106.00 120.00 132.(

0 0

0

"' 0 0

ELAPSED TIME FROM 000001 ON OV06/69 !HOURSJ

Figure S-9. Qual Test Left Insulation Mask Temperatures

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. 51 TEST DATE 04/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

l!l 199 I'Sfl' ~6 PSf IHG PLATE-UNDER HASK (!) 243 PSEP 9D RIGHT MASK-TOP REAR • 244 PSfl' 91 RIGHT MASK-TOP fRONT

LUNAR NOON EQUILIBRIUM NO SUN SUN SUN LUNAR NIGHT

NO DUHP NO DUMP 10 HATT DUMP EQUILIBRIUH

~ ~ ~ ~ --

~ f.---- ~ -- --

I ~ / \\ -"""

~~ / ~~ I

!:! 0 -"' 0

0

L:O

0 0

0

"' 112.00

---I

f ~ j \ 1---...

~ ..., I '- J

-- ---"' "' "' "' "' "' ' ' ::: r- "' 0 0 ~ ' ' 3' " " 0 0 0

24.00 36.00 ~8.00 60.00 72.00 84.00 96.00 106.00 120.00 132.( ELAPSED TIME FROM 000001 ON 0~/06/69 !HOURSJ

Figure 5-10. Qual Test Right Insulation Mask Temperatures

Page 85: PSEP Qual, flight acceptance and Qual retest thermal

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. Sl TEST DATE 0~/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

ATM-850 Page 69 of 150 l-23 -70

,----- ~-~-~---------~-------------- ---- -~ ---· -··-- --~- -- . -~----- -~----~-----------

0 0

0

"' 0 0

0 0

;:o

0 LA.JO a:.,; :::>­f-1 cr a: LA.Jo Q..O ll:" w:i': 1- I

0 0

----,

l!l 156 PSEP 3 PRIMARY STRUCTURE-BACK ~ 157 PSEP 4 PRIMARY STRUCTURE-RIGHT • 158 PSEP 5 PRIMARY STRUCTURE-BOT10M ~ 013 LS 3 LUNAR SURFACE-CENTER ZONE

LUNAR NOON EOUILI8RIUH NO SUN SUN SUN LUNAR NIGHT

NO OUMP NO OUHP I 0 WAT1 OUHP fQU ILl BR I UH ~ ~ ~ ~ -·----- ---------

lf / r v -~ ~- r-~-----r------- ---

1 a \

"' 1// "" -... v

I 0> ... CD CD .... .... r- 0> 0 0 .... .... 3 3 0 0 "' "' I 12.00 2~.00 36.00 ~8.00 60.00 72.00 8 .oo 96.00 108.00 120.00

ELAPSED TIME FROM 000001 ON 0~/06/69 !HOURSJ t3 2.C

Figure 5-11. Qual Test Primary Structure Temperatures

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. 51 TEST DATE 0~/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

r-~---- ------------------- ----·- --

0

0 0

0

"' 0 0

~

0 0

i:o

0 LA.JO a:o :::>-1- I

cr a: LA.Jo Q..O r· w~ 1- I

0 0

0

~

"' 112.00

l!l 257 PSEP 134 RT FRONT LINKAGE-UPPER C!l Z58 PSEP 135 RT fRONT LINKAGE-LOHER .o. 260 PSEP 137 RT fRONT LINKAGE-MIOOLf f> 262 I'SfP 139 RT fRONT LINKAGE-9RCKT

LUNAR NOON EQUILI8RIUM NO SUN SUN SUN LUNAR NIGHT

NO OUHP NO DUMP 10 WATT DUMP EQUILI8RIUH ~ ~ ~ ~

~- -- --------

/ ...... ~~ - -- -~--- r-~

~ r~ ----

1\_ l\ I [\, ----

\d -, ............__ r------- 1

~ J -~--- ---~----

0> :Ji~ -- lf 0> CD -4------ -- CD .... .... ~ r- 0> 0 ~ ::: .... 3 3 ,.. 0 0 0

2~.00 36.00 48.00 60.00 72.00 84.00 9R.QO 108.00 120.00 ELAPSED TIME FROM 000001 ON 0~/06/69 !HOURSJ

132.(

Figure 5-12. Qual Test Solar Panel Linkage Temperatures

Page 86: PSEP Qual, flight acceptance and Qual retest thermal

·-

BENDIX AlHnSPHCI SYSTEMS DIVISION PROGRAM PSEP TEST NO. 51 TEST DAlE D4/06/69 ZERO TIME OOOD01 TEST TITLE PSFP QUALIFICATION MODEL THERMAL VACUUM TEST

ATM-850 Page 70 of 150 1-23-70

-- --- .. -- - ~ --·. ---- ----- ----- - -. ·-- ··-·--------·· ---

0 0

0 N

0 0

0 0

L;:o

0 wo CCo ;:)­....... a: cc Wo CLO X: • w~ 1- I

0 0

0

1------

~

l!l 251 PSEP 128 LF T REAR LINKAGE-UPPER C!l ·252 PSEP 129 Lfl REAR LINKAGE-LCWEfl • 254 PSEP 131 Lfl REAR LINKAGf ·MIIJIJI I e> 256 PSEP 133 l FT REAR LINKAGE-8RCKT

LUNAR NCCN EQUILIBRIUM NO SUN SUN SUN LUNAR NIGHT

NC DUMP NO OUMP 10 WATT OUHP EQUILIBRIUM

• l • ! ---------· - ····-·

r .....

lfj ---· - ------------ - ------ ---·

r~ ----- ---------- -·-- -·- I· ------ ---- ·-

I \ l\ --- --

~ ------, ~ r- v

"' :ll~ 'fl 0> ID CD ... ... ... ,..

"' 0 0 ... ... ... " " " 0 0 0

"' 112.00 24.00 36.00 ~8.00 60.00 72.00 8~.00 96.00 108.00 120.00

ELAPSED TIME FROM OOOD01 ON 04/06/69 !HOURS! 132.(

Figure 5-13. Qual Test Solar Panel Linkage Temperatures

0 0

0 N

0 0

0

0 0

~0

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. 51 TEST DATE D4/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

,----· -------1!1 253 PSEP 130 Lfl REAR LINKAGE-OUTBRO (!) 25~ I'SEI' 131 LFT REAR LINKAGE-HIODLE • 255 I'SEP 132 LFT REAR LINKAGE-INBRO e> 256 PSEI' 133 Lfl REAR LINKRGE-8RCKT

LUNAR NOON EQUILIBRIUM NC SUN SUN SUN LUNAR NIGHT

NO DUMP NC OUHP 10 WATT DUMP EQU I LI8R I UH

!--------· - • • l ··----- •

r )

,--

~ r~ ~ .. - ------ ---- ---·

I \\ -------·- ----~- --- -- --- ------- ---r----·

~ --.. j .. --- --- ·-·· - ----~--- ----- ·- ~ --- ·- ____ ._ __ ------- --··---

0 0

0

"' 112.00

0> ID ... ,.. 0 ... " 0

2~.00

Figure 5-14.

"' "' "' "' '- :::: "' 0 :::: ... " " 0 0

36.00 ~8.00 60.00 72.00 8~.00 96.00 108.00 120.00 132. ( ELAPSED T JME FROM 000001 CIN 04/06/69 !HOURS)

Qual Test Solar Panel Linkage Temperatures

Page 87: PSEP Qual, flight acceptance and Qual retest thermal

C)

0

0

"'

0 C)

"'

~a

(f)O

BE.NO!X AtHfl:il'fiU ~iYSH.MS DIVISION PROGRAM PStP lEST NO. Sl lr.~it !lATE 04/0G/69 li:RO T !ME 000001 lEST TITLE. PSEP QUAI!r !LA! TlJN Mf11lf.L THERMAL VAClJlJM ff_ST

~ 285 ISOIOPl HlAilH NO 1-POWlH <'J 2Hu I~>OIOf'l HlHIIH NO 2-POHlA & 281 PLU NO I ANU NO 2 HlHilH5·PO~H ~ ?88 PCLI NO J IINII NO 'I HlRTlAS-POHlH

LUNfH1 NOON fUlfil IHHIUH NO SUN

NO OUHP ~

!)tiN

NO IJUHP

~

SLIN Ill HAll UllHP

~

LIJNAH NIGHT IQUILIBRIUH

~ ·- ---·- ----

::::~+--+---!--------- ---- --- -· - ·-···----- --------- --··--·----------+---+-----a: 3:

0 a:o LLJ.,; 1-- ---- ~f----- . 3: 0 Q_

0 C)

c:if-e'--L-+

0 0

f---

·------ 1--- . -·- - -------- -----1--- ---

"' "' ' "' 0

' "" 0

"' "' ' ' "" 0

ATM-850 Page 71 of ISO 1-23-70

~+2-.-oo---~2~~.-o-o----J+s-.o-o----4~a-.-o-o---6+o-.o-o----~72-.-o-o----e+~-.o-o----~s6-.-o-o----1+o-e.-o-o---1t2-o-.-oo---4132.C ELAPSED TIME FROM 000001 ON 04/06/69 !HOURS)

0 0

Figure 5-15. Qual Test Electric Heater Powers

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. 51 TEST DATE 04/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

---------------------- --~-----------·---------------------[!] 289 XHTR NO I AND NO 2 HEATERS-POWER (!) 290 CHD RCVR AND PROC HEATERS-POHER A 291 CHO DCOR-POU-A/0 CONV HTRS-POHER ~ 292 PSE HEATER POWER

LUNAR NOON EQU Ill BR l Ul1 NO SUN SUN SUN

NO OUHP NO DUHP 10 HAlT DUHP LUNAR NIGHT EQU!L!BR!UH

0 --·-·-- -- ,-----, --_L __ ~ ~ ~

0 0

tD

(f)O 1-0 1-..; a: 3:

~~-- -- rU----- ----~~~~ 0 Q_

---+------ -·- -- -- .. "' "'

-----

. --------

----- -- ·- - --- -- ------+--------t-------1

- -----r------- ·-- -----"' ~

g ~ l ~+2-.•oo---L~2q~_-o_o ____ 3+6-.o-o----~4e-.-o-o---6+o-.o-o--~472-.~o-o--~e+q-.o~o~~9~6-.~o-o~~~~oe-.-o-o.__.t2-o-.-oo---4132.c

ELAPSED TIME FROM 000001 ON 04/0G/69 !HOURSJ

Figure 5-16. Qual Test Electric Heater Powers

Page 88: PSEP Qual, flight acceptance and Qual retest thermal

BENDIX AER~SPACE SYSTEMS OIVISJ~N PROGRAM PSEP TEST NO. 51 TEST DATE 0~/06/69 ZERO T!Ml 000001 TEST TITLE PSEP QUALJFICATI~N M~DEL THER'MAL VACUUM TEST

.--------------·---------- ·-·- - -~·--- .. -- .......

~288 PCU NO 3 ANDINO~ HEATERS-POHER ~ 293 PDH PANtl HEATER-FOHER

LUNAR NOON EQUILIBRIUM NO SUN SUN SUN

NO DUMP NO DUMP 10 HATT DUMP LUNAR NIGHT EQUILIBRIUM

~+-----~------.-------~~~--~~---~~~-r------r-- ~

0 0

ATM-850 Page 72 of 150 1-23-70

~+---+-r----+---~---~----r----+-- -+----- ----- ---- .. ·-

<f)O

::~+---+-t-----t----+----tt----11----+------·-- --·----·--- ---------- r-- -----~ a: ~

0 a::o ~N+---+-t----t---+----tt--+--l----+-----r-----1---·-r-·------

o Q...

"' "' ..... "' .. ' "' 0

0 ' ' 0 "' " 0 0

~iz-.-oo---2~1!.-D-0--3+6-.-oo---~~~e.-o-o--s+a-.-oo--~72~.-o-o--e+l!-.-oo--~ss~.-o-o--1+0-a-.o-o-~Iz~o-.-ao---4132.1 ELAPSED TIME FROM 000001 ~N 0~/06/69 lH~URSJ

Figure 5-17. Qual Test Electric Heater Powers

0 0

0

"' 0 0

0

--

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. 51 TEST DATE 0~/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION M~OEL THERMAL VACUUM TEST

--------- ----------------- ---·-·---··-- ---------- -· ··----------~ 156 PSEP 3 PRIMARY STRUCTURE-BACK ~ 162 PSEf' 9 PRIMARY STRUCTURE-REAR ... 163 PSEP 10 PRIMARY STRUCTURE-REAR ~ 293 POM PANEL HEATER-POHER !WATTS!

LUNAR NOON EQUILIBRIUM NCI SUN SUN SUN LUNAR NIGHT

NO DUMP NO OUHP I 0 WATT OUHP EQUILIBRIUM l l l ~ - ----

~ ~

I •

0 0 \ I r

~ci

0 wo a:· ::::>~ ,_, a: a: Wo Q...O :a:· w~ t- I

0 0

0

--

"' 112.00

-----

~ --- \ ~

f----·- ··-

m......J - -------- ---- ---·-

r---~

- ------ ------ -----~ --------- ------ --- ------

"' 0> 0>

"' ~ "' ' :::: ,... 0> 0 0

' ' ' ~ "" "' 0 0 0

21!.00 36.00 I!B.OO 60.DO 72.00 BI!.OO 96.00 106.00 120.00 132.( ELAPSED TIME FR~M 000001 ~N 0~/06/69 lH~URSl

Figure 5-18. Qual Test Effect of PDM Dump on Structure Tempera.tures

Page 89: PSEP Qual, flight acceptance and Qual retest thermal

j a a

" 0 wa a:JO a: a o .... !f)

CD a: Ia

r-a

g;;j -LL.

a: w Q_D

a ~0 ~ ,_ a: :.:g

a

BENDIX AERMSPRCE SYSTEMS OlV!SlDN PROGRAM PSEP TEST NO. 51 1ES1 OR!l 04/06/69 ZERO TIME 000001 TE.Sl TITLE PSE.P QUALlflCRTION MOlltL HllRMRL VACUUM ltST

I'J 110 PSE MIG fLAil RADIOMlTlA-MIHHnH £liS PSEP RAOIOMlllR-ALUM/IliLON

LUNAR NMN l UlJII I HH I lfM SlJN ~,lJN

C'J II J ~oU' HHII I OMlllH ~BLACK-lJNALTlREO ~ II H LHfiMBl H BHCKGf101fNO RHO I OMlllR

NO SUN NO DUMP NO DUMI' I 0 HA I f fllli'IP

LIINHR NIGH! I fliJILIBR IUM

~ l ~ ~ r ~-

ATM-850 Page 73 of I 50 1-23-70

't~2~.~oo~--~j2~r.~o~o--~3t6-.~oo~--~~ec.-o~o----s+o-.-no----~~~2-.o-o----B+4-.-oo----~g~s.-o-o~----~+o-s-.o-o----t~<o~.-o-o---4t32.t ELAPSED T l MF. f RC!M 00000 I ON 04/06/69 1Hr'Jli11SJ

C) C)

C) N

C) 0

:: 0 -ll

C) 0

r;:o

C) C)

0 ...

Figure 5-19. Qual Test Radiometer Measurements

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. Sl TEST DATE 04/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

-~~ -~------~---· ·-·· ... ··--· -·--· -~----·-------------------------· [!J 110 I'Sfl' JIR010HfTER-HATTS/9Q rT-R890 (!) 187 I'Sfl' 3~ THfRHAL I'LRTf-ORTR PMC .o. 217 I'Sfl' 84 1'9f HTG PLRTE-UNOfR I'Sf • 223 I'Sfl' 70 .I' Sf SHMUO- TO I'

LUNR" NOON fQUILI8"1UM NO SUN BUN SUN LUNR" N I GtiT

NO OUHI' NO OUHI' 10 HRTT OUHI' EQUILIB"1UH

• •~--L~- - +

,..--~ \ .r

~ ~ / \

~ n~

~ .Af~ ........... -- /

! \

' \ ( v

\ J :: '---' ~ / Ol

"' ' ~ ... Ol C) 0 :;: ' ..... "' ~ g C)

112.00 2~.00 36.00 ~8.00 60.00 72.00 8~.00 iB.OO 108.00 120.00 ELAPSED TIME FROM 000001 ON 04/06/69 (HOURSJ

U2.C

Figure 5-20. Qual Test Thermal Effect of Solar Heating

Page 90: PSEP Qual, flight acceptance and Qual retest thermal

0 •

0 0

0 N

0 0

0

0 0

t:O

0 wo cr:· :::>!: I- I

a: cr: Wo a...o :[:'

w~ I- I

0 0

0

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST NO. 51 TEST DATE Ol!/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

~- - ~ ··--· _____ , ___

-· -· ---- --·--·- .. ... ··-~----------

~ 110 PSEP RAOIOMETER-WATTS/SQ FT-A850 (!) 223 PSEP 70 PSE SHMOUO- TOP A 237 PSEP 84 HTR NO 2 SHROUD-TOP ~ 243 PSEP 90 RIGHT MASK-TOP REAR

LUNAR NOON EQUlLIBRlUM NO SUN SUN SUN LUNAR Nl GHT

NO DUMP NO DUMP I 0 WATT DUMP EQUlllBRlUM

~--r------- i ~ ~ i

~..;., ------ ------ -- - -------- ···-·- --------- --·----1----·-1-----~-1-------

..¥ pi~ / ~

./ t--+ ./ ---· --- .. ---- -·

r; ~ ·~

/) (

~~ ./

~ f v

1\ ( J '(},~ ~ / "' ' ' ~ r- "' 0 0

' ' ' ~ =- ,. 0 0 0

"' 112.00 36.00 ~e.oo so.oo n.oo e~.oo 96.00 1oe.oo 120.00 132.c

ELAPSED TIME FROM 000001 ON 04/06/69 !HOURS!

ATM ... 850 Page 74 of 150 1-23-70

Figure 5-7.1. Qual Test Thermal Effect of Solar Heating

0 0

0

"' 0 0

~ 0 •

0 0

L;:o

0 wo cr:l/) :::>-1- I

a: cr: Wo a...o x:· w~ I- I

0 0

1/)

BENDIX AEROSPACE SYSTEMS OIVISION PROGRAM PSEP TEST NO. 51 TEST DATE 04/06/69 ZERO TIME 000001 TEST TITLE PSEP QUALIFICATION MODEL THERMAL VACUUM TEST

,---·------------- ----··· .. ----·-- ----------------~ ~ 110 PSE HTG PLAlE RADlOHETER-HlRROR(WATn) (!) 163 PSEP 30 THERMAL PLATE-PSE ELEC "'D24 LS 14 LUNAR SURFACE-HIDOLE ZONE ~ D93 CW 24 COLD HALL-ARCH PANEL

LUNAR NOON EQUlllBRlUM NO SUN SUN SUN lUNAR NIGHT

NO DUMP NO DUMP 10 WATT DUMP EQUlllBRIUM ~ ~ i ~

~

r

~ '~ ..,/' ~ i\ (/;2:

"' ""'-- ,..___,_ {__..,

1/ -- ---- - -~----·

I I "' "' '" "' "' "' ' ' ::; r- '" 0 0 :::: ' ' =- =- ,. 0 0 0

'1'12. 00 36.00 ~8.00 60.00 72.00 8ij.00 96.00 108.00 120.00 132.( ELAPSED TIME FROM 000001 CIN 04/06/69 (HCIURSJ

Figure 5-22. Effect of Lunar Environment Simulation Parameters on Thermal Plate Temperature

Page 91: PSEP Qual, flight acceptance and Qual retest thermal

DAS Chan.

154 !55 156 157 l 58 159 l 60 161 162 163 164 165 166 167 168 169 170 171 17 2 173 174 175 176 177 178 179 180 181 182 183 184

TABLE 5-l DAS TEMPERA TCRE MEASUREMENTS FOR PSEP QUAL TEST

AT LL'NAR NOON AND LUNAR NIGHT EQtTILIBR!l'M

PSEP Temperaturf's -' F T/C Lunar Noon !dent. Description No Dump 10 W Dump

I Primary Structure Front 152 !53 2 Primary Structure Left Side 16-l 165 3 Primary Structure Rear 156 162 4 Primary Structure Right Side 164 165 5 Primary Structure Bottom 169 170 6 Structure Left Flange 157 156 7 Structure Left Rear Flange 150 !50 8 Structure Left Rear Flange 146 147 9 Structure Rear Flange l-t5 147 10 Structure Rear Flange 152 !53 11 Structure Right Flange !54 154 12 Structure Right Flange 158 158 13 S!ructure Front Flange !58 !59 14 Structure Front Flange 155 !55 15 Thermal Plate -near Bolt Fl 148 139 16 Thermal Plate - near Bolt "2 138 133 17 Thermal Plate - near Bolt #3 138 135 18 Thermal Plate - near Bolt *4 138 136 JO Thermal Plate - near Bolt •5 138 135 20 Thermal Plate - near Bolt fib 140 1.37 21 Thermal Plate - near Bolt #7 148 145 22 Thermal Plate - near Bolt #8 150 148 23 Thermal Plate - near Bolt 119 148 141 24 Thermal Plate - over PCT..: 146 138 25 Thermal Plate - near PCU 148 140 26 Thermal Plate - over PDU 146 141 27 Thermal Plate - near PDU 150 143 28 Thermal Plate - over A/D Conv. 146 142 29 Thermal Plate - near A/D Conv. 148 143 30 Thermal Plate - over PSE 144 140 31 Thermal Plate - near PSE 146 142

Lunar Noon - No Dump (12:30 on 4/8/69-60. 5 hrs elapsed time) Lunar Noon- 10 W. Dump (18:30 on 4/8/69-66. 5 bra elapsed time) Lunar Night (08:30 on 4/10/69 - 104. 5 hrs elapsed time)

DAS Chan.

Lunar Night

1~3

li-6 1~7

_JOJ -10-l _JOJ -I OJ -102 -176 -17-t -17 .. -170 ... 17 2 -170 -16! -li'i 5 -191

IS~

180 190 }Qj

192 193 JQ4 195 }06 }O"j

10~

100 20(:

201 202

- 97 203 - --- 66

204 205

- 66 206 - &e 207 - 66 208 - 58 - 56

209 210

- 54 211 - 49 212 - -- 213 - -- 214 - -- 215 - -- 216 - --- 45

217 218 - -- 219 220 221 222

p,:]"p

T C :ctt.~nt. Dt"scription

•.' Th,•rmal Plate- near PSE Tht·r:na I Plat<> - over CMD Rec.

