proyecto azufre

21
CBTis 37 Centro de Bachillerato Tecnológico, Industrial y de Servicios INTEGRANTES: *Luz Verónica López Cardosa *Alejandra Valenzuela Gutiérrez *Denisse Alejandra García Flores *Alexia Estrada Ríos *Karen López Armenta Profesora: María Elena Martínez Tea. Materia: Química I Grupo: 1 K Proyecto: ” El AZUFRE”

Upload: denissegf

Post on 12-Jul-2015

10.326 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Proyecto Azufre

CBTis 37Centro de Bachillerato Tecnológico, Industrial y de Servicios

INTEGRANTES:

*Luz Verónica López Cardosa

*Alejandra Valenzuela Gutiérrez

*Denisse Alejandra García Flores

*Alexia Estrada Ríos

*Karen López Armenta

Profesora: María Elena Martínez Tea.

Materia: Química I

Grupo: 1 K

Proyecto: ” El AZUFRE”

Page 2: Proyecto Azufre
Page 3: Proyecto Azufre

INTRODUCCIÓN.

En el trabajo que se presenta a continuación, podremos saber un poco mas acerca de los aspectos o puntos más importantes sobre el azufre. Ya que trataremos las características más resaltantes de éste, como lo son su uso industrial, su masa atómica, sus antecedentes históricos, su impacto ambiental, todas sus propiedades y características, etcétera.

El Azufre por ser un elemento de la naturaleza, cumple con una serie de funciones específicas, tal y como lo es su propio ciclo, de igual manera el efecto que incurre en otros elementos químicos o superficies naturales. El azufre en si, es un sistema complejo que ayuda a la combustión siendo ésta la función por la cual ha sido reconocido, tomando en cuenta otras características. Antes de presentar el informe, se debe acotar que cuando se habla del azufre como elemento químico, se refiere a un elemento no metálico, el cual es insípido e inodoro, que presenta un color amarillento pálido, que a su vez es también llamado piedra inflamable, gracias a su gran capacidad de combustión y como antesala se puede mencionar que todas las formas de azufre son insolubles en agua, y las formas cristalinas son solubles en disulfuro de carbono. Cuando el azufre ordinario se funde, forma un líquido de color pajizo que se oscurece si se calienta más, alcanzando finalmente su punto de ebullición. Si el azufre fundido se enfría lentamente, sus propiedades físicas varían en función de la temperatura, la presión y el método de enfriamiento.

Page 4: Proyecto Azufre

También hay que tomar en cuenta lo dañino que es el azufre para la salud y para el ambiente, puesto que éste puede provocar alteraciones peligrosas para el hombre y no solo para él sino para los animales, por ello se debe tener una previa especialización sobre el asunto, además de estar al tanto con cuales elementos químicos se puede lograr mezclar el Azufre.

A través de una serie de conceptos, definiciones, y descripciones sobre el tema a estudiar, se busca la explicación más veraz y concreta para tratar todo lo referente al elemento químico, tomando como base para la realización del siguiente trabajo, conocimientos propios, y los diferentes estudios en libros de química moderna, o páginas de Internet que tratan el tema de mayor o menor escala, así de esta manera entender y tener un conocimiento básico sobre el azufre.El azufre es un mineral con muchas propiedades pero es muy conocido como parte de los aminoácidos Cisteína, Cistina y en forma de Oligoelemento. El azufre para uso alimentario no existe en si mismo, sino que lo encontraremos en algunos alimentos como el ajo, cebolla, brócoli, repollo, judías o alubias secas, germen de trigo, en las proteínas, como parte de los aminoácidos Cisteína, Cistina y Metioninay en forma de Oligoelemento (se pueden conseguir en herbolarios y farmacias).

Page 5: Proyecto Azufre

ANTECEDENTE HISTORICO.

A éste elemento químico, se le conoce de su existencia desde el tiempo de la prehistoria, e incluso se nombra en La Biblia y otros escritos antiguos, aunque éste era empleado mucho antes por los egipcios como fumigatorio en sus templos. Su nombre procede del latín sulphur usado por los romanos para designarlo, aunque también es llamado “piedra inflamable”. Este se encontraba en numerosos lugares de las Costas del Mar Mediterráneo, lo cual no pudo dejar de llamar la atención en los pueblos antiguos, es decir los pueblos romanos y los pueblos griegos. Los griegos usaban éste elemento en el culto de Hefaistos, Dios de los infiernos (Vulcano de los latinos). En el antepenúltimo canto de la Odisea, Homero hace referencia a él con el nombre de THEION, como un objeto del culto a la divinidad. Herodoto habla de THIMAMA, que es un perfume que se quema al igual que THIMIATÓS. Como podemos comprender el nombre griego del azufre estaba completamente vinculado a su uso como ofrenda a los dioses en los templos, o también como perfume sagrado.