. '4 Tlwrmal Plate - over Data Proc . , Th~rmal Plat<' - O\·er CMD Dec. 36 Tlwrmal Platt> - 0\·er C!\fD Dec. 37 Tht•rmal Plate - m·er Switch 3~ Th .. rmal Plat<' - near X!\1TR B ;o Th.-rmal Plate - near XMTR B

4(1 Th,•rmal Plate - near XMTR A 41 \lounting Plate - Left Edge 42 .\lounting Plate - Left Edge 43 \1ounting Plate - Left Rear H \lounting Plate - Back Edge -l5 \taunting Plate - Right Rear ..;c \lounting Plate - under Rt. .\fask -+7 \!ounting Plate - Right Edge _.,

\lounting Plate - Right Edge 40 \taunting Plate - Front Edge 50 .\founting Plate - Left Front 51 Mounting Plate - under Lt. Mask 32 Mounting Plate - under Lt. Mask 53 Mounting Plate - Right Front 5-! .\taunting Plate - near Heater I 55 Mounting Plate - near Heater 2 56 Mounting Plate - under PSE 57 Mounting Plate - under PSE 5!i Mounting Plate - under PSE 59 !\founting Plate - under PSE 60 !\founting Plate - under PSE 61 Mounting Plate - under PSE 62 Mounting Plate - under PSE 63 Mounting Plate - under PSE 64 Mounting Plate - under PSE 65 PSE Simulator - Top 66 PSE Simulator - Front Side 67 PSE Simulator - Left Side 68 PSE Simulator - ,Back Side 69 PSE Simulator - Right Side

Temperature - °F Lunar Noon

No Dump 10 W Dump

151 148 140 134 141 138 142 130 130 136 13i 133 137 134 136 133 138 135 143 137 137 132 135 131 132 129 136 133 136 133 136 135 142 130 !50 145 145 137 --- ------ ---143 140 !56 152 !52 144 147 142 140 136 137 134 138 134 136 133 139 136 145 142 147 143 142 138 134 132 --- ---133 132 133 132 133 132

Lunar Night

- 38 - 51 - 50 - 48 - --- 54 - 56 - 55 - 52 - 48 - 52 - 56 - --- --- 54 - 51 - 47 - 37 - 47 - --- --- 44 - 31 - 37 - 40 - 50 - 54 - 53 - --- 50 - 41 - 42 - 49 - 51 - --- 53 - 53 - 52 -1:j):

I 1U ._; N (JQ !::> \j.) (D ;:::. I I

""'""'o OUtv 0 c .... ,_. IJ1 0

Page 92: PSEP Qual, flight acceptance and Qual retest thermal

TABLE 5-1 tCO::"<T. \ PSEP Temperature - 'F

DAS T/C Lunar Noon Chan. !dent. Description :-<o Dump 10 W Dump

223 70 PSE Shroud - Top -73 -71 224 71 PSE Shroud - Front Side 40 41 225 72 PSE Shroud - Left Side 46 47 226 73 PSE Shroud - Back Side 60 60 227 74 PSE Shroud -Right Side 85 85 228 75 Heater #l - Top 199 196 229 76 Heater #l - near Leads 189 186 230 77 Heater #l - Side 198 lOS 231 78 Heater #1 Shroud - To? 7 9 232 79 Heater #l Shroud - Side 81 81 233 80 Heater Ill Shroud - Base 69 69 234 81 Heater #2 - Top 205 199 235 82 Heater 112 ~ near Leads 191 185 236 83 Heater 112 - Side 204 197 237 84 Heater /12 Shroud - Top 42 44 238 85 Heater 112 Shroud - Side 75 74 239 86 Heater 112 Shroud - Base 72 71 240 87 Left Mask - Top Front 63 64 241 88 Left Mask - Top Center 50 51 242 89 Left Mask - Top Rear 69 69 243 90 Right Mask _ Top Rear 77 77 244 91 Right Mask - Top Front 75 76 124 92 Solar Cell Panel - Left Center 182 183 125 93 Solar Cell Panel.- Left Center 210 211 126 94 Solar Cell Panel - Left Center 222 222 127 95 Solar Cell Panel - Left Center 224 224 128 96 Solar Cell Pene1 - Left Center --- ---129 97 Solar Cell Panel - Left Front 195 196 130 98 " " " "

.. .. 199 200

131 99 " " " " .. .. Zll 212 132 100 " " " " "

., 201 202

133 101 " " " ,, II 208 208

134 102 Solar Cell Panel - Left Rear 201 ZOl 135 103 " " " " " " 202 20Z 136 104 " " " " " " 215 215 137 105 " " " " " " 209 Z09 138 106 " " " " " " 206 207

PSEP DAS T C

Lunar Chan. Idet:t. Description :'~right

139 107 Solar Cell Panel - Right Center -238 140 108 Solar Cell Panel - Right Center -187 141 109 Solar Cell Panel - Right Center -191 142 110 Solar Cell Panel - Right Center -185 143 Ill Solar Cell Panel - Right Center -207 144 112 Solar Cell Panel - Right Front

21 145 113 Solar Cell Panel - Right Front 10 He 114 Solar Cell Panel - Right Front 20 147 115 Solar Cell Panel - Right Front

-199 148 11;, Solar Cell Panel - Right Front -137 149 117 Solar Cell Panel - Right Rear -131 150 liS Solar Cell Panel - Right Rear

31 151 119 Solar Cell Panel - Right Rear 15 152 120 Solar Cell Panel - Right Rear 29 153 121 Solar Cell Panel - Right Rear

-183 245 122 Solar Panel - Left Front Linkage -134 246 123 Solar Panel - Left Front Linkage -119 247 124 Solar Panel - Left Front Linkage -186 248 125 Solar Panel - Left Front Linkage -186 249 126 Solar Panel - Left Front Linkage -151 250 127 Solar Panel - Left Front Linkage -161 251 128 Solar Panel - Left Rear Linkage -155 252 129 Solar Panel - Left Rear Linkage -260 253 130 Solar Panel - Left Rear Linkage -256 254 131 Solar Panel - Left Rear Linkage -256 255 132 Solar Panel - Left Rear Linkage -257 256 133 Solar Panel - Left Rear Linkage ___ ...

257 134 Solar Panel - Right Front Linkage -268 258 135 Solar Panel - Rigl}t Front Linkage -266 259 136 Solar Panel - Right Front Linkage -267 260 137 Solar Panel - Right Front Li.nkage -267 261 138 Solar Panel - Right Front Linkage -266 262 139 Solar Panel - Right Front Linkage -Z6& 263 140 Solar Panel - Right Rear Linkage -267 264 141 Solar Panel - Right Rear Linkage -266 265 142 Solar Panel - Right Rear Linkage -266 266 143 Solar Panel - Right Rear Linkage -267 267 144 Solar Panel - Right Rear Linkage

Z68 145 Solar Panel - Right Rear Linkage

Temperature - 'F Lunar :-\oon

:!1/o Dump 10 \\:Dump

1 S6 186 217 217 223 223 221 221 195 195 203 203 202 202 217 217

--- ---211 211 195 ro-• 0

193 193 206 206 205 204 203 203 115 117 144 145 140 141 134 135 113 114 147 147 112 113 141 142 137 138 132 133 109 110 146 146 119 120 149 149 145 146 140 140 124 124 155 155 117 118

--- ---144 144 139 140 125 125 153 154

Lunar Xight

-258 -256 -256 -256 -258 -265 -266 -266

-----266 -263 -262 -262 -263 -262 -241 -244 -234 -227 -208 -190 -237 -227 -225 -223 -208 -193 -239 -240 -236 -229 -210 -162 -239

-----235 -231 -216 -193

...... ,;:> I PI 1-j N (JQ !7 w ro j::>, I -..J 0

I -..Joo 0'-u-. 0 0 .... ...... U1 0

Page 93: PSEP Qual, flight acceptance and Qual retest thermal

: : . ~ " '

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

TABLE S-2

NO. RI!V. NO.

ATM-850

PAGI 77 0, 150

DATI! 1-23-70

DAS POWER MEASUREMENTS FOH .. PSEP QUAL TEST AT LUNAR NOON AND LUNAR NIGHT EQUILIBIUUM

DAS Chan.

120 X

1 21

122 X

12)

271 X

272

273 X

274

275 X

276

277 X

278

279 X

280

281 X

282

283 X

284

Note:

Power-Watts Lunar Noon Lunar

Description No Dump 10 w. Dum_g Night

Isotope Heater II J 14. 7 5 14. 77 15.24

Isotope Heater //2 14.82 14.86 15.29

PCU Heaters //1 and /12 7.04 7.04 0

PCU Heaters #3 and #4 7. 13 1. 43 0

Transmitter Heaters #1 and //2 8. 19 8. 19 0

Command Receiver and Data Processor Heaters 1. 27 1. 27 0

Command Decoder, PDU, and A/D Converter Heaters 4.54 4.49 0

PSE Heater 3. 80 3. 80 0

PDM Panel Heat Leak Heater 1. 63 3.42 0

Power values shown in the last three columns of the table were obtained by multiplying data values {current times voltage) from the pairs of DAS channels listed in the first column of the table.

Page 94: PSEP Qual, flight acceptance and Qual retest thermal

Figure 5-23. Flight Acceptance Test Thermal Plate Temperatures

lOW. Dump lOW. Dump Activated De -Activated

~ t Lunar Noon Equilibrium Conditions

C/S Turn-on Heaters On Cryowall On

No Sun No Dump

One Sun 10 W. Dump

One Sun No Dump

C/S Turn-off

I t l ~ ~ ~

I ! __.a e-- ~ 1401 : i ;

1301 I I : ~ a::c --=* 1' ~ 1,-~ 4{

1201 I I ..,....a=-:=! l7~ I i ~A I ~ \..

110 '"""

g.. 100 t- 1,..,-7 ~ ~ :::> ~ <( ~ ~ ·P.t-~ ~ ~

90 J ! - "' J-1 f ~ I

801* -1 / I

70

.0 0 A A 0 0

AT-3 (HK 4) Thermal Plate No. 1 AT -4 (HK28) Thermal Plate No. 2 AT -6 (HK58) Thermal Plate No. 4

6 0 -·---··· --- .

50, I I I I I I I I I ' I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0400 0900 1400 1900 0000 0500 1000 1500 2000 0100 0600 I I I

4-14-69 4-15-69 4-16-69

TEST TIME, HOURS

~ 1-j

?' I ::P iJl

.. o

~ Ill

o-. It

""-l cc 0 .... ..... iJl 0

Page 95: PSEP Qual, flight acceptance and Qual retest thermal

C/S Turn-on Heaters On Cryowall On

Figure 5-24, Flight Acceptance Test Electronics and Internal Thermal Bag Temperatures

lOW. Dump Acti~ted

' lOW. Dump De -Activated

Lunar Noon Equilibrium Conditions

No Sun No Dump

One Sun 10 W. Dump

I

One Sun No Dump CIS Turn- of£

I

I J v J J I I 0 I ; I 1701 I i 1

f I j

16oL-----~----~----~----~----~---Tr-----t-----r----Jr---~ 150~------------~--~~4----+--------~------~-------r------~----~------~

~ 140 ~ 130.------+-~~~F------l----0 I / 1 ~ . I < ~--~,~~~£~~==~~ ~ ' ~ «

~

~ ~-120l { "..a4' I ~~ ~ I ==--~ ~·

> f-3 :;: I ~

~ 100l-----~~~~------r-----J:----~ 0 0 AT- 24 (HK19) Transmitter A - Heat Sink :;; 8 A AT -12 (HK60) Thermal Bag - Inside .. o

90 I n n AT-38 (HK77) PCU Regulator No. 1

I

4-16-69

TEST TIME, HOURS

...... 1.1

Ill ~ 0

-.J ..0

0 1-+>

'Jl 0

Page 96: PSEP Qual, flight acceptance and Qual retest thermal

Figure 5-25. Flight Acceptance Test Structure, PDM Panel, and External Thermal Bag Temperatures and Reserve Power

lOW. Dump Activated

+

lOW. Dump_ De -Activated

t Lunar Noon Equilibrium Conditions

CIS Turn-on Heaters On Cryowall On

No Sun

No ~ump

One Sun

10 W. ~Dump

One Sun No -qump CIS Turn-off

' i

' !

t 1 80r- ! ! fT"S Q i -- c::s ---l

; ; ! -~ ~ f ~· ~~~! 1601 : ~ la=a-_ %t-a_+-___ ?~

140 '1\.W

~ AE-5 (HK 8) Reserve Power 0 120 AT-13 (HK72) Thermal Bag- Outside ~ ~AT- 9 (HK87) Primary Structure - Right Side ::::> 1 ()0 AT -11 (HK88) PDM Resistor Panel E-t <( ~ ril ~ ~ t:il E-t 40

~-n--~r-------~------~---r--~------~-----++-------~~------------~-------4

2oL__:~----~----~--~~~~====tt----------:-----t I I I I I I i l I I

0 I I I I I I I I I I I I I I I I I ' I I I I " ' I J, I I t I I I I I I I I I I I I

20

15

10

5

0

0400 0900 1400 1900 0000 0500 1000 1500 2000 0100 0600 I I

I

4'-14-69 4-15-69 4-16-69

TEST TIME, HOURS

> ~

U) s:: E-t I

E-t 00 U1 < 0

;:: .. . 'U ~

Ill OQ

t:il en ;:: 00 0 0

~ 0 ...... -U1 0

Page 97: PSEP Qual, flight acceptance and Qual retest thermal

: : I •

'

AT HK No. No.

1 27 2 42 3 4 4 28 5 43 6 58 7 71 8 59 9 87

10 15 11 88 12 60 13 72 21 16 22 17 23 18 24 19 25 31 26 32 27 33 28 34 29 46 30 47 31 48 32 49 33 61 34 62 35 63 36 64 37 76 38 77 39 78

NO. IIIV. NO.

PSEP QUAL, FLIGHT ACCEPTANCE

AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

PAGI 81 OP 150

DA T1 l - 2 3 -7 0

TABLE 5-3

HK TEMPERA TORE MEASUREMENTS FOR PSEP FLIGHT ACCEPTANCE TEST AT LUNAR NOON EQUILIBRIUM

-- ---------·- ------ -----~--

Temperature- -°F No Sun One Sun One Sun

Description No Dump 10 W. Dump No Dump

Left Solar Cell Panel 86* 90>:< 91* Right Solar Cell Panel 88>:< 92>!< 93* Thermal Plate 125 131 138 Thermal Plate 118 126 132 Thermal Plate 120 132 137 Thermal Plate 106 115 120 Thermal Plate 111 118 125 Primary Structure-Left Side 150 156 155 Primary Structure- Right Side 156 160 160 Primary Structure-Bottom 152 156 157 PDM Resistor Panel 160 180 166 Thermal Bag-Interior 122 130 137 Thermal Bag-Exterior 150 152 155 Command Rcvr. , Crystal A 113 119 125 Command Rcvr., Crystal B --- --- ---Transmitter A- Crystal 115 ., 122 127 Transmitter A-Heat Sink 113 119 125 Transmitter B- Crystal --- --- ---Transmitter B-Heat Sink --- --- ---Analog Mult. Conv. -Base 120 128 134 Analog Mult. Conv. -Internal 137 145 150 Digital Data Processor-Base 115 123 130 Digital Data Processor-Internal 127 135 141 Command Decoder-Base 116 124 129 Command Decoder-Internal 118 126 132 Command Demodulator- VCO 127 134 140 PDU-Base 121 128 134 POD-Internal 142 148 155 PCU Power Oscillator No. 1 129 134 144 PCU Power Oscillator No. 2 124 130 138 PCU Regulator No. 1 153 137 167 PCU Regulator No. 2 124 127 138

*Solar heating of solar panel was not simulated during testing. No Sun/No Dump (22:00 on 4/14/69) One Sun/10 Watt Dump (09:00 on 4/15/69) One Sun/No Dump (16:05 on 4/15/69)

Page 98: PSEP Qual, flight acceptance and Qual retest thermal

MO. IIV. MO.

: : . ~ PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TF:.ST l{EPORT

ATM-850

PAGI 82 OP .... ~~roepace

·.ysteme Dlvl8lon DATE ] -23-70

5. ') Qual Retest Measurements

5. 3. I Cal Comp Plots of PSEP Temperatures

Presented are n:inei(~en plots of some of the temperatures, absorbed solar simulation intensities, and powers recorded during the PSEP Qualification Model Thermal- Vacuum Hetest. Table 5-4 lists the plot number, the measurements plotted on that plot, and the data acquisition system channel nun1ber of that rncasurement.

150

5. 3.2 Temperatures and Power Levels at the Four Equilibirum Conditions

Table 5-5 lists the temperature of each PSEP location at the four thermal equilibrium conditions. Table 5-6 lists the power supplied to the electrical heaters that simulated the thermal dissipations of the PSEP components. Table 5-7 is a summary of the contents of Table 5-6. In both tables (5-6 and 5-7) comparison is made to the original qualification test.

5. 3. 3 Thermocouple Locations

Of the 145 PSEP thermocouples that were used during the Qual testing, (see Table 5-l) only the following T/C's were retained for the Qual Retest:

T /C No. Location

1-14 Primary Structure 1 S-23, 27, 30, 34,

37' 40 Thermal Plate 65, 70, 71, 73 PSE 75 Heater 1 Top 78 Heater 1 Shroud Top 81 Heater 2 Top 84 Heater 2 Shroud Top 87 Mask, Left Front 88 Mask, Left Center 92, 94, 97, 99, 10 2, 104 Left Solar Panel 107' 109, 112, 114, 117, 119 Right Solar Panel

Page 99: PSEP Qual, flight acceptance and Qual retest thermal

Graph

1

2

3

4

5

6

7

8

9

TABLE 5-4

ATM-850 Page 83 of 150 1-23-70

PASSIVE SEISMIC LUNAR SIMULATION THERMAL- VACUUM TEST

Channel

124

125 126 127 128

110 113 116 198 199

138 13 9 140 141

142 143 144 145

146 147

148 149 150 151 152 153

154 155 156 157 158 159

160 161 163

164 166 167 168

Description

PSEP 1 Primary Structure- Front

PSEP 2 Primary Structure- Left PSEP 3 Primary Structure- Back PSEP 4 Primary Structure-Right PSEP 5 Primary Structure- Bottom

PSE MTG Plate Radiometer-Mirror PSEP Reference Radiometer Black PSE Radiometer-Kapton Coupon Radiometer- Black Coupon Radiometer-Mirror

PSEP 65 PSE Simulator- Top PSEP 70 PSE Shroud- Top PSEP 71 PSE Shroud- Front Side PSEP 73 PSE Shroud- Back Side

PSEP 75 Right Isotope Heater-Top PSEP 78 Right Heater Shroud- Top PSEP 81 Left Isotope Heater- Top PSEP 84 Left Heater Shroud- Top

PSEP 87 Left Mask- Top Front PSEP 88 Left Mask- Top Center

PSEP 92 L Center Panel-Top PSEP 94 L Center Panel-Center PSEP 97 L Front Panel- Top PSEP 99 L Front Panel-Center PSEP 192 L Rear Panel-Top PSEP 104 L Rear Panel-Center

PSEP 107 R Center Panel-Top PSEP 109 R Center Panel- Center PSEP 112 R Front Panel- Top PSEP 114 R Front Panel-Center PSEP 117 R Rear Panel-Top PSEP 119 R Rear Panel-Center

PSEP 15 Thermal Plate-NR Bolt 1 PSEP 16 Thermal Plate-NR Bolt 2 PSEP 18 Thermal Plate-NR Bolt 4

PSEP 19 Thermal Plate-NR Bolt 5 PSEP 21 Thermal Plate-NR Bolt 7 PSEP 22 Thermal Plate-NR Bolt 8 PSEP 23 Thermal Plate-NR Bolt 9

Page 100: PSEP Qual, flight acceptance and Qual retest thermal

tph

10

1 I

12

13

14

.5

16

17

18

19

TABLE S-4 (CONT~)

ATM-850 Page 84 of ISO l-23-70

PASSIVE SEISMIC LUNAR SIMULATION THEH.MAL- VACUUM TEST

Channel

169 170 171

172 173 174 175

218 219

210 211 212 213

214 215 216

217

129 160 166

167

132 133 163 164

005 007 010 176 177

Ill 114 117 200 203

110 024 093 172

---------------· -----------------Description

PSEP 27 Thermal Platc-NR PDU PSEP 39 Thermal Plate- NR PSE PSEP 34 Thermal Plate-Data PROC

PSEP 37 Thermal Plate-Diplexer PSEP 40 Thermal Plate-NR Xmitter PSEP 59 PSE MTG Plate- Under PSE PSEP 64 PSE MTG Plate- Under PSE

Primary Structure- Bottom-Heater Primary Structure- Sides- Heater

Isotope Heater Number 1 Isotope Heater Number 2 PCU 1 And PCU 2 Heaters PCU 3 And PCU 4 Heaters

Transmitter l And 2 Heaters CMD RCVR And Data Proc Heaters CMD DCDR, PDU, And A/ D Conv

Heater PSE Heater

PSEP 06 Primary Structure- Left PSEP 15 Thermal Plate-NR Bolt 1 PSEP 21 Thermal Plate-NR Bolt 7 PSEP 22 Thermal Plate-NR Bolt 8

PSEP 09 Primary Structure-Rear PSEP 10 Primary Structure-Rear PSEP 18 Thermal Plate-NR Bolt 4 PSEP 19 Thermal Plate-NR Bolt 5

T/ C Reference Box Number 8 T/C Reference Box Number 3 T/C Reference Box Number 7 T/C Reference Box Number 4 T/ C Reference Box Number 5

PSE MTG Plate Radiometer- Temp PSEP Reference Radiometer-Temp PSE Radiometer- Temperature Coupon- Black- Radiometer- Temp Coupon- Mirror-Radiometer- Temp

PSEP- Watts Per Sq Ft Absorbed LS 14 Lunar Surface-Middle Zone CW 24 Cold Wall-Arch Panel PSEP 27 Thermal Plate-Diplexer

Page 101: PSEP Qual, flight acceptance and Qual retest thermal

-

-

-

0 0

ATM-850 Page 85 of 150 1-23-70

BENDIX RER~SPACE SYSTEMS DIVISI~N PROGRAM PSEP TEST NO. 52 TEST DATE 09/23/69 ZERO TIME 000001 TEST TITLE PSEP LUNAR SIMULATION THERMAL VACUUM TEST

~ 124 PSEP I PRIMARY STRUCTURE-FR~Nl £ 126 PSEP 3 PRIMARY STRUCTURE-BACK X 126 PSEP S PRIMARY STRUCTURE-B~TT~M

LUNAR NOON EQUILIBRIUM

~ +

~ 125 PSEP 2 PRIMARY STRUCTURE-LEFT ~ 127 PSEP 4 PRIMARY STRUCTURE-RIGHT

-·· ··----·-··- ----··----·- . -.. ·-·- ----····-------- --- --·1

LUNAR NOON EQUILIBRIUM WITH P/S HEATERS ON

:;:: 1----------~----, - --·· ,---· - ····- --- -r----- ····--·-- -- - ··-· ----·--

-0

liC

0 0

~ 1---- -- -

0 0

~0 u_-

w ccg ~~ r------a: cc Wo o_o :E. w;! t- I

0 0

·l~

··----1---·-----. --------·- - ---

\~ --------·-·--

····· ··-·--

... ·-· --· --· ·-- ·------· - . ·-- -·----- --·· -···--·--·- ·-·- ··---···-

0 ru+-------+-------+-------~------r-----~~----~~----~------~-------+------1 'o.oo 24.00 36.00 48.00 60.00 72.00 84.00 96.00 108.00 120. ( 12.00

ELAPSED TIME FROM 000001 ON 09/23/69 !H~URSl PLOT 01

09/23/69 09/24/69 09/25/69 09/26/69

BENDIX AEROSPACE SYSTEMS DIVISION PR~GRAM PSEP TEST NO. 52 TEST DATE 09/23/69 ZERD TIME 000001 TEST TITLE PSEP LUNAR SIMULATION THERMAL VACUUM TEST

~--. ----- ---- ·------- ----- ·-·- --· ·---·-·· -----·-- --. ···-·-·· ··-·· ·--- ---··-----·---·l

Cl 0

~ 1-------

0 Wo fDO cc· 0~ r-­(j)

ID a:

~ 110 PSE MTG PLATE RAOI~METER-MIRR~R £ 116 PSE RAOIOHETER-KAPT~N X 199 COUP~N RAOI~METER-MIRR~R

LUNAR NOON EQUILIBRIUM

--.-------.· ----------·--· ··-------L. --·

~ 113 PSEP REFERENCE RADIOMETER-BLACK ~ 196 C~UP~N RAOI~METER-BLACK

LUNAR N~~N EQUILIBRIUM I WITH PIS HEATERS ~N J_l -~----

lo t-0 o· ~ - ------· ~------·. -- -·- ---- ------" -- --- . ···--- -- ------ --· .... ---- - .. -·----------r-----------r-----· ----

~0 ¥:h, L

o;! lL.

a:o /~ n ~~ ~----~·+----+-----t-li/~,~~~:::O::::::Il'l'.c._~::-= -- ~-----· 1-------- --·----1------

~~ ~---..!l~~/_~~ ~~.f~~~~~ ·----- --- ·---+- ----- ~ 3g I ~ I 'o.oo 12.00

09/23/69

24. 00 36. 00 48. 00 60. 00 72. 00 84. 00 96. 00 ELAPSED TIME FROM 000001 DN 09/23/69 !HOUASl

09/211/69 09/25/69 09/26/69

108.00 PLOT 02

120. (

Page 102: PSEP Qual, flight acceptance and Qual retest thermal

0 0

0

0

)I(

0 0

~~

0 wo a:.; ::::l~ t-1 cr a: Wo (LO ::;::-. w~ 1- I

0 0

PRCIGRAM PSEP TEST TITLE

BENDIX AtRCISPACE SYSTEMS DIVISICIN

ATM-850 Page 86 of 150 1-23-70

TEST NCI. 52 TEST DATE 09/23/69 ZERCI TIME 000001 PSEP LUNAR SIMULATICIN THERMAL VACUUM TEST

~ 13B PSEP 65 PSE SIMULAT~R-T~P ~ 139 PSEP 70 PSE SHR~UO-l~P ~ 140 PSEP 71 PSE SHR~UO-fR~NT SlOE

LUNAR NMN EQUILIBRIUM

-------

~ 141 PSEP 73 PSE SHR~UO-BACK SIDE

LUNAR N~~N EQUILIBRIUM WITH P/S HEATERS ~N

~---~------·-.-----i

0 M+-------4-------~------~------+-------4-----~--------~------~------+-----~ 1D.oo 106.00 120.( 21J.OO 36.00 IJB.OO 60.00 72.00 BIJ.OO 96.00

0

w

0 Cl

0 M

0 0

0 (\J

12.00 ELAPSED TIME FRCIM 000001 CIN 09/23/69 CHCIURSJ PL~l 03

09/23/69

PRCIGRAM PSEF' TEST TITLE

09/24/69 09/25/69 09/26/69

BENDIX AEROSPACE SYSTEMS DIVISICIN TEST NCI. 52 TEST DATE 09/23/69 lERCI TIME 000001

PSEP LIINRR SIMULRT!CIN THERMAL VACUUM TEST

~ 142 PSEP 75 RIGHT ISCITC!Pl HlAlEH-T~P ~ 144 PS[P B1 LU r IS('JJC!f't. tllHTUl·T~f'

~ 143 PSEP 78 RIGHT HEATER SHR~UO·T~P

~ 145 PSEP 64 LEFT HEATER SHR~UO-T~P

LUNHH N~CIN

EQUILIBRIUM LUNAR NOCIN EQUILIBRIUM WITH PIS HEATERS ~N

a:~ ~c;:;+----4-~---A-----~~--==~--==~~==~~-~----~~--cr a: Wo (LO

::E" w~ 1-- I

0 0

0

~o+_-o_o _____ 1~2-.-o-o---241J-.-o-o----~36~.-o-o _____ IJ~B-.o-o-----6+o-.-o-o----742-.-o-o----e4~J-.-o-o-----9~s-.o-o-----,+o-e-.o-o--~t20.c ELAPSED TIME FRCIM 000001 CIN 09/23/69 (HCIURSJ Pun Dll

09/23/69 09/21U69 09/25/69 09/26/69

Page 103: PSEP Qual, flight acceptance and Qual retest thermal

-

0 0

0 0 ---

0 C)

C) [{)

l.L ~o

0

0 w a: ::J t--g cr . a:-o wlJ) a_' L: wo ,_~

0 C)

I

0 0

ATM-850 Page 87 of 150 1-23-70

BENDIX AEROSPACE SYSTEMS DIVISION PROGRAM PSEP TEST ND. 52 TEST DATE 09/23/69 ZERO TIME 000001 T E S T T I TL E P 5 E P LUNAR ~) I M lJ LA T I Cl N 1 H !-~ R MAL VA C lJ U M T E 5 T

~ 146 PSEP 67 LtfJ HASK-T~P tA~NT

LUNAR N~~N EQlJILIBHilJH

~ 14/ PSEP 66 LEfT HASK-JOP CENTER

LUNAR NO~N EOlJILIBHIUH WITH P/S HEATERS ~N

I I

l

~--

C) If)

+-----~~-L-+-----4------~----4-----~-----4------~----+-----4 'o. oo 2li.OO 36.00 ll8.00 60.00 72.00 84.00 96.00 108.00 120.(

0 0

II) (\j

C) C)

~ Cl

X

C) C)

L:;::IJ)

wo a: C)

::Jvi t-1 CT a: Wo (LC> :E' w~ I- I

C) C)

12.00 ELAPSED TIME FRClM 000001 ClN 09/23/69 (HDURSJ PLCJl 05

09/23/69 09/2V69 09/25/69 09/26/69

BENDIX AEROSPACE SY3rEM5 DIVISIDN PROGRAM PSEP rEST NO. 52 TEST DRrE 09/23/69 ZERO TIME 000001 TEST TITLE f~EP LUNRR SIMULATION THERMAL VACUUM TEST

~ 146 PSEP 92 L CENTER PANlL-T~P ~ 150 PSEP 97 L fA~~T PANEL-TOP X 152 PSEP 102 L REAR PANlL-J~P

LUNRH NO~N EQUILIBRIUM

-~-----··:::.--a--------

~ 149 PSEP 94 L CENTER PANEL-CENTER • 151 PSEP 99 L fR~NI PANEL-CENJEA + 153 PSlP 104 L AlAR PANEL-CENTER

LUNAR N~~N EQUILI8AIUM ~llH PIS HEATERS ~N

[{)

(\j+-------,_------~------~-------+-------4-------~~------~------+-------4-------4 'o.oo 2li.OO 36.00 48.00 60.00 72.00 84.00 96.00 108.00 !20.(

PLOT 06 12.00

ELAPSED TIME FROM 000001 ClN 09/23/69 (HClURSJ 09/23/69 09/24/69 09/25/69 09/2E/69

Page 104: PSEP Qual, flight acceptance and Qual retest thermal

--

.-

0 0

Ul

"'

0 0

wo tr:C: ::)Ul j--1

a:: cr: l.LJo CLD ::£ • w~ t- 1

0 0

0 0

(_)

IJ)

"' Cl n

CJ 0

"' ' ~ CJ LL-o

- J •

Cl Ul

0 0

<-n.oo

ATM-850 Page 88 of 150 1-23-70

BENDIX RtRnSPRCE SYSTEMS DIVISI~N PR~GRRM PSEP TEST Nn. S2 TEST ORTE 09/23/69 ZER~ TIME 000001 T E S T T I T L E P 5 E P Ll J N A H ~; I M l J UlT I ~ N T HE R MAL VA C U U M T E S T

~ 154 PSEP 107 R CENTtR PHNtl_- T~P

~ 156 PSEP 112 R fR~NT PHNEL-T~P

X 158 PSEP 117 R REAR PHNlL-l~P

LUNAR NMN lOU I L I BTi I liM

rn 155 PStP 109 A CENTER PANEL-CENTER 615/ PStP 114 A fA~NT PANEL-CENTER +!59 PSEP 119 A REAR PANEL-CENTER

LUNAR N~~N EQUILIBRIUM WITH P/5 HEATERS ON

12.00 24.00 36.00 48.00 60.00 12.00 84.00 96.00 I 06. 00 I 20. C

ELAPSED TIME FRnM 000001 ~N 09/23/69 IHnURSl PLOT 07

09/23/69 09/24/69 09/25/69 09/26/69

BENDIX RER~SPRCE SYSTEMS DIVISI~N PR~GRRM PSEP TEST N~. 52 TEST DATE 09/23/69 iER~ TIME 000001 TEST TITLE PSEP LUNAR SIMULATI~N THERMAL VACUUM TEST

~ !60 PSEP 15 THERMAL PLRTE-NH BOLT I ~ 163 PSEP 18 THERMAL PLRTE-NA BOLT 4

~ 161 PSEP 16 THERMAL PLATE-NA BOLT 2

12.00

09/23/69

LUNAR N~~N EOlJILTBHilJM

L_

LlJNRH N~~N EQUILIBRIUM HIIH PIS HEATERS ON

24.00 30.00 116.00 60.00 12.00 64.00 96.00 09/23/G~l (H('JURSJ

09/26/69 LLAPSt tl r l Mf_ f fi(')M 00000 I l1N

09/24/6\! OB/25/69

l-

1 IOB.OO PLOT 08

!20. (

Page 105: PSEP Qual, flight acceptance and Qual retest thermal

-PRCJGRAM PSEP TEST TITLE

ATM-850 Page 89 of 150 1-23-70

BENDIX RLRCJSPACE SYSTEMS OJVJSICJN TEST NCJ. 52 TEST DATE 09/23/69 ZERCI TIME 000001

PSEP LUNAR SIMULATJCJN THERMAL VACUUM TEST

LUNAR Nl'Hm r

----~-~64 ~~~p-- ;9· THERMAL PLA1E-NH Blll1 5 ~ 167 PSEP 22 THERMAL PLAIE-NH BOLl B

0 o EQUILIBRIUM 0' ~

~ 166 PSEP 21 THERMAL PLATE-NR BOLT 7 ~ 168 PSEP 23 THERMAL PLATE-NR BOLT 9

LUNAH NOON EQUILIBRIUM W 11ft P /S HEATERS ON

1

II)

"' 0 0

0 C"l

"'

CJ D +-------~----~-------+------~------+-------~-----+------~------+-----~

<t.oo I 08. 00 120, ( 24.00 36.00 48.00 60.00 72.00 84.00 96.00

D 0

C)

r

II) -

L4-1 a:

"' 0 Cl

0 0

"'

0 II)

:)0 t--o cr . era wo -(L~

::£ w 1-0

0

0 II)

12.00 ELAPSED TIME FADM 000001 DN 09/23/69 IHDURSl run 09

09/23/69 09/21J/G9 09/25/69 09/26/G9

B E N fl I X R E R D S PH C E 5 Y ~i f l M 5 IJ I V I S ICJ N PRDGRAM PSEP TEST ND. 52 fEST OHfl 09/23/69 ZERn TIME 000001 TEST TITLE PSEP LUNAR SIMULRTIDN THERMAL VACUUM TEST

m 169 PSEP 27 THERMAL PLAll-NH POU £ 171 PSEP 34 IHlRMAL PLAil-ORTA PROC

I

LUNAR NCION EQU I LT BH IUM

~ 1 10 PSEP 30 THERMAL PLAlE-NR PSE

LUNAR NOON lQUILIBRlUM WITH P/S HEATERS ON

0 0 +-----~-----+----~------~----4-----~-----4------~----4-----~

"b. 00 108. 00 1 20. l 24.00 36.00 48.00 60.00 72.00 8l!.OO 96,00 12.00 PLOT 10 ELAPSED TIME FRCJM 000001 DN 09/23/69 IHCJURSl

09/23/69 09/24/69 09/25/69 09/26/69

Page 106: PSEP Qual, flight acceptance and Qual retest thermal

-

-

ATM-850 Page 90 of 150 1-23-70

BENDIX RER~SPACE SYSTEMS DIVISI~N PR~GRAM PSEP TEST N~. 52 TEST DATE 09/23/69 lEA~ TIME 000001 TEST TITLE PSEP LUNAR SIMULRTI~N THERMAL VACUUM TEST

.---------·-------------.

w a:

0 0

0 l/) (\J

0 0

0 0 (\J

:::::>0 1-o a: . cr::o wo -. (L-

L w ,_0

0

0 l/)

0 0

m 172 PSEP 37 THERMAL PLATE-OJPLEXER & 17ij PSEP 59 PSE MTG PLATE-UNDER PSE

LUNAR Nl'ICIN EOUILIBRIUH

~ 173 PSEP ijQ THERMAL PLATE-NR XHITTER e 175 PSEP 6ij PSE MTG PLATE-UNDER PSE

LUNAR NCICIN EOUILIBRIUH WITH PIS HEATERS l'IN

+-----4------+-----4------~----4------r----~-------r-----+-----~ 9:J. 00 12.00 2ij.OO 36.00 48.00 60.00 72.00 84.00 96.00 108.00 120.( ~LRPStD liM~ ~HnM 000001 ~N 09/23/69 (H~UASJ PLI'IT II

09123169 09/24/69 09/25/69 09/26/69

!:3 E N lJ I X R E R (')SPACE 5 Y 5 T E M ~i D I V I 5 I ~ N PR~GRRM PSEP TEST NC'J. 52 TEST DATE 09/23/69 ZER~ TIME 000001 TEST TITLE PSEP LUNAR S!MULRTIC'JN THERMAL VACUUM TEST

m 216 PRIMARY S1RUC1URE-BCI11CIM-HEA1ER ~ 219 PRIMARY STRUCTURE-SlOES-HEATER l LUNAR NCICIN

o EQUILIBRIUM : ----,--------.---~~ 0

~ f-----

0 Cl

a --- -~- -- ·---

"' (/)

1-1-o a:o

LUNAR NCICIN EQUILIBRIUM WITH PIS HEATERS CIN

.. --

-·--·· ·--

3:~+-----+------1----1----~+-- --+-----1--+----~- ---------------- f-------

0

:~---t!l~----i!i~~-e--~-e---&4~==~~=::!!::::l_.4---~----+-----··---f-.---·--

0 0

0

N+-----+------t----j----~~----4-----4------+------+------+-----~

' I

I

'o.oo 12.00 24.00 36.00 48.00 60.00 72.00 8ij.OO 96.00 toe. oo 120. ( ELAPSED TIME FR~M 000001 GN 09/23/69 (HCURSJ FLOr 12

09/23/69 09/2Li/69 09/25/69 09/26/69

Page 107: PSEP Qual, flight acceptance and Qual retest thermal

ATM-850 Page 91 of 150 1-23-70

Cl Cl

Cl

"'

a D

Ln

D D

D ~

(/)

t-­ITo s::o

Ill

0 C)

~

C)

0

BENDIX AER~SPACE SYSTEMS DIVISI~N PR~GRAM PSEP TEST N~. 52 TEST DATE 09/23/69 ZER~ TIME 000001 TEST TITLE PSEP LUNAR SIMULATI~N THERMAL VACUUM TEST

-------------- ----- ---·

[!] 210 ISOTOPE HEATER NUMBER I

4>. 212 PCU I AND PCU 2 HEATlRS

LUNAR Nl'!ON EQUILIBRIUM

~ -- .----------------·- -··4 ·- ------

.. ._._ .... -- -=-

- ---------, --

t~

~

I -· ·---- . .., .. --

(!) 211 ~ 213

I p

Sl'!TOPE HEATER NUMBER 2 CU 3 AND PCU 4 HEATERS

LUNAR Nl'!l'! N EQUILIBRIUM HEATERS ON HITH 1-'/S

...,.

L..-~

If)

'D.oo 12.00 -- L __ ·------·

24.00 36.00 41!.00 60.00 L----+-

/2.DO 64.00 96.00 l1!J/~!3/(i9 UWlJHSJ

106.00 PLOI 13

0 0

0 0

~

0 0

w (/)

I­t­a:o

ELAPSED f!Ml ~HOM 000001 ON 09/23/69 09/24169 09/25/69 09/26/69

BENDIX AEROSPACE SYSTEMS OIVISI~N PR~GRAM PSEP TEST NO. 52 TEST DATE 09/23/69 ZER~ TIME 000001 TEST TITLE PSEP LUNAR SIMULATI~N THERMAL VACUUM TEST

[!] 214 TRANSMITTER I AND 2 HEATERS 4>. 216 CMO OCOR.PDU.ANO AID CONV HEATER

(!) 215 CMD RCVR AND DATA PROC HEAlERS ~ 217 PSE HEATER

LUNAR NOON LUNAR NOl'!N EQUILIBRIUM EQUILIBRIUM ~ITH PIS HEATERS ON

r~- -·--- ~~ -~. - I ~l

3:0 ;. r------- -- ------------- -----1------------ --------f--

120.(

D 0 ..,; r- -- -- ---t-------- 1------------ -------- ---- ---r--------1- --­

~~---~~---~-----&+--~~~-~~

- ------- --- '-- -------

Cl Cl

9:J. 00 I 2. 00

09/23169

24.00 36.00 48.00 60.00 72.00 84.00 96.0D ELAPSED TIME FR~M 000001 ON 09/23/69 fH~URSl

106.00 120"' PLC!T 14

09124/69 09/25/69 I 09/26/69

Page 108: PSEP Qual, flight acceptance and Qual retest thermal

-

BENDIX AER~SPACE SYSTEMS DIVISI~N

ATM-850 Page 92 of 150 1-23-70

PR~GRRM PSEP TEST N~. 52 TEST DATE 09/23/69 ZER~ TIME 000001 TEST TITLE PSEP LUNAR SIMULRTI~N THERMAL VACUUM TEST

..--------------------------·- --·-· ·--- -------------. -----· --·--- ---- ---------- -----

-0

liC

0 0

0 0

0 0

w a:g => • t-0 a: a: Wa CLa ::L' w~ t- I

a a

m 129 PSEP 06 PAIHARY STRUCTURE-LEFT 6 166 PSEP 21 THERHAL PLRTE-NA BOLT 7

LUNAR NOON EQU ILl BR IUH

~ 160 PSEP 15 THERHAL PLRTE-NR BOLT I ~ 167 PSEP 22 THERHRL PLRTE-NA BOLT 8

LUNAR NOON EQUILIBRIUM WITH PIS HEATERS ON

······----·---.----~

0

N+-------+-----+------~-----r-----~r------4-------4-----~-------+------~ 'o. oo 108.00 120.(

PLOT 15 211.00 36.00 118.00 60.00 72.00 811.00 96.00

-(") liC

w

D C>

0 (")

0

"'

0 0

a:g => • t-0 a: a: Wo (LO

12.00 ELAPSED TIME FR~M 000001 DN 09/23/69 IHOURSJ

09 1 23/69 09/2lil69 09/25/69 09/26/69

BENDIX READSPACE SYSTEMS DIVISION PRDGRRM PSEP TEST NO. S2 TEST DATE 09/23/69 ZERO TIME 000001 TEST TITLE PSEP LUNAR SJMULRTinN THERMAL VACUUM TEST

m 132 PSEP 09 PRIHRRY SIRUCIURE-REAR 6 163 PSEP 18 IHERHAL PLRIE-NR BOLT 11

LUNAR NOON E!JlJ I LI BA I UH

~ 133 PSEP 10 PRIHRAY STRUCTURE-REAR ~ 164 PSEP 19 THERMAL PLATE-NR BOLT 5

LUNAR NOON EQUILIBRIUH WITH P/S HEATERS ON

::L' w~ t-1+----

0 0

0 N+-------+-------+-------~------~----~~----~-------4-------4-------+------~ 'o.oo 108.00 120, (

PLOT IS 24.00 36.00 118.00 60.00 72.00 64.00 96.00 !2.00 ELAPSED TIME FROM 000001 ON 09/23/69 IHOURSJ

09/23/69 09/211/69 09/25/69 09/26/09

Page 109: PSEP Qual, flight acceptance and Qual retest thermal

0 0

BENDIX AER~SPACE SYSTEMS DIVISI~N

ATM-850 Page 93 of 150 1-23-70

PR~GRAM PSEP TEST N~. 52 TEST DATE 09/23/69 ZER~ TIME 000001 TEST TITLE PSEP LUNAR SIMULATI~N THERMAL VACUUM TEST

rn 005 T/C REFERENCE BOX NUMBER B A 010 TIC REFERENCE BOX NUMBER 7 X 177 T/C REFERENCE BOX NUMBER 5

LUNAR NOON EQU ILl BR I UM

~ 007 TIC REFERENCE BOX NUMBER 3 ~ 176 TIC REFERENCE BOX NUMBER~

LUNAR NOON EQUILIBRIUM WITH PIS HEATERS ON

------,------.----------.,----,.:- . - ---·- --- r---~

2ij.00 ELAPSED FR~M

09123169 091211169 09125169 09/26169

BENDIX AER~SPACE SYSTEMS DIVISI~N PR~GRAM PSEP TEST N~. 52 TEST DATE 09/23/69 ZER~ TIME 000001 TEST TITLE PSEP LUNAR SIMULATI~N THERMAL VACUUM TEST

.------ , ___ .. -··----··-------- . ... _. . -. ----------------------------·-------------------------·-----------------

0 0

C\J 0 -0 0 -0 -

~a

U..o ~.

0 0 -

0 0

,.... "b. DO

rn 111 PSE MTG PLATE RADIOMETER-TEMP ~ llij PSEP REFERENCE RADIOMETER-TEMP A 117 PSE RADIOMETER-TEMPERATURE ~ 200 COUPON-BLACK-RAOIOMETEA-IEMP X 203 COUPON-MIRROR-RADIOMETER-TEMP

LUNAR NOON LUNAR NOON EQUILIBRIUM EQU ILl BA IUM WITH PIS HEATERS ON

~ ~ ---- --

-----~- ----~------ -----r------ ------1----

~ \ ....Mrl I/ ~ ._j

,.,.,- -~ .... ll

\),ru _ .............

~~ ... la.l.

.. -- --~.:·::.\ ·-·······-~-·-· 1---·-··· ----·- -------·-···----·-

,...,.. : .....

~~ ~ - •• aJJitJNII ~~~ ~

...... ~ ., .. ""'. ~

' ...t.Ul ,_

q~ I} .I o..-IW i" 0:>

,.Mo\ ' w .l ........ .. ~ II

.._. ~

~ II'

12.00 2ij,QQ 36.00 ij6.00 60.00 72.00 Bij.OO 96.00 108.00 120.( ELAPSED TIME FR~M 000001 ~N 09/23/69 (HCJURSl PLOT IB

09123/69 09/2ijl69 09/25/69 09/26169

Page 110: PSEP Qual, flight acceptance and Qual retest thermal

-

0 0

r

ATM-850 Page 94 of ISO 1-23-70

BENDIX RER~5PRCE SYSTEMS DIVISION PR~GRRM PSEP TEST N~. 52 TEST DRTl 09/23/69 ZER~ TIME 000001 TEST TITLE PSEP LUNAR SIMULATIQN THERMAL VACUUM TEST

~ 110 PSEP-WA11S PER SQ Fl ABSDRBEO & 093 CW 24 COLO WALL-ARCH PANEL

LUNAR NDON EQUILIBRIUM

m 024 LS 14 LUNAR SURFACE-MIOOLE ZONE e 172 PSEP 37 THERMAL PLAIE-OIPLEXER

LUNAR NDON EQUILIBRIUM WITH P/S HEATERS ON

~ r··---·----,-----~

r---·---~ . ,------- ·- ····--- ---,------- --· ·- --· ----.------1

0 0

0 wo a:· If)

:':)- t--. ,_, a: a: Wo (LO

::E" w~ r· 1- I

0 0

If)

.r--

... ----·--- t------- ----

. ----· --- ·--

~+-------~------~------r------1------~------~-------+-------+-------r------~ 'o. oo 12.00 2l!.OO 36.00 118.00 60.00 72.00 811.00 96.00 108.00 120.(

ELAPSED TIME FR~M 000001 ~N 09/23/69 (H~URSJ PLOT 19 09/23/69 09/24/69 09/25/69 09/26/69

Page 111: PSEP Qual, flight acceptance and Qual retest thermal

Llata Acqui­sition System Channel

124

125

126

127

128

129

130

13 1

132

133

134

135

136

137

138

139

140

141

142

143

144

145

Temperature Sensor

Location

Primary Structure, Front Side Primary Structure, Left Side Primary Structure, Back Side Primary Structure, Right Side Primary Structure, Bottom Primary Structure, Ncar Bolt# 1 Primary Structure, Near Bolt #2 Primary Structure, Near Bolt #3

Primary Structure, Near Bolt #4 Primary Structure, Near Bolt #5 Primary Structure, Near Bolt #6

Primary Structure, Near Bolt #7 Primary Structure, Near Bolt #8 Primary Structure, Near Bolt #9 PSE Sensor Simulator - Top PSE Sensor Shroud - Top PSE Sensor Shroud - Front PSE Sensor Shroud - Back Right Isotope Heater Simulator - Top Right Isotope Heater Shroud - Top Left Isotope Heater Simulator - Top Left Isotope Heater Shroud - Top

*Open Thermocouple

TABLE 5-5

ATM-850 Page95o£150 1-23-70

TEMPERATURES OF COMPONENTS

No Solar Heating

152

159

146

159

165

153

144

139

138

143

146

-*

153

152

123

-120

28

19

186

-52

210

22

Tt~rnperatures - °F One Sun With One Sun With One Sun With Normal Structurt~ Structure at Solar Panels Temperaturt~ Temp. Recorded at l'i0° ± l0°F

on Moon

158 183 182

l(J(, 201 198

1')2 194 192

164 202 198

171 202 200

160 182 178

152 179 176

147 174 172

146 175 174

150 176 173

153 178 175

160 184 182

159 179 177

139 145 145

-55 -50 -43

35 36 33

32 34 33

202 210 209

2 7 11

224 233 232

46 50 48

Page 112: PSEP Qual, flight acceptance and Qual retest thermal

ATM-850 Page 96 of 150

TABLE 5-5 (CONT.) 1-23-70

Data Acqui- Temperature Temperatures - ° F sition System Sensor No Solar One Sun With One Sun With One Sun With Channel Location Heating Normal Structure Structure at Solar Panels

Temperature Temp. Recorded at 1500 :t; l0°F on Moon

146 Mounting Plate 29 58 68 67 Mask- Front

147 Mounting Plate -10 27 34 H Mask - Center

148 Left Center Solar 165 171 172 136 Cell Panel Location

149 Left Center Solar 194 200 201 141 Cell Panel Location 2

ISO Left Front Solar 176 179 178 150 Cell Panel Location I

151 Left Front Solar 190 193 192 160 Cell Panel Location 2

152 Left Rear Solar 172 178 179 139 Cell Panel Location 1

153 Left Rear Solar 186 191 191 150 Cell Panel Location 2

154 Right Center Solar 167 173 173 140 Cell Panel Location 1

155 Right Center Solar 1'}4 199 zoo 144 Cell Panel Location Z

156 Right Front Solar 177 181 181 154 Cell Panel Location 1

157 Right Front Solar 191 194 193 163 Cell Panel Location 2

158 Right Rear Solar 174 177 177 134 Cell Panel Location 1

159 Right Rear Solar 184 187 187 142 Cell Panel Location 2

160 Thermal Plate, 140 153 160 159 Near Bolt 1

161 Thermal Plate, 128 141 150 149 Near Bolt 2

162 Thermal Plate, Near Bolt 3

163 Thermal Plate, 128 141 149 149 Near Bolt 4

164 Thermal Plate, 126 138 148 147 Near Bolt 5

165 Thermal Plate, Near Bolt 6

166 Thermal Plate, 140 153 161 160 Near Bolt 7

167 Thermal Plate, 143 156 164 163 Near Bolt 8

168 Thermal Plate, 142 154 162 161 Near Bolt 9

169 Thermal. Plate, Ncar 140 154 160 159 PDU Electronics

170 Thermal Plate, 135 148 155 154 PSE Electronics

171 Thermal Plate, 132 145 152 151 Data Processor

172 Thermal Plate, 127 140 147 146 Diplexer Switch

173 Thermal Plate, 128 141 148 147 Near Transmitter

174 PSE Mounting Plate, 126 140 146 145 Under PSE, Rear Center

175 PSE Mounting Plate, 131 145 151 151 Under PSE, Center

207 Left Ieotope Heater 58 76 81 81 Shroud, Silde

208 PSE Seneor Shroud, 49 59 61 60 Lower Section, Back Side

209 PSE Seneor Shroud, 36 56 60 53 Lower Section, Left Side

Page 113: PSEP Qual, flight acceptance and Qual retest thermal

NO. lti!V. MO.

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST H .. JI:POR T

TABLE 5-6

ATM-850

97 PAGE OP

DATE 1-2:1-70

DAS POWER MEASUREMENTS OF SIMULATED THERMAL DISSIPATION FOR PSEP QUAL TEST AND RETEST AT LUNAR NOON WITH ONE SUN

c--·""" ______ """- ."

Power - Watts Test Retest

No Normal

Power Structure Structure

Description Dump Temperature at 195'"F

Isotope Heater No. 1 14.75 15.05 15.04

Isotope Heater No. 2 14.82 14.79 14.75

PCU Heaters No. 1 and No. 2 7.04 6.93 7.00

PCU Heaters No. 3 and No. 4 7. 13 6.98 6.98

Transmitter Heaters No. 1 and

No. 2 8. 19 8. 12 8. 11

Command Receiver and Data Processor Heaters 1. 27 1. 24 I. 24

Command Decoder, PDU, and A/D Converter Heaters 4. 54 4.51 4.47

PSE Heaters 3.80 3.73 3. 76

PDM Panel Heat Leak Heater I. 63 - - - - - -

Primary Structure - Bottom Heaters - - - 0.00 2.07

Primary Structure - Side Heaters - - - 0.00 54.56

-

150

I

Page 114: PSEP Qual, flight acceptance and Qual retest thermal

: : I ~

Aarospace Systems Division

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

TABLE S-7

ATM-850 I PAGE 9B Of 1 50

DATE l-23-70

SUMMARY OF SIMULATED THERMAL DISSIPATION FOR PSEP QUAL TEST AND RETEST AT LUNAR NOON WITH ONE .SUN

Power - Watts

Test Retest

No Normal Power Structure Structure

Description Dum2 Temperature at l95°F

1. Internal Dissipation 31. 97 11. s 1 31.56

2. Isotope Heaters 29.57 29.84 29.79

3. Primary Structure - - - 0.00 56.63 r----

Total c/s Dissipation (1&2) 61. 54 61. 35 61. 35

Page 115: PSEP Qual, flight acceptance and Qual retest thermal

: ~. I ~ PSEP QUAL, FLIGHT ACCEIJT ANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST H.F:PORT

ATM-850

~ Systems Division

PAGE

DATE

Although the primary change in instrumentation betwNm tlw Qual and the Qual retest models resulted in thermocouple deletions, there were three thermocouple additions for the Qual retest n1oc!t-l. One T /C (No. 85) was added to the heater 2 shroud and two T/C 1 s (No. 145, 147) were added to the PSE shroud.

99 OF

l-23-70

150

Page 116: PSEP Qual, flight acceptance and Qual retest thermal

: : I •

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO.

ATM-850

PAGE 100

REV. HO.

Of 150

DATE 1 - 2 3 -7 0

6. 0 DISCUSSION

(), 1 Analytical and Test Results

This section presents temperatures predicted with the PSEP thermal models as a function of model node numbers. Test measurements which correspond to the node locations are compared with the predicted values. Thermal dissipations by the electronics, isotope heaters, and PDM resistors for the Qual and Flight models are listed in Table 6-1. Tables 6-2 to 6-4 present temperatures for the Qual model, while tem­peratures for the Flight model (with and without plume heating pro­tection) are shown in Tables 6-5 through 6-7. Temperature and power levels for the Qual Retest were presented in Section 5. 3. 2.

The following information is presented in Tables 6-2 through 6-7.

1. Thermal model node numbers

2. Description of each node

3. Predicted temperatures of all nodes at lunar noon and night equilibrium for T /V chamber test conditions.

4. Predicted temperatures of all nodes at lunar noon and night . equilibrium for operation in a real lunar environment. Values are given for Flight models with and without plume heating protection.

5. Test temperatures for those nodes where applicable measurements were taken.

Correlation between test and predicted figures was excellent as discrepancies were generally less than lO"F. Correlation of average radiator plate temperaturcswas within 4 °F.

Reflected solar energy was considered in the analytical models during the lunar day and was assumed to be diffuse. However, preliminary investigations indicate that the second-surface mirrors and Kapton are highly specular, and as a result predicted temperatures for the electronics, thermal plate, and mounting plate should be about 6 °F lower than the values listed in Tables 6-2 through 6-8.

Page 117: PSEP Qual, flight acceptance and Qual retest thermal

: : . . "

~

"",- ';'" - ~ ~

Aerospace Systems Dlvhdon

PSEP QUAL, I' LIGHT ACC F~PT ANClo~ AND QUAL JU~TT<:.S'I' TIIF~RMA L V ACOUM CITAMB I·~ I~ TJ·~.ST REPORT

PSl<:P POWER/THF:RMAL IHSSlPATIONS FOR QUAL AND FLIGHT MODI·:LS

Power /Thermal Dissipation - Watts Electronics Total on

MO. RIV. NO.

ATM-850

PAGE 1 Of 01" l 50

DATI l-23-70

plus PDM The r m a 1 & Total on PSI•: Isotope Panel Mounting PDM

Thermal Model Sensor Heaters Dump Plates Panel

i Qual Chamber Model - 31.97 29. 57 5. 0 61. 54 5. 0 I

Noon, No Dump I Qual Chamber Model - 26.22 29. 63 1 o. 5 55.85 l 0. 5

I ~

Noon, 10 Watt Dump I I !

Qual Chamber Model - 0 30. 53 0 30. 53 0 ~ ' Night

Qual Real Moon Model - 31. 9 30.00 5.0 61. 90 5.0

I Noon, No Dump

Qual Real Moon Model - 26.30 30.00 10. 5 56.30 10. 5 Noon, 10 Watt Dump I

Qual Real Moon Model - 0 30.00 0 30.00 0 Night

Flight Chamber and 31. 90 30.00 5. 0 61. 90 5.0 Real Moon Models -

I Noon, No Dump

Flight Chamber and 26.30 30.00 10. 5 56.30 10. 5 Real Moon Models -Noon, 10 Watt Dump

Flight Chamber and 0 30.00 0 30.00 0

Real Moon Models -Night

Page 118: PSEP Qual, flight acceptance and Qual retest thermal

TABLE 6-Z t

COMFI Plt\,

JF QUAL TEST TEMPERATURES TO TEMPERATURES .;;D WITH QUAL THERMAL MODEL FOR NO-DUMP

CONDITION AT LUNAR NOON EQUILIBRIUM

Thermal Temperature -°F Model Chamber Pre d. Pred.

Node No. Node Description Test Chamber Moon

I PSE Insulation Shroud -7 3/85 84 108

2 Heater #1 Insulation Shroud 7/81 100 129

3 Heater #l Insulation Shroud 42/75 102 130

4 Second-Surface Mirrors 132 133

5 Left Insulation Mask 50/69 82 82

6 Second-Surface Mirrors 131 128

7 Right Insulation Mask 75/77 90 92 8 Second-Surface Mirrors 139 143

9 Second-Surface Mirrors 137 140

10 Left Solar Panel Back 182/224 200 195

11 Right Solar Panel Back 186/223 200 195 12 Left Solar Panel Front !58 197

I 3 Right Solar Panel Front 158 197

14 Isotope Heater #1 189/199 170 173

15 Isotope Heater #2 191/205 !55 160

16 PSE Mounting Plate 145 134 136

17 !52 157 !59

18 138 141

19 143 142 145

20 145 139 143

21 147 137 140

22 133 134

23 133 134

24 137 133 134

25 138 136 137

26 136 139 143

27 134 132 140

28 135 132 130

29 136 133 134 30 PSE Sensor 133 134 141

Z) No plume heating protection 3) xxx/xxx. represents a range of values.

TABLE 6-3

COMPARISON OF QUAL TEST TEMPERATURES TO TEMPERATURES PREDICTED WITH QUAL THERMAL MODEL FOR 10 WATT DUMP

ACTIVATED AT LUNAR NOON EQUILIBRIUM

Temperature -° F Thermal Model Chamber I Pred.

I Node No. Node Description

4 5 6

10 II 12 13 14 IS 16 17 18

19 20 21 22 23 24 25 26 27 28 29 30

Notes:

PSE Insulation Shroud Heater # 1 Insulation Shroud Heater 112 Insulation Shroud Second-Surface Mirrors Left Insulation Mask Second-Surface Mirrors Right Insulation Mask Second-Surface Mirrors Second-Surface Mirrors Left Solar Panel Back Right Solar Panel Back Left Solar Panel Front Right Solar Panel Front Isotope Heater #1 Isotope Heater #l PSE Mouf"1-ting Plate

PSE Sensor

-71/85 9/81 44/74

51/69

76/77

183/224 186/223

186/196 185/199

137 144

140 142 143

134 134 133 131 131 133 132

1) Second-surface mirror a/E = • 06j. 08 2) No plume heating protection 3) xxx/xxx represents a range of values.

84 I 00 101 124

84 1M

92 133 130 200 200 !58 !58 I~

I~

126 1~

rn 135 133 130 lM IM 124 ~~

1n I~

125 125 128

Pred.1

rm 127 129 125 ~

IU

92 rn 134 195 195 ~~

~~ 165 15 3 IU !51 I~

1~

lTI 133 126 126 126 130 rn 134 123 126 135

Thermal Model Node No.

50 51 52 53 54 55 56 57 58

59 60 61 62 63 64 65 66 67 68 69 70 71

96 99

100 116 117 118 119 120

Thermal Model

50 51 52 53 54 55 56 57 58 59 60 61

62 63 64 65

66 67 68 69 70 71

96 99

100 116 117

118 !19 120

Node Description

Lunar Subsurface Model

Lunar Simulator Lip Lunar Simulator or Moon Chamber Cryowall or Space Thermal Plate

l

Node lkscription

Lunar Subsurface Model

Lunar Simulator Lzp Lunar Simulator or Moon ChambC'r Cryowall or SpacC' Thermal Plate

1

Temperature- F Chamber Pred. !->red.

Test Chamber Moon

NA NA -25 -22 -4 22 54 84

114 144 174 204 234 !57 -23

-1 27 i,O 90

115 136 152 160 162

247 247 NA 248 248 250

-270 -270 -460 146 143 144 148 147 149 147 142 145 144 142 146 146 141 145

\hamb{'r rest

rt'mperatur:_s- I' t-rcd. l ~<~

NA

247 2.4K

-2.70 138 142 142 140 142

('llan:lwr

'!A

L·l7 l4K

-l7P

1 12 118 114 l ~(, I:..,

~1oon

-2:S -22

-4

ll

S4 84

114 144 174 204 234 !S'l

-2 l

27 (,()

90 ll s 117 l":i3 1f-t l(l3

:\A LSO

-4(,0 1H 1n l'H>

140 1 ]Q

Thermal ~1odel

0Ioclc No.

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 143 144 145 146 147 148 149 160 161 164

Thermal Model Norle No.

121 12.2. 12 l 12-1 12<:;

J l6 IU 128 129 130 131

1U 133

114 135 1)6

117

1 38 1~

·~ 1-11 1-13 14

1-15 146 147 148 1~9

l ()0

l(d

!<.f

Node Description

Thermal Plate

P.c. u. P.D.U. A~alog Multiplex Conv. P.S. E. Command Decoder Data Processor Command Receiver Transmitter A Transmitter B Timer Diplexer Filter Diplexer Switch Primary Structure Front Primary Structure Rt. Side Primary Structure Back Primary Structure Lt. Side Primary Structure Bottom Thermal Bag Interior Thermal Bag Exterior PDM Panel Insulation PDM Panel Front PDM Panel Rear

Node Description

Thermal Plate

P.c. u. P.D. U.

Analog Multiplex Conv. P.S. E.

Command Decoder Data Processor Command Receiver Transmitter A Transmitter B Timer Diplexer Filter Diplexer Switch Primary Structure Front Primary Structure Ht. Side

.Pr ig•a ry Structure Back Prirnary .Strudurc Lt. Sirle Primary Structure Botton\ Thermal Bag Interior Thermal Bag Exterior PDM Panel Insulation PDM Panel Front !'Dl\1 Panel Hear

Temperature -~F Chamber Pred. Pre d.

Test Chamber Moon

144 140 142 143 140 142 143 143 144 140 139 140 141 138 140 140 139 143 138 134 140 137 135 136 137 140 141

176 176 162 165 155 157 159 162 147 149 152 152 142 144 135 136 145 146 139 141 136 138 139 141

!52 147 !53 164 161 168 156 149 !58 164 160 168 169 !58 !56

140 143 !52 !55

NA NA 164 NA NA 169 NA NA 169

! Temperature- ~F Chamber I Pred. \ Pred.

Test

153 16'3 lhl 165 170

NA NA NA

140 138 130 13-1 138 137 135 134 133

Chamber

133 13Z 132 130 I 30 1 32 127 128 I 32 !52 !53 I48 l'i3

140 1-15

111 lZB 1 37 131 1Z9 131 1-ri' 1h1 lS3

1 hl 159 l 33 !51 NA NA NA

Nfoon

135 134 133 131 I 32 1% l 34 129 133 153 15€,

I 50 15()

1.J3 145

136 129 l 38 I 32 13I I32 153 168 166 169 158 136 154 180 193 192

~ 1-3 ~ I

CXl U1 0 ~

"d Ill

(JQ

CD

....... 0 N

0 """ ....... U1 0

Page 119: PSEP Qual, flight acceptance and Qual retest thermal

TABLE 6-4

CUM!-'A.H.lt;UN Ul" tJUAL TL~T 'l'l!;MPERATURES TO TEMPERATURES Thermal

PREDICTED WITH QUAL THERMAL MODEL Model

AT LUNAR NIGHT EQUILIBRIUM Node No.

Thermal Temperature-"F 50 Model Chamber Pred. Fred. 51 Node No. Node Description Test Chamber Moon 52

I PSE Insulation ·shroud -238/-185 -223 -232 53 2 Heater #1 Insulation Shroud -199/-131 -174 -ISO 54 3 Heater #2 Insulation Shroud -183/-119 -174 -179 55 4 Second-Surface Mirrors -55 -60 56 5 Left Insulation Mask -186/-151 -187 -194 57 6 Second-Surface Mirrors -52 -59 58 7 Right Insulation Mask -155/-161 -185 -191 59 8 Second-Surface Mirrors -43 -46 60 9 Second-Surface Mirrors -46 -50 61

10 Left Solar Panel Back -268/-256 -298 -323 62 11 Right Solar Panel Back -266/-256 -299 -325 63 12 Left Solar Panel Front -298 -324 64 13 Right Solar Panel Front -299 -325 65 14 Isotope Heater #1 10/21 -17 -22 66 15 Isotope Heater #2 15/31 -27 -30 67 16 PSE Mounting Plate -47 -54 -59 68 17 -37 -31 -36 69 18 -45 -49 70 19 -44 -41 -44 71 20 -41 -43 -46 96 21 -42 -49 -53 99 22 -54 -59 100 23 -55 -59 116 24 -54 -55 -59 117 25 -53 -50 -55 118 26 -43 -47 119 27 -51 -52 120 28 -53 -52 -58 121 29 -55 -55 -60 122 30 PSE Sensor -52 -51 -54 123

Note· 1) Second-Surface mirror E = 0. 80 124

2) No plume heating protection 125

3) xxx/xxx represents a rang,e of values

TABLE 6-5

COMPARISON OFF LIGHT TEST TEMPERATURES TO TEMPERATURES PREDICTED WITH FLIGHT THERMAL MODEL FOR NO-DUMP CONDITION

AT LUNAR NOON EQUILIBRIUM

Thermal I Thecmal Model Modf'l Node No. Node Description Node No.

PSE Insulation Shroud 80 112 !55 50 Heater #1 Insulation Shroud 97 133 186 51 Heater #2 Insulation Shroud 99 135 189 52 Se<..ond-Surface Mirrors 128 Ill 140 53 Left Insulation Mask 81 57 188 54 Second-Surface Mirrors 123 121 130 55 Right Insulation Mask 86 66 196 56

8 Second Surface Mirrors 132 138 148 57 9 Second Surface Mirrors 132 137 149 58 !0 Left Solar Panel Back 91 80 195 196 59 II Right Solar Panel Back 90 80 195 196 60 12 Left Solar Par.el Front 70 197 197 61 13 Right Solar Panel Front 70 197 197 62 14 Isotope Heater #l !66 170 181 63 !5 Isotope Heater #2 148 !55 165 64 !6 PSE Mounting Pl~te 130 133 143 65 17 !52 !56 167 66 18 133 138 150 67 19 134 141 151 68 zo 132 138 148 69 21 132 136 146 70 22 128 131 141 71 23 128 131 141 96 24 128 !31 141 99 25 129 132 142 100 26 131 138 148 116 27 124 135 145 117 28 124 123 132 118 29 128 131 141 119 30 PSE Sensor )30 136 146 120 ..__

Note: Second-Surface Mirror a/E = • 06/.80

Temperature - "F Chamber Fred. Fred.

Node Description Test Chamber Moon

Lunar Subsurface Model NA NA -25 -28 Thermal

-46 Model

-72 Node No.

-l 04

-134 12(;

-164 127

-194 128

-224 129

-254 130

-284 131

-206 132

-27 133

-49 134

-77 135

-110 136

-140 137

-!65 138

-186 139

-202 140

-210 141

-211 143

Lunar Simulator Lip -317 -317 NA 144

Lunar Simulator or Moon -317 -317 -300 145

Chamber Cry ow all or Space -100 -300 _.j(,Q 146

Thermal Plate -49 ~ S2 ~57 147

-44 -48 148

-38 -45 -49 149

-45 -43 -46 !60

-45 -45 -48 161

-50 -48 -52 !(A

-51 -51 -56 -SO -54 -58 -51 -54 -58 -50 -50 -54

~~- --------~- [;---.- _: F -~----l Thermal !'rP'i V[oon 1 Mo

Node D('S< riphnn ( hamlwr "<l pf.~,:~_i'rot.: N~' dp]

k

Lunar Sub::;urfa, v Mnd(•l

-2.~ -N. -4

-25 I' -LS

I 22 n q 54

! I ~~ ..j, I ~~ ..j, 144 I lH

174 1174

Lunar Smmlatoc Lip 125 J 251 Lunar Simulator or Moon Z5l 251 Chamber C:ryowall or Spa< c -261 -261 Thermal Plate I l (j 138

1 IH7

142 11(

in7 lH:: !34

2 04 -~ 0-t zq 2H lq 1'57 -2l _, 27 (,()

90 115 )1(,

!52 JLU

161

NA 25C

i -460

1

]42

l..:.t

141

-ll -1

l7 t.O

90 115 116 !52 lo 1 162 NA 250 --t60 151 !56 152 \52 150 I :~~ I I

I '"' 1.~-t

1.!.5 126 127 128 JZO

DO 131 112 133 JH

135 J)f,

137 138 139 140 141 143 144 145 146 147 148 149 160

161 164

Temperature - • F 1\...namoer ~.-rea. -,rea;

Node Description Test Chamber Moon

Thermal Plate -48 -46 -49

! -55 -51 -53 -56 -52 -57 -54 -55 -59

P.c. u. -56 -60 P.D.U. -52 -56 Analog Multiplex Conv. -47 -51 P. S. E. -46 -49 Command Decoder -46 -49 Data Processor -51. -56 Command Receiver ~54' -58 Transmitter A -52 -57 Transmitter B -55 -59 Timer -54 -59 Diplexer Filter -51 -56 Diplexer Switch -54 ~59 Primary Structure Front -191 -190 -198 Primary Structure Rt. Side -191 -197 ~205

Primary Structure Back -191 -196 ~204

Primary Structure Lt. Side -194 -195 -204 Primary Structure Bottom -192 -195 -205 Thermal Bag Interior -53 -57 Thermal Bag Exterior -139 -144 PDM Panel Insulation NA NA -205 PDM Panel Front NA NA -211 PDM Panel Rear NA NA -211

!_empera_~...E_es - oF Chamber' c:a:~~r r:ar~~~~

l --;::;;;;;;;-1 ~I Node Desl ription Test

--------- -·

Platp 132

I 125

l 120

125 P.C. U. 167 P. D. U. 155 Analog Multiplex Conv. !50 P. S. E. <:omiTI<\nrl De,·oder 140 Data Processor 141 Conunancl Receiver 125 Transmitter A 127 Transmitter B Timer D1plexer Filter Diplexer Switch Primary Strudure Front Primary Strudure Ht. Sid 160 .Primary Structure Bat·k Primary Structure Lt. Sid !55 Pri.nnry Strulture Bottom 57 Thermal Bag Interior Thern1al Bag. Exterior PDM Panel Insulation PDM Panel Front !66 PDM Panel Rear 166

--lH '" 135 !39 Ill"' 141 133 137 131 135 ll! l3H

126 135 128 130 135 138 170 173 !58 161 149 !53 !52 !58 138 145 143 147 138 141 128 130 140 143 134 137 129 132 134 117 146 !53 156 168 !51 !58 !56 168 157 156 135 139 !50 153

!47 !63 !56 169 !56 169

149 151 147 145 148 145 140 )47 183 171 !64 168 !55 !57 151 140 !52 147 142 147 !54 l6B 158 169 157 149 !56 163 !69 169

!

~ 1-j

~ I 00 ln 0 ~

1::1 PJ

(JQ CD

....... 0 (JJ

0 ......, ....... ln 0

Page 120: PSEP Qual, flight acceptance and Qual retest thermal

TABLE 6-6

COMPARISON OF FLIGHT TF:ST TEMPERATURES TO TEMPF:RATURF.S PREDICTF:D WITH FLIGHT THERMAL MODEL FOR 10 WATT DUMP

ACTIVATED AT LUNAR NOON EQUILIBRIUM

Thermal Mod<>l Node No.

Thermal Model Node No,

Temperature - ° F Chamber j Pred. I Pred. Moon

50

"

10 11 lZ 13 14 15 !6 17 IS

19 20 Zl

22 23 24

25 26 27 28

29 30

Node Description

PSE Insulation Shroud Heater #l Insulation Shroud Heater #l Insulation Shroud Sli'cond-Surface Mirrors Left Insulation Mask Second-Surface Mirrors Right Insulation Mask Second-Surface M1rrors SE"cond-Surface Mirrors Left Solar Panel Back Right Solar Panel Back Left Solar Panel Front Right Solar Panel Front Isotope Heater #1 Isotope Heater ill PSE Mounting Plate

PSE Sensor

Test !Chamber I No Prot, I Prot.

79 96 98 119 80 !!6 86

·~ 126 ~

~

70 70 lH 142 Ill 144

•n lH 126 125

·~ !20 120 lZl 125 117 117

·~ IH

liZ 132 IM 123 56 liS

bb

I32 130 195 195

'" 1.97 !62 IH IH 148 132 135 132. I~

123

!23 121 !25 132 128 !!6 ID IH

IM IH 1M lD 1M 125 190 1·4J 143 l9b 190

'" 197 174 IH 135

'" lW 145 143 Ie 13]

133 131

136 142 139

•n 133

140

Note· Second-Surface mirror a/€ -.• 06/.80

TABLE 6-7

TEMPERATURES PREDICTED WITH FLIGHT MODEL AT LUNAR NIGHT EQUILIBRIUM

Thermal Te~perature - oF Model Pred. Pred. Moon Node No. Node Description Chamber. No Prot. Prot.

I PSE Insulation Shroud -223 -231 -233 z Heater #1 Insulation Shroud -178 -182 -188 3 Heater liZ Insulation Shroud -176 -180 -185 4 Second-Surface Mirrors -61 -62 -61 5 Left Insulation Mask -189 -206 -206 6 Second-Surface Mirrors -59 -62 -62 7 Right Insulation Mask -186 -203 -203 8 Second-Surface Mirrors -50 -49 -48 9 Second Surface Mirrors -51 -52 -51

10 Left Solar Panel Back -294 -323 -323 II Right Solar Panel Back -294 -325 -325 IZ Left Solar Panel Front -294 -323 -323 13 Right Solar Panel Front -294 -325 -325 14 Isotope Heater #1 -23 -24 -23 !5 Isotope Heater HZ -34 -33 -32 16 PSE Mounting Plate -60 -61 -60 17 -37 -38 -37 18 -51 -51 -51 19 -48 -47 -46 zo -50 -49 -48 21 -55 -55 -55 zz -60 -61 -60 23 -60 -61 -61 24 -60 -61 -60 25 -56 -57 -57 26 -51 -49 -49 27 -58 -55 -54 28 -59 -62 -61 29 -61 -62 -61 30 PSE Sensor -57 -57 -57

Note: Second-Surface Mirror. a/E = • 06/.80

5Z 53 54 S5 S6

57 5k

59 oO

bl

b2 b3

64 65 oG b7

68 69 70 71 96 99

100

116 117 !18 \19

120 12.1

122 123 124 125

Thermal Model Node No.

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 96 99

100 116 117 118 119 120 121 122 123 124

:.Jot!.> !h•sc ript10n

J.un,tr SubsnrL1ce \1ud<·l

Lunar Sunul.ttor Lip Lunar Simul,ttor or :\loon Chamber CrvO\\ all or Spac£> Thermal Plat~>

Node Description

Lunar Subsurface Model

Lunar Simulator Lip Lunar Simulator or Moon

T, llli)Pr<J.h;rf's- "F

lchambt· r I l'r,·d. I Pr(·d. :-..toon T··~t 'h.~•"lwr ~o Prot. I Prot.

\;,\

251 251 -2()]

131

112

l :'.~

: ~ t

110

Pre d.

-~A

;?.')]

2-51 -2.1Jl l2H l',, 1!.''

12' I .' ~

1:7 1.'.7 I~:,

Ill-

-:--> - 2~

" '4 \14 144 174 204 2'>4 1>1'

.:7

IIi ])/

I,,

l• I

'\.\

~-tt i'

];]

137 ])..!

l ;:;

!q

"' I 'i

j I)

I K J K

Temperature -Pre d.

Chamber No Prot.

NA -25 -28 -46 -72 -104 -134 -164 -194 -224 -254 -284 -206 -27 -49 -77 -110 -140 -165 -186 -20Z -210 -211

-300 NA -300 -300

~ ~-)

_,

" q

114 IH 114

204 2l4 !59 -,:.3

27 ,,()

90

!Ill I:; J"d J•,,: ],,'

~A

l50 -4(>0

141 \48

145 14o l..f"i

142

'"' '" ll> lJK

F Moon Prot.

-25 -28 -46 -72 -I 04 -134 -164 -194 -224 -254 -284 -206 -27 -49 -77 -II 0 -140 -165 -186 -202 -210 -211 NA -300

Chamber Cryowall or Space -300 -460 -460 Thermal Plate -58 -59 -58

-50 -50 -50 -51 -52 -51 -50 -49 -49 -52 -51 -50 -54 -55 -54 -57 -58 -57 -59 -60 -59 -59 -60 -60

Th,•r~nal

MNh•l ~od,. :'\lo.

12~>

j 27

IZH !29 1 ;o !3\

132

IH ];5

llt)

JH 1 )K

1 3Q

140 \41 ]j)

\44 145 l4b

147 \4>

149 160 ILl

lo4

Thermal Model Node No.

125 126 127 128 1;;9 130 131 132 133 134 135 136 137 138 139 140 141 143 144 145 146 147 148 149 160 161 164

Temperatures - "F Ch.i-rTiber I PrC-d. I Pred. Moon

:'-lode Deso..:ription

Thermal Plate

l P.C.L P. D.\'. Analog Multiph-x Conv. P. S. L

Cunmund Dt:>coder Data Procpssor C01nrnand R<·ceivPr Tran,mittt>r A Tran"nlltt<'r B Tinwr I lt 1)h·'-:Pr Filter

;-;witch Structur(' Front

Pnman: Strnctur'" Rt Sidt" l'ri11.drv Structure Back Primary Structure Lt Sidt• Primary Stru~.:ture Bottom Th(•rmal Bag Interior Thermal Bag Exterior PDM Panel Insulation PDM Panel Front PDM Panel Rear

Node Description

~·rP··· P.C.U. P.D.U. Analog Multiplex Conv. P.S.E. Command Decoder Data Processor Command Receiver Transmitter A Transmitter B Timer Diplexer Filter Diplexer Switch

Tt>st

115

Ilk

137 l+k 14S

IH 1)5

1!9 llZ

160

156 156

lAO 180

Primary Structure Front Primary Structure Rt. Side Primary Structure Back Primary Structure Lt. Side Primary Structure Bottom Thermal Bag Interior Thermal Bag Exterior PDM Panel Insulation PDM Panel Front PDM Panel Rear

Chamber

125 120 IZI 127 147 149 142 J.t5

132 13h

129 !21 132.

lZu 123 IZ6 146

•n !58

1n lH •n lH 163 178 178

No Proi..1.r ru•.

132 142 129 139 123 IB 130 140 ISO Jt,Q

15; 1 t.>4 ]..f(, 1 "it<

152 11,2 !31-- 149 l..J-0 151 132 J.n 123 133 I J5 145 1 zq 139 125 136 IZQ 139 153 154 lbh 169 166 166

169 169 158 159 13i 142 I 53 156 177 178 193 193 193 193

Temperatures - oF Pred, Pre d. Moon

Chamber No. Prot. Prot.

-56 -57 -56 -53 -52 -52 -57 -55 -55 -58 -60 -59 -61 -62 -61 -61 -62 -61 -57 -58 -58 -53 -54 -53 -52 -52 -51 -52 -52 -51 -57 -58 -57 -59 -60 -60 -58 -60 -59 -61 -62 -61 -60 -61 -60 -57 -58 -58 -60 -61 -60 -185 . '9 -198 -192 -205 -205 -191 -204 -204 -190 -204 -203 -190 -206 -205 -63 -59 -58 -99 -145 -144 -219 -205 -204 -ZOO -2 II -209 -ZOO • -211 -209

> f-j

~ I

C/J IJ1 ~0

1j Ill

()Q (1) -0 >f:>.

0 ...... -IJ1 0

Page 121: PSEP Qual, flight acceptance and Qual retest thermal

TABLE 6-8

PREDICTED TEMPERATURES FOR FLIGHT MODEL WITH A MIRROR SOLAR ABSORPTIVITY OF 0. 08

Thermal Model Node No.

5 6 7

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

IN A REAL LUNAR NOON ENVIRONMENT

Node Description

PSE Insulation Shroud Heater #1 Insulation Shroud Heater liZ Insulation Shroud Second-Surface Mirrors Left Insulation Mask Second-Surface Mirrors Right Insulation Mask Second-Surface Mirrors Second-Surface Mirrors Left Solar Panel Back Right Solar Panel Back Left Solar Panel.Front Right Solar Panel Front Isotope Heater #1 Isotope Heater #Z PSE Mounting Plate

PSE Sensor

Ter:!!E_eratures - ° F No Dump I i 0 Watt Dum

No Prot. I Prot.

1~

lU lH 138 n 128 u 145

'" 195

'" 1n 1n In 162 lW 163 lU 10 145 lU 138 lH 138 139 145 10 130 138 lU

1~

IH 1M 1~

In In 196 1M lH

'" '" '" '" In 171

'" 173 1% 1n 1M 19 In 1n In 10 1M 1~

'" 10 152

No Prot.! Prot.

108 150 127 175 129 179 130 139 56 187 122 131 66 t95 139 149 138 149 195 196 195 196 197 197 197 197 170 179 156 165 132 141 156 165 139 150 142 151 140 149 136 146 131 139 130 139 131 139 133 142 139 148 136 145 124 133 13-1 139 137 146

Thermal Model Node No,

~

51 52 53 M 55 56 n H

" 60 61 H ~ u 65

" H 68

" 70 71

" 1M 116 117 118 119 1~

121 122 123

'" 125

Node Description

Lunar Subsurface ~odel

Lunar Simulator or \1oon Chamb!"r ( ryowall or SpacP Th£>rmal F1alP

Temperatures - G F No Dump J 10 Watt Dum

No Prot. I Prot. I No Prot. I Prot.

--~ -,

-4

'" H-1

114 l·H 17·1 .:rH .: ~~ J ,,

-1 :·;

'" ~ 11'> 136 152 J(d

162

·~ -4(>0

1~

l'i-3 IH I~

I~

H'i l~t.

14M

'" l~Z

._:-,

-2.' -4

i4 H4 114 l·l~

174 204 zq !'X -L1

-1 .'7 <0

9/)

ll'i

137 152 161 162. zso .4(,0

157 !GZ ISH J -)7 l'i{,

J )~

I I c,;

I 'iL }"iJ

-l">

-4

;4

X4 ll4 144 174 !.04 2H l'i9

-I

'<0

IJ•, ]:7 ,, I ' , -~ I t' ~ z-,rJ • t• n I >• J.t-,

14! 1~:\

141 I ;q

1 )~ j; . ..,

I,, I;:,

-25 -22 -4 2Z

'" H4 ll4 1 J.~ li..J

204 214 159 -23 -I .'7 ,,()

'H)

!If, 1n ]'>\

1•.2 lt.4

.: 10

-1•·0 1·17 I '4 J',J

loL

l'il 1·1,'-. 1 r; ].J.7

l·l·l-144

Thermal Model Node No.

IH IV

'" '" IW 131 1 JZ !JJ !M 130 1~

In llli

ll9 140 141 143 144 145 14()

147 14H 149 J(,O

161 lh4

Node lJeffcription

Thermal Plate

! P.c.u • P. D.U. Analog Multiplex Conv. P.S. E. Command Decoder Data Processor Command Receiver Transmitter A Transmitter B Timer Diplexer Filter Diplexer Switch Primary Structure Front Primary Structure Rt. Side Primary Structure Bac-k Primary Structure Lt. Side Primary Structure Bottom Thermal Bag Interior Thermal Bag Exterior PDM Panel Insulation PDM Pane 1 Front PDM Panel Rear

Temperatures - &F No lJumtJ I 10 Wa.tt Dum

I No Prot. I Pi~_!_· I l'fo~-ProL 145 14Z 137 145 180 168 16! 165 152 154 148 137 150 144 139 144 1S3 168 !58 169 157 146 155 163 169 169

1M 1" 1~ !53 1M In 170 174 1~

163 1~ 1~ lH 1S3 10 153 1M 1~

IH

'" In 154 158 !W 169

'"

139 148 136 145 130 139 137 146 157 166 160 169 154 163 159 168 146 !55 147 156 140 149 130 139 142 151 136 145 133 14Z 136 145 154 154 168 169 1&6 166 169 170 158 !59 139 148 155 158 178 178 193 193 193 193

...... '"d!l> I llJ 1-j N O'Q '7 \.N CD ;:::., I I -J ...... oo OOU1

U1o

0

'""' ...... U1 0

Page 122: PSEP Qual, flight acceptance and Qual retest thermal

: : . ~ )

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST H.EPORT

NO.

ATM-850

PAGE l 06

RI!V. NO.

OF 150

DATE l - 2 3 -7 0

All values in Tables (>-2 through (>-7 are based on a second­surface mirror a/ E of 0. 0(>/0. HO. The effective n1irror solar absorptivity (ad is expected to degrade to 0. OH over the life of the PSEP /mission in the absence of contamination fron1 the LM ascent. Predicted operating temperatures for the Flight model with a mirror a of 0. 08 in a real lunar environment are presented in Table (>-8. As discussed in Section 2, this degradation of mirror solar absorptivity will cause an increase of about 6 to 8 °F in lunar noon thermal plate temperatures.

6. 2 Thermal Effects of LM on PSEP

6. 2. I Heating of PSEP by_ LM ~~ent St~Exhaust Gas Plume

Heating effects of the LM ascent stage exhaust gas plume on various PSEP components were studied for deployment distances between 50 and 100 feet from LM. Based on the study results, a plume heating protection system was installed which consisted of two layers of 5 mil Kapton over all PSEP exterior insulation surfaces oriented normal to the exhaust gas flow and one 5 mil layer on exterior insulation surfaces parallel to the flow. The insulation which had exposed surfaces covered with Kapton are I) the aluminized mylar around the mounting plate edge, 2) the isotope heater shrouds and masks, 3) the PSE shroud, and 4) the mounting plate masks.

References 6, 7 and 8 (published in May, 1969) contain details on the results from this study. The following highlights from the referenced documents are presented in Figures 6-1 to 6-3.

l. Figure 6-l. Maximun1 plume heating rates versus time after LM ascent stage liftoff at PSEP deployment distances of 50 ft and I 00 ft from LM.

2. Figure 6-2. Predicted temperatures of insulation materials subjected to plume heating at 50ft and 100ft deployment distances from LM.

3. Figure 6-3. Predicted temperatures of various PSEP materials subjected to plume heating at a I 00 ft deployment distance from LM.

Page 123: PSEP Qual, flight acceptance and Qual retest thermal

1 A TM-850, Page 107 of 150

inl n Q li'-R §

;:::F

7 , __ ., ·c:r-c;=

~ f-- f--c_

i ~'~ ~= f-- --C-- 1 L ' ,_ ~=

~ 1-'-t- f-.A-~-~

• ' ~~ ~ .. f---F

~ 1'·-: ;-·=-t'

L:c;:::c: _,_ '-'· t-- T-L f·+- 1---r-..., ' ~::=:-; .;...-;- F-::::;c-_;:__:

? -1-1

--: 1- 1- ---i--- f.:.; '+· L

I

u I I I ~-~~ _j IV I

[/J ' ·:

,11 nO -·- f-" I I bi¥' ' ~Q -gee

::l 8 ''"-" r:Oc. ~ 7 r· -~

~ .. ' ~= t;f : :ox ~': ~ ==

~. ;_;_: ~;::::=::::§ r=c:=;~~ ·::.=

...... ~Ec tc~:-.~ ~~= :.- !='

~ 4-~ ~ '.

ctl ""' IV -~ 1'::1 -::;::: =-'===

:r: t:=ri . . :_:;~£:3:- '"-~+ t~•--

IV

s ' t- -' 1~;:::':_;::~ ::l ......

' P-t I

I '

' i !-+ ~-i I

I

ua.:.l I I\ I I I

Q

" ~ ~ 7

" •

• ~~~ R ~

' ~f

I

10 1 7. Q

" §~ 7

~

• •

.,

.,

10-~ -2 2 6 10 14 18 22 26

Time After Lift-Off, Seconds

Page 124: PSEP Qual, flight acceptance and Qual retest thermal

~ 0

~

Q)

'"' ;::1 ...., ro '"' Q) p..

a Q)

E-t

1200

1000

800

600

400

200

-- PSEP 50ft from LM Center

0. 25 Mil-. \

-0.5 Mil Mylar

?t.Jf'. .LV.l. '-"~l.J.I,.~~

I ' ~ V //- Mil Kapton 1 i j ' I t ~- I I I \ i ij I ! I ! 1 I i f !, I : 1 Notes: I i '! i l I ' I . _ , l 1 I 1 1. The 5 and 10 Mil KaF ' I ' I I I ! ·, I ! , ; curYes are for Kapto 1 /iJ !

1 attached to the sides

I 1 I I ; j! PSE Shroud.

,-- 2M il T~iflon

l j /i J I 2. The different initial 1

j 5 Mtil K:1 nton---. / ~~ j i ' l_j ture s are due to vari

, • J 1 l·vv-- j ~ ! : ~ ra~iatio~ properties I I A\ ! !/ ~ ! onentat10n of the rna i: t' \ ,/ ,. 1 i ;~I I I ' : I I • / ' r---l- ' ~--- I t I i

· 1 1 I lL" __ v ~-- ----~-- - t--- -k.. :::--;---_1 i 1 I

''j /V r;:r/' \' . ~~; l---1 ! I /1 /V <// ! ! : :~j~

ton n

of the

empera­ance in and erials.

I I .J t?/ ~~ .J --- - -~-\ -~ -r- ,___ -,-+ --l- -l- 2:_=~--=t""=~ I I I ,tV ' .--&' -- :;;.- - - ~ \ i I ' I : ' I -=:::: I ' i F ~,.,...- .-..- f--- liD Mil Kanton , ! I ' :I v -"/ --- I i ')/WI/~ --- II I/ ~ f.-- i 1 3. The initial time is -0 ~r'J:::.--:::- 7 I seconds since the LM

1 t[j)/ __ // I ascent engine burns }P ! ! approximately 0. 5 se

. 5 > ;...j

~ I ~ \.11

conds o m the ~ ! I 1\ i. ' . before separation fro

L_ _ _L__ _ _L_ _ _._ _ __L_ _ __,_ _ __,'----'----'-----'---L_ i _ __ ~ _ _ _ des cent stage occurs, 0

-2 0 2 4 6 8 10 12 14 16 18 20 "C Ill

():< Q Time After Lift-Off, Seconds

Figure t':s-:Z.Temperature versus Time After Lift-Off for PSEP Insulation Mask and Shroud Materials

...... 0 ();

0 "+> ...... Vl 0

Page 125: PSEP Qual, flight acceptance and Qual retest thermal

r:r; 0

~

<'.) 1-< ::l ~

Cll 1-< Q) p..

E Q)

f-4

1000[

800~

600 I

400

200

0 -2 0 2 4

Note:

Curves Apply for PSEP at a distance of 100 feet from the center of LM.

I

I ! '

8 10

! I

! I

~ ! I

! : ! i i - S 11 i -G !W hi tl:> P ;;~ nt

r - -:- - i

I J i

~i . '

I I ! I I t 1 I ~ J

I l -+----t I

l \' ' . ' I

, '+ Co:fiifngl r9-4q-second-fur£ajce Mirrors ' I I . ) I ! i i I I ! ! :

I I ' I I ' , I I I I I I ' I '

I I I ; I ! I I I I I I I ' r : · 1

12 14 16 18 20

Time After Lift-Off, Seconds

Figure 6~3, Temperatures of Various PSEP Components versus Time After LM Lift-Off

:t:­>-3 s: I ';IJ IJ1 0 ~

-o Ill ~

CD -0

"' 0 ,.... ,_. \Jl 0

Page 126: PSEP Qual, flight acceptance and Qual retest thermal

: ~, I • PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO.

ATM-850

PAGI 110

ltiV. MO.

OP 150

Aaroapace Systama Dlvl8lon

DATI 1 -23-7 0

6. 2. 2 Thermal Radiation Effect of LM Descent Sta~ on De}:?loyed PSEP

The effect of thermal radiation from the LM descent stage on PSEP temperatures were studied. The purpose of the study was to establish how far PSEP should be deployed from LM in order to minimize the heating effects. The study results, which are presented in Fig-ures 6-4 and 6-5, indicate that the LM descent stage has little effect on PSEP at deployment distances greater than 25 feet.

The analysis was performed with a simplified version of the PSEP Flight thermal model with no plume heating protection, and the figures are intended to illustrate temperature differences only. Results are conservative since it was assumed that the LM surface facing PSEP was also facing the sun.

6. 2. 3 Temperature of PSEP in LM SEQ Bay

The following two studies were conducted to determine the effect of the LM SEQ bay on PSEP temperatures.

1. Determine the steady-state average temperature of the PSEP thermal plate at the time of withdrawal from the SEQ bay for a range of bay thermal emissitivities from 0. 3 to 0. 9. Reference 9 presents the details of this study.

2. Determine the PSEP transient thermal response during LM launch, flight, and lunar touchdown in order to establish a maximum predicted thermal plate temperature during storage of PSEP in the SEQ bay. This study was also done for a 0. 3 to 0. 9 range of SEQ bay emissivities, and the results are contained in Reference 10.

Results from both studies dictated that the internal SEQ bay compartment walls be coated with a high emissivity black thermal coating.

Page 127: PSEP Qual, flight acceptance and Qual retest thermal

ATM-850, Page 11 1 of 150

' Solar

220 i-

~ Radiation

\ PSE· Mounting Plate

\ LM----. Lunar Su

1 ~x~ PSE

:rface 200

~ O· 180

:1 I -\ ~ '

\,\ 1\ 9 = Sun angle with res~ect to normal

to lunar surface (d¢grees)

\\ 1\\ ' '

x ::: :Qistance from LM ~o front edge

r\\ of mou~ting plate (feet)

\ \ k 1\ 1'\ ~

t--- oo ~ t--- 30°

\ "" ~ \ .......... ~ t--- 60°

i

1.\. ~

100

"· i

--! """"' ~ l I r---j_ ' 9P0 .. J: ! . 80

: Distance (,t) ftorri LM to PSEP - ft. ! ' ' :,_ ' :, '~ ~ • L,.

·-: t " ·: • ' ! I

Figtir~ 6-\4• iPSE I' Mounting Plafe TeiJ1perature; vs; Dista~c~

j ·'!

Q 2/Q ; 3_0 40 ~0

"· . !>e~w~en;LM and PSEP f9r: yarious Su~ Ap.gl;es.

. .,

i Zc/18/169 ~ ' ; .

i l

l . . .. _L .. : .... L - i.. ...

' ' ,I . i ~... ·~·"'"'·~-: ;, .. :...~ l .... ....l,. ~~ ........ ,.:J

Page 128: PSEP Qual, flight acceptance and Qual retest thermal

~0~---1-----t----18 \ --1---+----t

ATM-850, Page 112 of 150

Solar Radiation

_PSE. 1-----41----+---1------ Mounting Plate

c .

a = Sun angle with respect to normal to lunar surfa,ce (degrees)

x = Distance from LM to front edge of mounting plate (feet)

I

-6 t--/.J-1 J--+----1----+---+-------+---+----+-----r---

I--J"---t-·---t-----~---- r-----t-----t----r--------1------+---l

I ~ -10~--4-~-+--~~---+---~---+----r---~--~~-

-14L---J----L--~---L----L--~----~--~--~--~ 0 1.0 20 30 40 Sb

Distance (x) from LM to PSEP - ft i Figure 6-5 .. Heat Transfer from LM to PSE Mounting Plate vs . 1

Distance between LM and PSEP for Various Sun 4,ngles · l ' ' ' '!

j I

. '

,,J.,, .._ .... 1.....-., •. , ••M••.,.

2/18/69

Page 129: PSEP Qual, flight acceptance and Qual retest thermal

: : . . ~ > ( !

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO.

ATM-850

PAGI 113

RIV. NO.

0, 150 Aeroapace Systems Dlvlelon

DATI 1-23-70

(>. 3 PSEP Thermal Design Studies

The Passive Seismic Experiment Package (PSEP) was thermally designed to maintain thermal plate temperatures below 140 °F during the lunar day and above -65 °F during the lunar night. The thern1al con­trol system is passive, with radioisotope heaters supplying lunar night survival power when the electronics arc not operating. Solar cell panels, which are positioned at a distance from the control station, provide power to the electronics during the lunar day while exerting minimal influence on the thermal control system. Some of the studies which con­tributed to the final thermal control system design are discussed in the following paragraphs.

6. 3. 1 Thermal Control Configuration

At the beginning of the PSEP program a number of parametric studies were performed to establish a thermal control configuration. Areas investigated were:

1. Exterior surface coating of PSE mounting plate (white paint and second-surface mirrors were primary candidates).

2. Insulation masking required on top of mounting plate for control of day-to-night temperature swing.

3. Amount of isotope heater power required for lunar night survival.

4. Active versus passive thermal control systems.

5. Orientation of solar cell panels with respect to the Central Station.

The results from these studies were preliminary but formed the following guidelines for the final thermal control configuration.

1. Second-surface mirrors maintain required component tem­peratures and provide the best day-to-night thermal plate temperature swing.

Page 130: PSEP Qual, flight acceptance and Qual retest thermal

NO. RIV. NO.

: ; . I • ATM-850 PSEP QUAL, FLIGHT ACCEPTANCE

AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT ,AGI! 114 Of 150

2. Central Station components should have the smallest: possible "views" of the solar panels.

DATI 1-23-70

3. Required isotope heater power would be about 30 ± 10 watts.

4. Optimum radiating area of mounting plate exterior coating would be 2. 0 ± 0. 5 ft2.

5. A passive control systern would probably be adequate.

Reference 11 presents details on the study.

(>. 3. 2 Thermal Isolator Design and Selection

An analysis was conducted to design and select the fasteners which would join the thermal and mounting plates and which would satisfy structural and thermal requirements. The thermal goal was a design which would thermally isolate the thermal plate from the primary structure. Unfortunately, in order to satisfy structural requirements a nine-bolt fastener design was selected which barely met minimum thermal require­ments. Analytical predictions and T/V chamber test results showed the resulting total heat leak through the fasteners at lunar night to be about 4 watts. This heat leak virtually erased any margin of safety in the overall thermal design for lunar night operation. Details on the selected fasteners and on alternate designs which were considered are presented in Reference 12.

6. 3. 3 PSE Mounting Plate Skin Thickness Study

A parametric thermal study was performed to determine the effect of PSE mounting plate skin thickness upon temperature gradients and average temperatures of the mounting and thermal plates. Results .showed that increasing the ALSEP design skin thickness of 0. 016 inch to 0. 032 inch would produce an effective reduction in temperature gradients with a small weight penalty. A corresponding slight decrease in average mounting and thermal plate temperatures would also occur for both day and night conditions. Consequently, a 0. 032 inch mounting plate skin thickness was incorporated into the PSEP design. Results from the parametric study are contained in Reference 13.

Page 131: PSEP Qual, flight acceptance and Qual retest thermal

NO. RIY. NO.

: ; . . ~ ' '

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

,Aaraepece ·~Divlelon

,.AGI 11 5 OP

DATI l-23-70

6. 3. 4 Isotope Heater Locations and Masking Pattern

A series of parametric studies were conducted to determine the optimum locations for the two isotope heaters and the mounting plate insulation masks. The results fron1 these studies are presented in References 14 and 15 and established the locations of the heaters and masks in the final PSEP design.

(>. 4 Heat Leak Summary

Table (J-9 compares test and predicted heat leaks across the Qual model insulation masks, shrouds, isolation bolts, and cables while Figure 6-6 depicts the predicted heat flow distribution at the thermal plate for the lunar noon and night equilibrium conditions. "Test" heat leaks were determined by dividing test temperature differences by calculated resistances. Consequently, some error may be involved in these values. However, errors arc expected to be small since predicted and test temperatures generally agreed very well. The exception to this was the temperatures on the exterior surfaces of the insulation masks and shrouds during lunar noon. Predicted values were higher than test values since the analytical thermal model assumed a solar radiation level of one sun on the masks and shrouds whereas the level during testing was less than one sun on these components. The reason for this low level is as follows:

Solar radiation during testing was simulated by tungston filament quartz lamps which do not emit energy with the same spectral distribution as the sun. Emitted energy from the lamps contained a much higher percent­age of radiation in the infrared range than does solar energy. Consequently, the power level of the lamps or energy emitted by the lamps was established based on energy absorbed by the second-surface mirrors; i.e., when the amount of absorbed radiation equaled 0. 06 times 442 Btu/ftzhr, the lamps were assumed to be emitting at a level equivalent to one sun. Since the mirrors have an infrared emissivity of 0. 8 compared to 0. 6 - 0. 7 for the masks and shrouds, the masks and shrouds did not absorb sufficient radiation to simulate the condition of one sun incident energy.

150

Page 132: PSEP Qual, flight acceptance and Qual retest thermal

PSEP QUAL, FLIGHT ACCEPTANCI< AND QUAL RETEST THERMAL VACUUM CHAMB F:R TEST RF.POR T

TABLE 6-9

ATM-850 I 116

PAGE Of

DATE 1-23-70

COMPARISON OF PREDICTED AND TEST HEAT LEAKS FOR PSEP QUAL MODEL TNT /V CHAMBER

Heat Leak - Watts Noon (No Dump) Night

Item Predicted Test Predicted Test

PSE Shroud -0. 13 -0.62 -0.45 -0.49

Heater # 1 Shroud -0. 14 -0.34 -0.33 -0.43

Heater #2 Shroud -0. 11 -0.35 -0.31 -0.43

Left Insulation Mask -0. 16 -0.23 -0.41 -0.37

Right Insulation Mask -0.09 -0. 13 -0.30 -0.22

Isolation Bolts f-0. 45 +0. 37 -4. 12 -4. 13

Thermal Bag +0.35 +0. 35':< -0.49 -0. 49>:<

Electronic Cables -0.27 -0. 27>:< -1. 65 -1. 65':'

PSE Sensor Cables -0.03 -0. 03>:< -0.38 -0. 38::<

Total -0. 13 -1.25 -8.44 -8.59

>:<Not measured.

Note: A minus sign designates heat flow away from the Central Station components.

1 50

Page 133: PSEP Qual, flight acceptance and Qual retest thermal

XXX Lunar Noon (XXX} Lunar Night

Through Masks and Shrouds

-.63

( -1. 79}

Through Isolation Bolts

+.45 (-4.12}

Electronics + Heaters

Notes:

+62.24 (+30. 53)

1. All values are in watts

2. No PDM dump at lunar noon

/\. TM -H50

!'age 117 of I r.;o I -L·1-70

Lunar Surface, Shrouds, Solar Panels

+1. 06 Solar Radiation

+17.60 (0. 00)

( -4. B)

Through Thermal Bag

+.35 (-. 49)

Space -80.06

(-17.82}

Through Cables -.30

( -2. 03)

+ Into Thermal Plate - From Thermal Plate

Figure 6-6. Thermal Balances on PSEP Qual Model Thcrrra.l

Plate in T/V Chamber Test Environment

Page 134: PSEP Qual, flight acceptance and Qual retest thermal

: ; . . PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

MO.

ATM-850

PAGI 118

RIV. MO.

Of 150

DATI 1-23-70

This situation is reflected in the shroud and mask heat leaks in Table 6-9. Note that for lunar noon the test heat leaks are considerably higher than predicted values. The explanation is that a greater tempera­ture differential existed between the surface adjacent to the insulation interior and the exterior insulation surface during the test than for the predictions. The exterior insulation surfaces were cooler at noon during the test than the predicted values because they received less than one sun of incident solar radiation.

Conversely, since no solar heating was simulated at lunar night, test and predicted temperatures for exterior surfaces of the masks and shrouds agreed quite well)with a resultant excellent correlation between predicted and test heat leaks for this condition.

The analytical thermal model was never corrected to reflect the test level of solar heating on the masks and shrouds since the heat leak discrepancy causes no significant alteration in thermal plate temperatures at lunar noon. The critical large heat leaks occur for the lunar night condition where test and predicted values compared very favorably.

Table 6-10 presents predicted heat leaks for the Flight model on the lunar surface with the plume heating protection system installed, and Figure 6-7 depicts the predicted heat flow distribution at the thermal plate for the lunar noon and night equilibrium conditions.

6. 5 Lunar Environment Simulation

6. 5. 1 Parametric Study of Lunar Environment Simulation

A number of aspects of lunar environment simulation in the T/V chamber which can cause model test temperatures to vary from anticipated temperatures for real lunar operation are listed below:

1. Size, emissivity, and temperature of the lunar surface simulator

2. Size, emissivity, and temperature of the space simulator { cryowall).

3. Simulation of solar radiation with tungsten - filament quartz lamps.

Page 135: PSEP Qual, flight acceptance and Qual retest thermal

""· : : . . PSEP QUAL, FLIGHT ACCEPTANCf~

AND QUAL RETEST THERMAL VACUUM CHAMBJt~R TEST REPORT

ATM-850 '

PAGI 119

Aaroepace ,r ·Systems Division

DATE 1 -23-7 0

TABLE 6-10

PREDICTED HEAT LEAKS FOR PSEP FLIGHT MODEL WITH PLUME HEATING PROTECTION IN A REAL

LUNAR ENVIRONMENT

Heat Leak - Watts Lunar Noon

No Dump No Dump 10 W. Dump 10 W. Dump Item a= 0. 06 a= 0.08 a= 0. 06 a = 0. 08

PSE Shroud +0.02 0 +0.04 +0.01

Heater # l Shroud +0.01 -0.02 +0.02 -0.01

Heater # 2 Shroud +0.05 +0.02 +0.06 +0.03

Left Insulation Mask +0. 11 +0. 10 +0. 13 +0. 11

Right Insulation Mask +0.02 +0.01 +0.02 +0.02

solation Bolts +0. 41 +0.25 +0.68 +0.51

Thermal Bag +0.21 +0. 10 +0.39 +0.27

Electronics Cables -0.29 -0.35 -0.07 -0. 14

PSE Sensor Cables -0.04 -0.05 -0.02 -0.04

Total +0.50 +0.06 +1. 25 +0.76

Notes: l) a refers to mirror solar absorptivity.

2) A minus sign designates heat flow away from the Central Station components.

Lunar Night

-0.46

-0.34

-0.32

-0.35

-0.04

-4.20

-0.49

-1. 68

-0.38

-8.26

150

Page 136: PSEP Qual, flight acceptance and Qual retest thermal

XXX Lunar Noon {XXX) Lunar Night

Through Masks and Shrouds

+.21 (-1.51}

Through Isolation Bolts

+.41 { -4. 20)

Electronics + Heaters t6l. 90

(+ 30. 00)

Notes: 1. All values are in watts

ATM-850 Page 120 of 150 l-23-70

Lunar Surface, Shrouds, Solar Panels +6.9j Solar

Radiation

+17.93 { 0. 00)

(-4.8u}

Through Thermal Bag

+.l1 (-. 49)

Space -87. 30

{ -17. 64)

Through Cables -.33

(-2. 06)

+ Into Thermal Plate - From Thermal Plate

2. Kapton plume heating protection system is installed

3. No PDM dump at lunar noon

Figure 6-7. Thermal Balances on PSEP Flight Model

Thermal Plate in Real Lunar Envrionment

Page 137: PSEP Qual, flight acceptance and Qual retest thermal

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO.

ATM-850

121!

RIV. MO.

OP 150

DATil-23 -70

Several parametric studies were conducted to determine the variation of thermal plate average temperature with the average tem­peratures and thermal emissivitics of the lunar simulator and cryowall. An additional study showed the effect of solar radiation simulation on thermal plate temperature. The study results cover a 15 to 40 watt range of electronics thermal dissipation and are based on the T/V chamber lunar simulator and cryowall dimensions.

Figures 6-8 to 6-12 show thermal plate average temperature as a function of cryowall and lunar simulator average temperatures. Since there is no electronics power dissipation at night and since the lunar simulator average temperature had always met the test goal of -300 "F at night, only thermal plate temperature versus cryowall temperature was plotted for lunar night (see Figure 6-10 ). Variation of thermal plate temperature with cryowall and lunar simulator emissivity is shown in Figures 6-13 and 6-14. No curves are shown for lunar night since cryowall and lunar simulator cmissivities have negligible effect on tem­peratures for this environmental condition. Plots of thermal plate temperature versus the level of simulated incident solar radiation are illustrated in Figures 6-15 and 6-16.

Results from the studies generally show a 1. 3 °F change in thermal plate temperature for each one watt change in energy absorbed by the plate. Reference 3 contains additional discussion on the effects of environmental simulation.

6. 5. 2 Lunar Environment Simulation Results

6. 5. 2. 1 Lunar Simulator and Cryowall

Measurements taken during Qual and Flight testing revealed the following average temperatures over the lunar simulator and cryowall surfaces:

Page 138: PSEP Qual, flight acceptance and Qual retest thermal

;-·

,. ' '-----:.~-~-

l

j

Ji8() r--!

~ . ·-.u-. I.

Cryowall Average Temperature - °F

·Fig\lre 4~ 8~ .. Th_ermal P_ late A.verage Temperature vs Cryowall Average Te~_perature for Various . Levels. of Electronics Thermal Dissipation at Lunar Noon in T /V Chamber

:..; > :) ., ..... ~ ~

I 00 \JI 0

w

"'C Ill

(JQ

~

.... N N

a .... 1.11 0

Page 139: PSEP Qual, flight acceptance and Qual retest thermal

~ 0

(1)

'"' .8 n:l

'"' (1)

0.. s (1)

1:-i (1) bD n:l

'"' (1)

> <

(1) ... n:l .......

P-4 ....... n:l s '"' (1)

..c: 1:-i

180

170

160

150

140

130

1-ZO

110

ATM-850, Page 123 of 150

Lunar Simulator Average Temperature =• 250°lf Cryowall Thermal.Emissivity"" . 914 Lunar Surface Simulator Thermal Emissivity ::1 • 891 Lunar Simulator Lip Thern1al Emissivity= . 8Z6

~·-· ......... -- ----·--· ...... ,---~-- .... -- ..... ·---·- ..... ~~·-·-·~ r-· -·-l 1-- -- ---- --- ----- _l _____ 1---· ·-·--·-··· -- -··- f-. -100

_ ....

I /

---~ 1--- 1------- ---·

--t--/

~-:..--/ _, .. +.16

1-------- f.-----· -·,.,.. I/ t --1---- ... . ··-· v -ZO / /,/ I L ..c:.:' ---- ---- -·--;----r---------v f---·-- ----.. ____,c .... -300

/ , .. ,.,. , .. / / v ,-- ,..

j'

v v v __...~

./ / v _,.,.,..v f--··---·- --·-

/ v v vvv

/ / ~ / / v·· v v v . ' '

v NOT~S: : · ; . / / 7./

: ,, : ! ; 'I , tl·: : , ·:. ,. .1:

v / "" i lt· . Va.lue~ .. .fo!' ~il~ .. Q~~.a .th~

/ v J : 'di~ sipaltion !'re. iln .. a.d~tiQ~ /

~ / v f-· , .. : . :t~t--~o %-~r~ :~£ 1$.q:to~~ .~~· ,- 1 .. BlPCij 1 n., · . , . . . . . . ; /

I ' 1 • ' 1•

/ ! 2. "Dash~d 11 l:iines :repr.:a~'nt: /

·---->-·-·· .. ---- - '

/ ' e~trapolatici>n of cur~ee· ··.

/ : I _beyqnd calculatQd va ues. --- --_,,

- ·--- ·-,_ __

--~- ·--·-r--· --I

·-·--·-!'----- -i

I

;, ,, : '

. : .~4 118· 1

zz ~6 , · 3P I 3~, . . : l'~ :

I l) 'E~actl·oni.cl!l 'llh~rma~ Dhlsipa~b~ -[ Wat~• IFigu~~ Q; .. 9·. 'Iherm~l Pl~tt~ Averagtl TJmpC:l~atuJe :vsj Ehl~tron.c:t$.

• 1 I 'rh~r~~l OiJsipation for V;ario'jls C~ydw~ll'Ayera~·e;

· \ Te:pe~atur;s at, Lunrr N~on if ~~r ~h~Jll!beir : J :'

. l

~ 0

Page 140: PSEP Qual, flight acceptance and Qual retest thermal

.. , ---

I I

I 1 l i I I

j I I I I I i I

I i I ' i l I -?UU -:150

Cry~wall_Av:er~~e _Temp~rature - °F . - ~-- . . --··- -·· -c··-'·-··-T.-c:~.:.:... _-- .. .:.:..;._

Figti-~.6-:lll •. -.Ther-mal Piate Av:erage Temperature vs Cryowall Average Temperature -- - '- · ·· ·· · ---- -• ·· -- -- - ·· ---at -Lunar- Night in- T /V Cha:mbe r -

I I I

l ! I

I

' ; i

I -100

I I

> 1-j

3: I (1:; \.11 0

'U Ill

G'Q ~ -N

*"' 0 ..... -\.11 0

Page 141: PSEP Qual, flight acceptance and Qual retest thermal

il80

170

~ 0

Q) 160 ,...

.a Ill ,... Q) p.,

E 150 Q)

f:-4 a> bO Ill ,... a>

: 140 > < Q) ... Ill ........ 04 ........ 130 Ill

E '"' Q)

...r:::: f:-4

lZO

.'.J .. :. !·-

ATM -8.50, Page 125 of 150

Cryowall Average Temperature :!. -300°F Cryowall Thermal E:m!i.ssiv'ity ::- . 9141 Lun:ar Surfacie Simulatpr Thermal Emissivity ~ . 891 Lunar S:Hnulcitor Lip Thermal Emisaivity" . 826

'j

NOtES: i ' I

1. I Val~es f9r electrq11~cs thcr~al Gtis sipation ar~ in I

, addiition to the 30 }Vatt~ of isotope heater dissipatioln.

2 110 h d'' li 1 s bt . db t I • i as e nee represen va.ue 0 a1ne I, y 1 '

; extr;a po la tion of c~rve~ in ]1'igu r~. i :

- ---,..-..--' --t-····--' :

-~·-

1--·---- ··-- ---- '--- ..

rx;O·-~·~ --~---

~-._-

··---- ·•· _..__ - ~---·- ' ' ,_.....-J.+. ~:5'

~--~-...;.-- ~ ~------: ~--

__... ·~ - :

1-.:.---..:..-·- ~0 ~----

' ~

~-- --,_ ~--· --~--- ~ I--

f-.--~ ~ - ·-r-- bs-

~ ~ ~ 1-'

~ --1--- ---::: ~ ~

~ ~ ~ ~o:

..--:-~ --f'- ·-- - ............... ~

-· ~ ~

' L--~ - 15~ r-· ~ f'----- _::..;.;-

~ f.-- ~:.--

1--- ~-;.--...... _ .. ~ ......... ~ ... ----. --~~t-=-~ : ~~=-=-~--=

I .

1-------- ---~- 1--····· __: __

c-···:-- .. ·~

... --~----I'

' ' -·--1--·- f--:--· ,....--·-

i ' zo 230 2AO zs.o 44>0 ' 2.7i0 i Zf 0 , I. I I

l ' "' !

Luria~ S~mu1Jtor Aver~ge Tempbr'atJ,re -1 or I .

,I ' ' ' I l

. TI:J.ei"Illjal'Plate Aver~ge Temperat~re v~ Lu*ar simu1~t~r Ayerage T'empetature folf Various 'LevJl.s' ofit'Iectro~ics Thermal Dissipation at ~il.nar, Noo* in t/V ¢hamber :.

·-·j··-·

IC .f.> .f.>

~ I

~ 0 1"'4

.f.> Ill p., 1"'4 IC Cll

iS ~-E ,...

~ 1:-4 Cll u .... 5 '"' .... (;) Q) ~

!:t.l

Page 142: PSEP Qual, flight acceptance and Qual retest thermal

~ 0

(1) ,... :::! ... C1l ,... <I) p..

s <I)

~ (1) 01)

C1l ,... (1)

> < (1) ... C1l

....-1

P-4 ....-1

C1l s ,... (1)

..c: ~

180

---

170

160

I;{)

140

130 r----r·

/

120 ----//

110 ,14

--.. --

ATM-850, Page 126 of 150

I I I

bryo:wall :Av<:~11ag<1 1'emperature :1 -~00°F C ryowall ttherma l .Emissivity :.: .· 914 Lunair Surface Simulator Thermal Emis si-.rit:y ::: . 891 Luna·r Simulator Lip Therm~l Emissivity ;, . 82:6

I

··- --- ···-~. -·---- --~--- --~---~= .. - .. ·--- --- --·-·

--- - ----~~

--- ---- -·-·· ·--·---- ----- ---

--·-.. -~ _;... __ ~ -:-~-- ------ --- --·-·-.. ·--~-- .. -· ·-- --·- __ ... / 2.80-

!--' .....

--· e.---- ;/ . , - . ./ 250-v,.... ,.., . L~ _,..~

---- -· ~ -··---- --·--~-- [7 --~-;..-""·-··-·~:.,... zao-

-·-f-· ·--v --- ./ .:L.. /- . /

V1 ,

-

/ v/

/ -·--- /

/~ 7/ _/_

··-

,liB

... / v. -· ·----1/

/-__ /-/ t·-----

~·Z . !

I

:./ ·--v /

7 /

v

h--.-;·

I v/ I ~t::::r-~--/ I v ----- .I .

NO'llES: : . I

1. Values for e lec:troni:c s therm~ dissipation are in additidn to t 30 watts of isotope h.eate:r ' I

dis sip;ation . I

I ;

I , l

2. ''Dashied'' lines :represent F ' , !

extf;o polation of curves beyoncjl c~lcuLated values. -

I I 1 3~

I

Electronics Thermal Dis $ipat~on - iwatt:s ' .

a-

Figu:te .. 6•lZ .. Th~rm~l Plate Average T~mperature vs Eledtronics Thermal Dissipation for Various Lunar Simulatoir Tcmpeirature~ at Lunar Noon in T/V Chamber .

Page 143: PSEP Qual, flight acceptance and Qual retest thermal

Cryowall Average Temperature = -300°F

. ·-. -· J-!. --· --14~- ~ v ' ~ > . . . <- <: f ~

. ··---- ----~--······-·-·-··-··· --~ .

:.. ----- 8 -- . - ·- -«t--. ·- -·

.: a:. . -l~t---t---t---t--t--='-t-==--t-----t--+---!---t---t---F==--........;1=--t---t---t ~ : tV. r

-.a . --- ·-- +----'-'---L---L--~---l----1----J.-_..__~---+--1----+--~ NOTES: ..t:: ..

- · 1-i----:--fl.-{F ---1-; --- Values·fcnr e1elitrunl<rs·-tfurr~al- di:ssipatio.,..---t~-+----r--...::::::+ are in addition to the 30 watts of isotope . . .

--·-·-- · heater dissipation-;·· --- · ·-1

2.. rrDashed 11 lines represent extrapolation of curves beyond calculated values. .... ---·--·- --- .. -----:...1-l:O~------=~---~~---~------'-------'-----~-....L. :.. ~- .. ?fl! - 75- • ao - . ss . qo .95 1.0

- -----~ ... ---~~-~-:~-~;_: _____ :: .. ~-:~2--~- - --- ---·- Cr_yow3:ll Th~rmalJ!:mi~siyiti_

Figur;~~t,-..::1;3 .. ;-.Therinal Parte Average Tempe;rature vs Cryowall Thermal Emissivity for · ·· :...-·-··;~--~----~·varToti$-:ce;ifeTii·(~;rEI~ctrdrifEs·<rterniaT'Dls-sipafio·ri afLunar Noon fii T/V Chamber

' -----. . ~-.;_ - - t - •

> 1-j

~ I

::X: \J1 0

u Ill

()Q 0 -N -..I

0 ..... -\J1 0

Page 144: PSEP Qual, flight acceptance and Qual retest thermal

Cryowall Average Temperature = -30Q°F

110 ....... Lunar Simulator Average Temperature = 250.~F {I} ...., ~

Cryowall Thermal Emissivity= . 914 ~ I J i ,__ L. una:t..Si.mul.iltar Lip. Thermal En:U __ · s.siv:itY: =~_._826 _ l f

lnfr~;r,ed .·l)a..rnp-·Outp},lt Equ.iv~J!'lJlj: to O~e --!~S§n ft. __ • 1

. <¢•

f-- --t 40 ~ ~ I . , __ ,..-.--o - --l-be--1----t-- ' 1 1 I __.!.. .1------· ' ~

I

+--~_.- -- J 0

a; I ------1- - 35 ~ -- -··-- - - J.t- ---- - - "1'¢ a - - l ~~ -- - 1 n. "ill - - I -- ~- ------ I .....

J.t 1c.n - --- · - - : I w_ ----· 4}" - -_ -J¥- ·- -- - .Ill_ ---- -- - [~U .,..

·----··--

. 8 - -;- . -- - ( -- -- -- _· : - - - J l : ~- . -· ~--

t--1 , I - , -~ -- . • I l t J : on_ ,_. I j --t ~-1-4\) I 1 ~- + - - IT 1 J ~ I i _ 1

- <i! ---- -- - - l . ' ~

- ! j j - + 4} ~ -· .... ~ --m-

l-3-0- ' ;__ . --l-- : ! -~' ~ r 1 - , ~ - . I ~ o -----t:"l_ I 1 ; f '15 ~

i l l i .J--t-4 ...... I 1- I -~------r-- ; i i - W----- --- --_::t=:f-tti -rJ-r_NQ~~:_) I I i I

E J.t _4l_­~ 8 L Values far ·electr-onics thermal dissipation are in

_a9diti_qn __ t;Q_:the...3Q watts_pf isQt9pe heater dissipation, I

-- --

i I 2. l

t ! I I

.75 .8{} .85 .90 .95 1.0 -- --

--~- + Lunar Surface Simulator Th~rmal Ennssivity -···--- ~-----~-- ----- -·-·-·- ---· - ~- .. - - - ----- -· ------------ - -· -· -------.-

Fighi¢-6-14.:. Th.}rmal Pla,te Ayera&e Temperature vs Lunar Surface Simulator Thermal Emissivity _ .:--- - ---- . --- ---for~Various.-~V.els..of.Elec:itr.On~ 'IhermalDissipation at Lu.na:i Noon in T/V Chamber:-:--

. . -

>­;-j

~ I :;p iJl 0 ~

1j ~

(J'Q 11>

...... N 00

0 ...... ...... iJl 0

Page 145: PSEP Qual, flight acceptance and Qual retest thermal

~ 0

Q.l ,... e 111 ,... Q.l tl. s Q.l

E-11

Q.l bO 111 ,... Q.l

i > < Q.l ..... 111

ll: ......

111 e ,... Q.l

..c: ~

ATM-850, Page 129 of 150

I ,l ·

I \ ; •: :1 ! I '

Crjyow3111 Ave11a~e ;I'empel,"atur~ :: -;300°F 1: • •

LU:nar $irnu1atorj Average Temperat~re = ~5Q°F cr;yow~li.'I'~.ett~!~fErpiss~vity F . 9~4: : \ I I

Lunar $~rf~cei S~mulator ther~al ~rnis~i~itt :::: . ~91 Lun~r fit,n~~~tori L~p ;Thermal !E:t;rt±~siri~y :: ·!BZ6 ·

! ,, I I

: .' I i . ., ' I : I !' ' ' ' ' I l 1 1 I , 1

1 ·1 I

,! . ; .'I l ' ! I . I : ; I • •.

"'to' T. ~s... ' · " ! · i· ; ~'\I ~ • j '' l ! ! '' 1

'

1

' • i ,} 'I ' ' ~ I '

' ' . :' . I ' '. , ~ . ' i ' /' l . : i ' ' ' '

1L ._Qne '.ls~in": cortesp~l'ld$ to the ~\tn.r ,no~n cc;mdition C:Jf 130. . 1 W.atts[ftZ qf inc~den~ solax radi.tic;m nb:rmal to PSEP surfac~es.

I ' ,, . .! : • ; ···.· :' I ' ; ' ' ' : '

,,

I

I

·~~·· Value~ ~or! eledt:ronks tn.ertnal di,aipa~ion fir~ in i aidditipn tp!the ~6 w<itts d£ iSdt<$pe iheat~r dissipation.'

tao'- '~. •~nuJ•~'' L.!pepJ ••• J ~~~h~~ ~btai~ed b~ eFtra,,oLat~on of cur~es in Fi~ure:' ·;· · I

' ' i j I I I ,: ' ' ' l ' I .1 I '·' ' • I I l7 0 1----- -'-r---fc--.,..- I_-. ' ' ' ·'-·-- ........... _~-+- . ..,.--r;~-+ -----1

' I I I . 40 1<1 ,,_.... ......

.; I

'j

:..,.~ ' Ill .... .... I

l·f,O -·

1'50 ~·

l..fo-~·

,f:~Q· 1-:--·-o

1--·

~~

1-'' "• i ,I

~-

; ' ~

I I I I,' I 1..:..

i• _.,...-

·:.........- : '

I

n! .......... 35 ;:

~,... . . . · ..•... ,_..-P< i . . f,j ..... ! '.'·' ;, , . ;,''[';.:.r"';':. . ; 'I' 1: i , ' 1: I' ---+-................ 1 ' , , . , • __.,._ , ,;,;..o , , -.l--+..-+·'..,....;.j._,;..;...;...;+-..--+~~----....... · ++I i--f •:: .. • I . ..;:~ I,'\, i. ,II

i ", ... , . ...-; 1. • •, I j, , , , ,1 :··

1"':,:1 11./ 'i.' :,t: ·II' f ,I '' I j.l"'. ,

1,[

I '

i . I

I

Page 146: PSEP Qual, flight acceptance and Qual retest thermal

' ·,

~ 0

180

A TM-850, Page 130 of 150

Cryowall'.Ave!rage ·Tern/perature = • 300°F; 'Luncir ·~irn.tilator Avera1ge T~mpera,ture ::: zspo.f C:ry<j>w~U The~mal· Emiissivity. = i. 91-l; .

1

·Lunar 'Su:rfa:ce Simulator Thermal E~isS!ivity = . 891 , L1.m~r ;Si~ulator ~ip Therrtial Emisslvi~y ;= . 826

' 'i

i NO'IjE~: : . l· 1

~ l ! ' ' ' : ' ' :

:1. 0ne '1Sun''- corresp::>:nds ~o the lunar noon condition of 130 v.ratts/ ft2 df incident solar ratuati6n no:rmal to :

2.

' ! • I .

:PSEP,· surfaces.

1fal';l~S fo~ e1e¢tron~cs thermal di;ssip~tion are in. : addiqon tq.the 30, w~tts pf isotope heatier dissipation.

, .! ''I : ! .,j I j ' '

)3. ,;,Das~ed" iline~ represe~t extrapo;latiop of ! i ~urvJ$ be~ond ;calettlate~ val).l.es. i-' --. --t----J~--t-.,.__,;-r---r

i ! . ! o ' • I lo 2~ l l ·, ; i i ;,,;

I

I

l?Ot-----1

I ·11~~._+---~~-L~·~----~--~--~---+~~~~t-T-~~~---+--~ li4 ' 1 ~ : .~2 I . ~6 : ~0 i ' 3l4 i· i 5~ I .• 2

· ,: 1 'f· 1 :j:~e5"tr_~nics: T~e~.rha~Di!3,$ip:at'o~ ;.j,(;w~t;~~ ,; : · . :. · F!5Jg4r~·6:..16~. 'l,'herrhal :Blate .. Average Temperat}lre. ~s El~,ctr~nics;

· i , 'ltP.errnal Dissipation fqr.:V~r~ous, i,le\r~l~ ~fj$o,lat ' ( 1 !, , I , I' , ', 1: j ,

Radiation ~t Lunar ~oon;in T/V Cpain~er · , : ! .!.. ·i

!

Page 147: PSEP Qual, flight acceptance and Qual retest thermal

NO. III!V. NO.

: ; I ~ ATM-850 PSEP QUAL, FLIGHT ACCEPTANCE

AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT 13 II 150 PAGI OP

Aaroepece Syetama Dlvlelon

Component

Lunar Surface Simulator

Lunar Simulator Lip

Cryowall

DATI! 1-23-70

Average Temperature - °F

Qual Flight

Noon Night Noon

248 -317 251

247 -317 251

-270 -300 -261

Thermal emissivity measurements, which were taken over the lunar simulator and cryowall surfaces prior to testing, revealed average emis sivities of 0. 891, 0. 826, and 0. 914 over the lunar surface simulator, lunar simulator lip, and cryowall, respectively.

6. 5. 2. 2 Solar Radiation Simulation

During PSEP Qual testing, a series of readings were taken with four radiometers in order to establish the operating power level of the tungsten filament lamps which would simulate one sun (130 wattsjft2) of incident energy to the second-surface mirrors. Three of the radiom­eters, described below, were located adjacent to each other next to PSEP with their upper surfaces parallel to and at the same height as the PSE mounting plate top surface.

l. A Second-surface mirror was attached to a radiometer to obtain a direct measurement of absorbed energy by the PSEP mirrors.

2. A standard black-coated radiometer was used as a reference.

3. Aluminized teflon was fastened to a radiometer to obtain a direct measurement of energy absorbed by the PSE shroud top.

The fourth radiometer was positioned in a corner of the chamber away from PSEP to obtain background readings which involved no direct absorption of energy from the lamps.

Page 148: PSEP Qual, flight acceptance and Qual retest thermal

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMI3BR TEST REPORT

NO.

ATM-850

PAGE 132

REV. MO.

OF 150

DATE 1-23-70

Significant Qual test events for which radiometer rl•adings were obtained are described below:

J. Lunar night at the beginning of testing with the Qual model electronics turned on (05:00 on 4/7/()9).

2. Lunar noon with the larnps turned-off (03:30 on 4/H/69).

3. Lunar noon with the lamps activated (12:30 on 4/H/()9).

4. Lunar night at the end of testing with only the isotope heaters activated.

Since the radiometers have a good view of the PSE shroud, their readings are affected by this component. Thus, when establishing a reference reading corresponding to no energy absorbed by the radiom­eters, the second lunar night reading (test event /14) was used since the shroud temperature was much lower during this phase than during the radiometer background test.

Also, it was necessary to determine what portion of the lunar noon readings were due to radiation from the PSE shroud. This was achieved with results from a reference test which was conducted prior to the Qual test with no model in the chamber. For example, with the lamps turned-of£ the mirror radiometer had a reading of -3. 14 millivolts (mv) without the model in the chamber versus a reading of -2. 94 mv with the model. The difference of 0. 02 mv corresponded to 2. 3 watts/£t2 of absorbed energy which had to be subtracted from radiometer measurements when adjusting the lamp power level to simulate a one sun condition. Second­surface mirrors will absorb about(. 06) (130) = 7. 8 watts/ft2 of direct solar energy at lunar noon on the moon. This means the mirror radiometer should have absorbed 7. 8 + 2. 3 ::: 10. 1 watts/£t2 for the mirror radiometer, which indicates that the lamps were at the correct power level.

The radiometer readings, sensitivities, and calculated absorbed energy are listed in Tables 6-11 and 6-12 at lunar night and at various lunar noon conditions.

Page 149: PSEP Qual, flight acceptance and Qual retest thermal

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST TIIEHMAL VACUUM CHAMBER TEST HEPOR T

MO.

ATM-850

PAGEl 3 .3

REV. NO.

Of 150

DATE 1-23-70

------··-·· ········• ......... T/V Chamber

Condition

TABLE (>-11 H.ADIOMETER READINGS AND SENSITIVITIES

FOR PSEP QUALIFICATION TEST -··-.. --····" .. ,.. ..... ,_ .. __ .,.,.,.,.,._ ...... ----.. ~-·

Radiometer Reading - Millivolts . ..... ·~ ...•....... - . '"'''' ··-~-~- .. ,.,.._, •·••••••"'• ,. •Ar •-,..•••<>•--••

Reference Aluminized Mirror Black Teflon

------····-'-··· -·- --·----- r---·-··---- ... _ .......... ~·· ···-·- --Lunar Night -3. 53 3 - . (A -3. 17

Lunar Noon -3. 14 -3. 29 -2. 89 w/o Model w/o Lamps

Lunar Noon -2.94 -3. 09 -2. 67 w/Model w/o Lamps

Lunar Noon -2. 64 -2. 24 -2.45 w/Modcl w/Lamps

-----

Background .. _ .. __

-4. 22

-3. 81

-3. 80

-3.77

... _. ______________ ..... .._. , .. ., ........................................... • .. ·--.-·~·---· "'"""" ___ Radiometer Sensitivity (Absorbed Energy

Radiometer in Watts/£t2 /mv) -

Mirror (#34454) 11. 57

Reference Black (#33172) 11. 00

Aluminized Teflon ( #33166) 10. 82

Background(#33168) 1 o. 96

Page 150: PSEP Qual, flight acceptance and Qual retest thermal

T/V Chamber Condition

t--·----·-----

Lunar Night

Lunar Noon w/o Model w/o Lamps

Lunar Noon w/Model w/o Lamps

Lunar Noon w/Model w/Lamps

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

TABLE (>- 12 ENERGY ABSORBED BY RADIOMET.ERS

FOR PSEP QUALIFICATION TEST

NO. RI!V. NO.

!ATM-850

PAGI! 134 0, 150

DA Tl! 1 - 2 3 - 7 0

Energy Absorbed by Radiometer - Watts/ft 2

Reference Alumini:r.ed Mirror Black Teflon Background

0 0 0 0

-4.46 3.85 3. 03 4.49

6.75 (). 05 5.41 4.60

--10. 19 15.40 7.79 4.93

.. _ ... ____

Page 151: PSEP Qual, flight acceptance and Qual retest thermal

: :. . ~ PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO.

ATM-850

PAGI! 13 5

RI!V. NO.

Of ISO

DA Tl! 1 - 2 3 -7 0

Since testing was conducted in a chamber enclosure which had surface emissivities less than I. 0, son1e of the energy emitted from the hot lunar surface simulator at lunar noon was reflected about the chamber and impinged on PSEP. This situation does not occur on the n10on since space reflects no energy. Consequently, the lunar noon readings were composed of absorbed radiation dirt!t'tly from the lamps and PSE shroud and indirectly from the lunar simulator. Of the 10. 19 watts/ft2 total for the mirror radiometer, 4. 46 wattsjn2 is attributable to the reflected lunar simulator radiation.

Since a significant portion of the simulated solar radiation consisted of reflected lunar simulator energy, the lamps were operated at a fairly low power level and therefore emitted a high percentage of infrared radiation. The result was that the shrouds and masks received less than one sun equivalent incident solar radiation since these components have a lower infrared emissivity than the mirrors. This situation had negligible effect on thermal plate temperatures and is discussed further in Section 6. 4.

The effect of infrared energy on simulation of solar radiation is illustrated by the results in Table 6-12. Before the lamps were turned-on, all radiation in the chamber was essentially in the infrared regime. The surface of the black radiometer has a nominal absorptivity of 0. 89 in the solar regime, which is considerably higher than the 0. 06 value for the mirrors. However, the black value falls off rapidly for wavelengths greater than 10 microns whereas the mirror increases. Consequently, prior to activating the lamps, the mirror radiometer absorbed more energy than the black radiometer. However, after the lamps were turned-on a significant percentage of the energy is in the solar range, and the black radiometer absorbed the greater amount.

Solar radiation simulation for the PSEP Flight Acceptance Test was identical to that which was used for the PSEP Qualification Test.

Solar radiation was simulated during the PSEP Qualification Model Retest by the same I. R. lamp array that was used in the PSEP Qualification Test. The array consisted of sixteen 1000 watt tungsten filament lamps mounted 95 inches above the PSEP mirrored radiator plate.

Page 152: PSEP Qual, flight acceptance and Qual retest thermal

NO. R!V. NO.

ATM-850 PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

PAGE 136 Of 150

DATE 1 -23-70

To measure the radiation flux density from the I. R. lamps, three radiometers (described below) were mounted on the same plane with and two inches away from the radiator plate. The radiometers, in the order listed below, were mounted 2. 5, 4. 5, and 6. 5 inches right of the fore-aft center line of PSKP. These three radiometers were:

l. A second- surface n1ir ror cover(~d radiometer (S/N 34454) used to measure the flux density absorbed by the PSEP mirrored radiator plate.

2. An unaltered black radiometer (S/N 34455) used as a reference.

3. A Kapton covered radiometer (S/N 34453) used to measure the flux density absorbed by the PSE shroud top.

The mirrored radiometer (number 11 1 11 above) was used to establish the "one-sun•• condition in the chamber. Thermal equilibrium conditions and the mirrored radiometer readings are listed in Table 6-13. The difference in the mirrored radiometer readings (Table (> -13 conditions 11 2 11 and 11 3 11

) is 2. 94 watts per square foot absorbed and represents that energy reflected by the cold wall that originated at the hot lunar surface simulator. The difference in the mirrored radiometer readings between conditions 114 11 and 11 5 11 is 4. 14 watts per square foot absorbed and is due to the IR array only. The total of the above two items (the indirect reflected radiation and the IR lamp array direct radiation) is 7. 08 watts per square foot absorbed.

Since the radiometers have a good view of PSEP, the radiometer readings are affected by PSEP. In condition 11 3 11 of Table 6-13, PSEP is warm and is radiating to the radiometers. This amount of energy ( 0. 56 watts per square foot absorbed) is the "night model effect. 11 The difference between conditions 114 11 and 11 2 11 (4. 93 watts per square foot

Page 153: PSEP Qual, flight acceptance and Qual retest thermal

NO. R!V. NO.

Condition

1

2

3

4

5

PSEP QUAL, FLIGHT ACCEF>TANCF. AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

TABLE ()-13 MIRRORED RADIOMETER READINGS

AT THERMAL EQUILIBRIUM CONDITIONS FOR PSEP QUALIFICATION RETEST

Chatnhcr Solar PSEP Mirrored Thermal Simulation in Radion1ete r Condition Condition Chamber Readings ~ nw

'"

Lunar Night ------ No -3. 50

Lunar Noon No Sun No -3. 20

Lunar Night ------ Yes -3.45

Lunar Noon No Sun Yes -2.77

Lunar Noon One Sun Yes -2.41

A 'TM-850

PAGE 131. Of

DATE 1-23-70

F:nergy Absorbed By PSEP watts/£t2

0. 00

3.50

0.56

8.43

12.57

Note: Condition 1 was used to determine the "zero energy" level for all three radiometers.

150

Page 154: PSEP Qual, flight acceptance and Qual retest thermal

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

HO.

ATM-850

PAGI 138

REV. HO.

OF l 50 ~· ... Aeloapace

Systeme Dlvlelon DATE 1 - 2 3 - 7 0

absorbed) is the 11noon model effect. 11 These two model effects are background radiation and do not affect the thermal balance of PSEP. The total of the two model effects (5.49) and the solar simulation (7. 08) is 12. 57 watts per square foot absorbed.

The radiometer background (zero flux level) readings, sensitivities, and absorbed energies are listed in Tables (J-14 and 6-15. Note that the energy absorbed by the n1irrored radiometer is 2. 38 watts higher in the retest. This difference is due to the higher emissivity of the Kapton shrouds and appears in the model effect only.

6. 5. 3 Effect of Lunar Environment Simulation on PSEP Performance

Thermal effects of various T /V chamber test parameters on temperature predictions related to PSEP operation in a real lunar environment were evaluated. Discrepancies between test and predicted real lunar thermal plate temperatures caused by individual parameters are listed in Table 6-16 for the Flight model with no plume heating protection. However, the values should also apply-to the other Flight and Qual models, except for the effect resulting from the simulated solar heating of the solar panels. A negative value indicates that the chamber test measurement was lower than the predicted temperature for actual lunar operation.

As indicated by the table, thermal plate temperatures for the Flight model on the moon will be 4 °F higher at noon and 3 °F lower at night than values obtained during T/V chamber testing.

6. 5. 4 Solar Panel Temperature Effect

At the conclusion of the PSEP Qualification Thermal-Vacuum Retest, the solar panel simulators were allowed to cool from 194 "F to 150"F. The primary structure was maintained at 195 "F. At thermal equilibrium the average thermal plate temperature was 151 "F. This 1 °F decrease in average thermal plate temperature for a 44 nF decrease in solar panel simulator temperature, shows that the thermal isolation of the solar panels from the thermal plate is very good.

Page 155: PSEP Qual, flight acceptance and Qual retest thermal

: :' . ~ PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THF.RMAL VACUUM CHAMBER TEST REPORT

TABLE (>-14

RADIOMETER BACKGROUNDS AND SENSITIVITU:S FOR J=>SEP QUAI, TJ•:ST AND RETEST

Sensitivity Hadiorneter Watts/ft 2 mv (absorb<·d)

---·------Mirrored 34454 (Test) 11. 57

Reference Black 33172 (Test) 11. 00

Aluminized Teflon 33166 (Test) 10. 82

Chamber background 33168 (Test) 10. 96

Mirrored 34454 (Retest) I I. 57

Reference Black 34455 (Retest) 11.40

Kapton 34453 (Retest) 10. 76

NO. R!V. NO.

ATM-850

PAGI! 13 9

OF 1 50

DATE 1-23-70

Background I (Lunar Night) I

-3." I -3.64 I

!

-3. 17

-4.22

-3. 50

-3. 80

-3. 86

Page 156: PSEP Qual, flight acceptance and Qual retest thermal

NO. RI!V. NO.

: : . ~ ATM-850 PSEP QUAL, FLIGHT ACCEPTANCE

AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT PAGI! l40 OF 150

DATI!

TABLE 6-15

ENERGY ABSORBED BY RADIOMETERS IN THE PSEP QUAL TEST AND RETEST AT LUNAR NOON-ONE SUN-.I...:QUILIBRIUM

Energy Absorbed - Watts/ft 2

Thermal-Vacuum Mirrored Reference Chamber Condition PSEP Black PSE~:~

-· Test - Lunar Night 0 0 0

Test - No Power Dump 10. 19 15.40 7.79

Retest - Normal Structure and Solar Panel Temperatures 12. 57 21. 27 14.97 -- - -

1-23-70

~:'The PSE radiometer was alumini7.ed teflon coated in the PSEP Qual Test, and was Kapton coated in the retest.

Page 157: PSEP Qual, flight acceptance and Qual retest thermal

: ; I •

. "'' • ~ -<j

PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

TABLE ()- l ()

EFF'ECT OF LUNAR ENVIHONMENT SIMULATION ON PSEP FLIGHT TifJ•:HMAL PERFORMANCE

HO. REV. HO.

ATM-850

PAGE 141! OF ··150

DATE l-23 -70

J•:ffect on Thermal Plate Temperature - OF

Test Parameter Noon Night

Average temperature of chamber cryowall +2 +3

Infrared emissivity of chamber c ryowall +3 0

Average temperature of lunar simulator 0 0

Infrared emissivity of lunar silnulator -3 0

Finite size of lunar simulator -3 0

Simulation of solar radiation 0 0

Simulation of solar panel heating -3 0 - -Total -4 +3

Page 158: PSEP Qual, flight acceptance and Qual retest thermal

MO. REV. MO.

: ; . . ATM-850 PSEP QUAL, FLIGHT ACCEPTANCE

AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT ·142 150

PAGE OF

DATE } -23-7 0

C. (> Effect of Primary .Structure 1-~!n.is_sivHy on PSI•: l > Perform.ancc

Since the isolator bolts allow significant heat transfer between the primary structure and thermal plate during lunar night, structure temperature influences the thermal plate temperature. Consequently, the effect of structure surface finish (or emissivity) on PSE P thern1al perforn1ance was studied. Results are illustrated in figures (>-17 and (>-18 and are based on the Qual model in the T /V chamber.

Results showed that a sizeable increase in thermal plate temperature could be attained at lunar night with an accompanying small increase in noon temperature by decreasing the structure external emissivity. For example, if the structure external surface had been changed from Sl3G white paint to bare aluminum ( E = 0. 1 ), the noon-to-night temperature swing in the chamber would have been reduced by about 10 °F. Furthc r decrease in structure emissivity showed little improvement in temperature swing.

The study was extended to the real moon condition, and predicted improvements in temperature swing decreased due to the strong influence of the lunar surface on structure temperatures (The structure rests on the real lunar surface whereas it is supported on insulation blocks above the chamber lunar simulator). For example, only a 7 "F temperature swing improvement was predicted for a polished aluminum finish ( E = . 01) on the structure.

Due to uncertainties in the real moon thermal model predictions and due to the relatively small anticipated improvement in thermal performance, no action was initiated to alter the structure external surface finish.

6. 7 Specular vs. Diffuse Solar Reflection

As part of the analysis on the PSEP Flight thermal performance, a study was conducted to compare the thermal effects of specular and diffuse reflection of solar radiation off the second surface mirrors and Kapton shrouds.

Prior to the installation of Kapton over -all insulation masks and shrouds, thermal analyses were based on the assumption that reflected solar radiation was diffuse in nature. This assumption provided conservatism in the analysis since at the critical lunar noon condition, some radiation reflected from the mirrors would reach the shrouds and masks. If the mirrors are assumed specular, all radiation reflected from them goes to space at the lunar noon condition.

Page 159: PSEP Qual, flight acceptance and Qual retest thermal

Electronics Thermal Dissipation = 33. 52 watts Lunar Simulator Average Temperature = 250°F at Lunar Noon Lunar Simulator Average Temperature = -300°F at Lunar Night Gryowall Thermal Emisl:livity = . 914

~---

0

~ 1-t

E .. _1\t __ _

k ~ 0.. -e

. 1-8-0 i----.---r r-Lunar Surface Simulator Thermal Emissivity= . 891

·--Lunar Sirnulator·-Lip- Th-ermal Emissivity<= .826

~J I L:r rn I l l rr I I I 1-1 I I !;_til i I l t t - t I -

_Note_: ElecJrQnicsJ;hermalcli,s~ip~ti_c>n is i_I1_ ad~itio:J]._.......J.___~ to the 30 watts of isotope heater dissipation ~

,.,_

~ 0

~ k

.a «< J-4 ~ 0..

.E ~

.}-; (!)

t-l Q) 0£

-100 - ~ «< 1-t "' k

- ((Y'

> <

I --f

- [;;~~~1'---r~==t====t====i=~~====t===~====~==~~~~~~ ~ ' -E -- --40 I I ~-- I I !' !

,.. ' l '

-~ ..., tU -.tlt

______l_ __ - -------+--- I

- -- __ ..bJJ ' --

0- . 1 -a : ,

- " . il

- { .r., '---- --Primary Structure Thermal Emissivity

:::.!.

Figur~ 6~17. ~e~mal Plate- Average Temperature vs Primary Structure Thermal --- ----- , -.. ~i58Tvityfor vai-ious-·crY:ow~if'temperatU.res Tn the T/v chamber

- -

> .., ~ I 0: U1 0 ~

"C Ill

OQ (!) -~ VJ

0 1-+> -\J1 0

Page 160: PSEP Qual, flight acceptance and Qual retest thermal

I I T I · -- I . I ___, 180 Polished Aluminum ( E = . 01)

unar Noon·- -

. _ '----1=1 n=04{" ~r~m~um \ ~ ~'" •: --~ +-+ -·-- ·p:; -t·--:·-+--4

.0

a> . }-.-~ (

-- _.:__ji:-':-c-,-- -- . . . . . -~te,.Ea.in£:(.'£,.;:: ...... %J I . ! I I ~ ·t- I · ~ _ ·• El~ctr_~ks '!h.er~JJ)issipatirin = _33._52 :W~tts. ___ , - ..•... _- .... __

-~~ -~-I4~- -t*!:~--~~iii~~i:~ ~~~~~t~ i:~~~i~~:-.: :~g~~Fa!tLL~~~~~rint•1"·----:---,....-.....,~-,....--,.....;_-.--~ :l . -- .... ·- . - - . . . . . . -~ 1 Cryowall Thermal Emissivity = . 914 :l - o-- -·-Luiiar -si_ mlliat•n·-:Ltp ·-Thermar·Emts sivity-= .. -8-2.-6- - -::f - = Lunar SUrface Simulator TherinalEiriis-sivity = . 891 ... Q)

> NoFe-s-:--=---:--:- :----::- ----- -- - - -

< ··1. ·ElectroniCs thermal-dissip~tion is in addition to the 30 --x ·· · -2.-0 t-:-----watts- of isoto. pe=-heater--dissipation; • ,,---,.r---+-1 :-: ..... ::::---tf::.:_ ~=--:::L---e:--~q--fl-;p>-:::;;il"'-<14--+l----i-----1-!

~ 2. •E = Thermal-emissivity. -~ ....

fll

------· f -:---4{) k- I =\ =r=- ! I I 1 I L=--t-·:::::p.,.. I I I I I i '- 4)

t ·-- • • 3!'" -- -----. ____ ::H __ ~-:4: . f -.·.l•• .. f. ==t==l j j I j • .. , 't=B~re ~lumtnum (~-I. 10)1 I ! I

-==---~---- . -- . • ; :-:31)<t_ _ _ ____ -:z.so -z~q~ _ion

""-·--·-·~--~--- ....... , ... ---~·------ -·· .Cryowall Allera.ge.X.empera:ture.;,. ... ~F ____ ..... _ ,. -4

Figure6.;..18. _Thei:ni~l .Plat4i! Averag~ Temper~ture· vs Cryowall Average Temperature ·--~;- -~: __ ·- ---~::-- ·---·---~- ·ror:-Ya~-9us-::YrimaTy-Sffuct\fre E;'xtertutl Fmrslies in T/V Chamber

·-- --~--·· --·- ---· ----------· -- - -· ---- --

> ;-j

~ I o:; iJ1 0 ~

"d I»

(JQ (I)

..... ~ ~

0 ..... ...... iJ1 0

Page 161: PSEP Qual, flight acceptance and Qual retest thermal

NO. R!V. NO.

: ; I ~ PSEP QUAL, FLIGHT ACCEIJTANCI•: ATM-850

Aerospace

AND QUAL RETEST TIIEHMAL VACUUM CHAMBJ•:R TEST REJ:.>ORT

PAGE 145 150

OF

··· .. Systems Dlvl8lon DATE 1-23-7 0

After the decision to install the plume heating protection system, a study was conducted to determine what effect specular solar reflection from the Kapton and mirror surfaces would have on predicted PSEP thermal performance. Problem areas considered in the study were as follows:

1. The effect of specular reflection on thermal plate temperatures.

2. The possibility of specular reflection causing maximum temper at nres to occur at a lunar day condition other than noon.

3. The accuracy of the one-node representation of the irregularly­shaped PSE shroud in the PSEP thermal models.

Study results were based on two very simple thern1al models which consisted of the mirrors, PSE shroud, lunar surface, and space. One model used a single node to represent the PSE shroud, while 3 nodes defined the shroud in the second model. The insulation masks and heater shrouds were neglected since their effect on temperatures is small compared to the mirrors and to the PSE shroud. Also, electronics thermal dissipation was input directly to the mirrors as very little temperature gradient exists across the thermal and PSE mounting plates. Heat leaks were neglected since they are relatively unimportant during the day.

Results from the study are presented in Figure 6-19 where thermal plate average temperature is plotted versus lunar sun angle. The temperatures should be used only for comparison purposes since the magnitudes of the values are shifted somewhat from the n1ore exact predictions due to the simplifications in the models.

The following conclusions were drawn from the study results:

1. Lunar day temperature predictions based on a one -node PSE shroud model with 1 0011r) diffuse mirror and Kapton surfaces were the highest.

2. The maximum lunar day temperature predictions occur at the lunar noon, except for the 3 -node PSE shroud model with 100% specular surfaceswhich predicts maximum temperature at a 60 degree sun angle.

Page 162: PSEP Qual, flight acceptance and Qual retest thermal

~ 0

I

140

130

QJ 120 ~ ::s +' m ,... QJ

ATM-HSO, Page 146 of 150

Diffuse Reflection of Solar Radiation

Specular Reflection of Solar Radiation

r----r----- -- ------ r----- . -- --- - - -r-- --- .----- ----... j_ ~~~- ... . ~

t----+---1---- ·-· -----··-. - ----- -----f----- ----- - ~ .--:-::~~ - .. -·- '

~---· ----+--------+--::.--''t:'-"" ---+------- -----'-··----

-----~~ ---- _} -~~v ~ ----·1--· --- ------ --------1-----+---+---+-----

1-Node PSE Shroud

3-Node PSE Shroud

~ 110 - .. - ----t--+---+----+---+---+--+---+------4 QJ E-i

....... m s ,... QJ

..c: 90 E-i

80

--+----- -- -t----r----+--·-- -+---+----+---1

t---t----1-·· ··-·-·- -------· ------+---+--

-· -----1------ --·----- - ....

... - ... -----·- ....... - .. ---- 1-----·--- -- ----- ---- "--· ···----+----+

40 so 60 70 80 90

Sun Angle - Degrees from Horizontal

Figure 6-19. Comparison of Flight Model Thermal Plate Temperature Predictions Based on Diffuse and Specular Reflection of Solar Radiation

Page 163: PSEP Qual, flight acceptance and Qual retest thermal

NO. RI!Y. MO.

: : . . PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CIIAMBER TEST REPOHT

ATM-850

PAGI 14 7 Of

DATI! 1 - 2 3 - 7 0

3. The one-node model predicts higher temperatures than the 3-node model. Little difference ( 1 to 2 °F) existed between ten1perature predictions from the two models for diffuse reflection, while there was nearly a 4 oF spread for specular reflection.

4. About 6 °F higher maximun1 temperatures were predicted with the assumption of I 00% diffu sc reflection of solar energy than with the assumption of 1 OO%, specular reflection. For const·rvatistn, the temperature predictions presented in this report are based on the study results for diffuse surfaces.

6. 8 PSEP Thermal Design Features

The PSEP lunar performance requirements, which were outlined in Section 1, were achieved through application of the following thermal design features:

l. Radioisotope heaters for lunar night survival.

A total of thirty watts of thermal energy was supplied by two radioisotope heaters, fastened to the PSE mounting plate, to maintain the average thermal plate temperature above -65 "F during the lunar night.

2. Thermal isolation from the lunar surface.

The central station electronics, PSE, and isotope heaters were effectively isolated fron1 lunar environmental effects by multilayer insulation (i.e. , the thern1al bag, .PSE shroud, and heater shrouds), low thern1al conductance attachments, and low emittance vacuum deposited aluminum.

3. Thermal dissipation by radiation to space.

Thermal energy dissipated by the electronics and PSE sensor is conducted through the mounting plate to the second surface mirrors and then rejected to space.

4. Low absorption of solar energy.

Central station materials exposed to solar radiation (i.e. white paint, mirrors and shrouds) were selected for low solar absorptivity and high infrared en1:issivity to keep lunar day ten1peratures at minimum levels.

150

Page 164: PSEP Qual, flight acceptance and Qual retest thermal

NO. RI!V. MO.

: : . . PSEP QUAL, FLIGHT ACCEPTANCE AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

ATM-850

PAGI 148 Of

Aaroapace Systeme Dlvlelon

DA Tl! l - 2 3 - 7 0

5. Protection against exhaust plume heatin._..&

Layers of high temperature alumini:r.ed Kapton were placed over the insulation shrouds and 1nasks to eliminate material failure due to LM exhaust plume heating.

150

Page 165: PSEP Qual, flight acceptance and Qual retest thermal

: ; . ~ NO. REV. MO.

ATM-850 PSEP QUAL, FLIGHT ACCEPTANCF: AND QUAL RETBST THF:RMAL VACUUM CIIJ\MfH:R TEST REPORT

PAGI l 4 9 OF l 50

DATE l-23-70

7. 0 REFERENCES

1. Ilearin, L. , "Thermal Analysis of A J ,SEP Prototype "A" Central Station with Con1parison to Test Results'', Bendix A'I'M-751.

2. Johnson, P., "ALSEP Prototype "A" Central Station Final Ther1nal Analysis and Test Results", Bendix J\ TM -79(>, October 19()8.

3. Johnson, J..>. , "ALSEP Qual SA Therrnal Vacuum Chamber Test ~

Report", Bendix ATM-824, January 19(>9.

4. Bendix Thermal Analyzer Computer Program.

5. Simms, R., "Lunar Subsurface Model", Bendix IM 9712-767, April 1968.

6. Johnson, P. and McNaughton, J. "PSEP Plume Heating Study", Bendix IM 9712-ll23, May 1969.

7. McNaughton, J., "Plume Heating Study Summary", Bendix IM 9 7 12 - liZ 1 , May 1 9 6 9.

8. Johnson, P., "FEP Teflon Properties 11, Bendix Contact Report

9 7 12 - 112 2 , May 1 9 6 9 .

9. Simms, R., "Partial Response to EASEP QTRR RFC No. EQT-P-5", Bendix IM 981-155, February 1969.

10. McNaughton, J., "Elevated EASEP Temperatures During Lunar Withdrawal", Bendix IM 981-165, March 1969.

11. Johnson, P. and Simms, R. , "Thermal Control Configuration Parametric Studies", October 1968.

12. Simms, R. and Owens, J., ''Thermal Isolator Design and Selection -PSEP Central Station", Bendix EATM-23, January 1969.

13. Burns, R., "PSE Mounting Plate Skin Thickness Study 11, Bendix

EA TM-39, January 1969.

Page 166: PSEP Qual, flight acceptance and Qual retest thermal

: ; I •

PSEP QUAL, FLIGHT ACCEPTANCE

AND QUAL RETEST THERMAL VACUUM CHAMBER TEST REPORT

NO.

ATM-850

PAGE 150

REV. NO.

Of 150

DATE 1-23-70

14. Simms, R., 11 Preliminary Isotope Heater Locations and Masking Pattern - PSEP Central Station 11

, Bendix EATM -10, December 19&8.

15. Simms, R., 11 Final Jsotope Heater Locations and Masking Pattern - PSEP Central Station 11

, Bendix EATM -48,

Jahuary 1969.

16. Simms, R., 11 Changes to the Qual C/S Heater Power Profile 11,

Bendix IM 981-177, March 1969.

17. Courtois, D., 11 PSEP Power Management 11, BendixEATM-44,

February 1969 .