Por motivo de su inflamabilidad, los alquimistas creyeron que el azufre era esencial en la combustión, en cambio los griegos y los romanos lo usaban en La Medicina para blanquear las telas con los vapores que desprendía éste.

Page 6: Proyecto Azufre

Las erupciones volcánicas que se presentaban arrastraban consigo, invariablemente, enormes cantidades de azufre; el olor del gas sulfuroso y el ácido sulfhídrico se consideraban síntomas de la actividad del Dios subterráneo Vulcano. Los limpios y transparentes cristales de azufre en los grandes yacimientos de Sicilia fueron ya advertidos muchos siglos antes de nuestra era. De manera especial llamo la atención la capacidad que tenía ésta piedra de desprender gases tóxicos. Precisamente ésta cualidad que posee el Azufre llamo la atención de los investigadores de aquella época, considerándose en aquel tiempo uno de los elementos fundamentales del mundo. Por eso no es sorprendente que el azufre jugase un papel tan excepcional en las ideas de los antiguos naturalistas y especialmente de los alquimistas, en la descripción de los procesos de actividad volcánica o de formación de cordilleras y vetas rocosas. El azufre, como creían los alquimistas, poseía al mismo tiempo la propiedad enigmática de producir nuevas sustancias al arder, por lo cual se le consideraba como el componente que faltaba para la piedra filosofal, que tan infructuosamente trataban de hallar para poder obtener oro artificial.La noción del extraordinario papel que desempeña el azufre en la naturaleza fue expuesta maravillosamente en el célebre tratado del sabio ruso Lomonósov sobre las capas terrestres, en el año 1763. Después a finales de la década de 1770, el francés Antonie Laurent Lavoisier unos de los mejores químicos de la época, convenció a la comunidad científica de que el azufre no era un compuesto sino un elemento químico.

Page 7: Proyecto Azufre

PROPIEDADES.

Elemento químico, S, de número atómico 16. Los isótopos estables conocidos y sus porcentajes aproximados de abundancia en el azufre natural son éstos: 32S (95.1%); 33S (0.74%); 34S (4.2%) y 36S (0.016%). La proporción del azufre en la corteza terrestre es de 0.03-0.1%. Con frecuencia se encuentra como elemento libre cerca de las regiones volvánicas (depósitos impuros). Propiedades: Los alótropos del azufre (diferentes formas cristalinas) han sido estudiados ampliamente, pero hasta ahora las diversas modificaciones en las cuales existen para cada estado (gas, líquido y sólido) del azufre elemental no se han dilucidado por completo.

Page 8: Proyecto Azufre

Propiedades atómicas

Masa atómica 32,065(5) u Radio medio† 100 pm Radio atómico calculado 88 pm Radio covalente 102 pm Radio de Van der Waals 180 pm Configuración electrónica [Ne]3s2 3p4 Estados de oxidación (Óxido) ±2,4,6 (ácido fuerte) Estructura cristalina Ortorrómbica

Propiedades físicas

Estado de la materia sólido Punto de fusión 388,36 K Punto de ebullición 717,87 K Entalpía de vaporización 10.5 kJ/mol Entalpía de fusión 1,7175 kJ/mol Presión de vapor 2,65 × 10-20 Pa a 388 K Velocidad del sonido __ m/s a 293,15 K

Page 9: Proyecto Azufre

El azufre rómbico, llamado también azufre y azufre alfa, es la modificación estable del elemento por debajo de los 95.5ºC (204ºF, el punto de transición), y la mayor parte de las otras formas se revierten a esta modificación si se las deja permanecer por debajo de esta temperatura. El azufre rómbico es de color amarillo limón, insoluble en agua, ligeramente soluble en alcohol etílico, éter dietílico y benceno, y es muy soluble en disulfuro de carbono. Su densidad es 2.07 g/cm3 (1.19 oz/in3) y su dureza es de 2.5 en la escala de Mohs. Su fórmula molecular es S8. El azufre monoclínico, llamado también azufre prismático y azufre beta, es la modificación estable del elemento por encima de la temperatura de transición y por debajo del punto de fusión. El azufre fundido se cristaliza en prismas en forma de agujas que son casi incoloras. Tiene una densidad de 1.96 g/cm3 (1.13 oz/in3) y un punto de fusión de 119.0ºC (246.7ºF). Su fórmula molecular también es S8. El azufre plástico, denominado también azufre gamma, se produce cuando el azufre fundido en el punto de ebullición normal o cerca de él es enfriado al estado sólido. Esta froma es amorfa y es sólo parcialmente soluble en disulfuro de carbono. El azufre líquido posee la propiedad notable de aumentar su viscosidad si sube la temperatura. Su color cambia a negro rojizo oscuro cuando su viscosidad aumenta, y el oscurecimiento del color y la viscosidad logran su máximo a 200ºC (392ºF). Por encima de esta temperatura, el color se aclara y la viscosidad disminuye.

Page 10: Proyecto Azufre

En le punto normal de ebullición del elemento (444.60ºC u 832.28ºF) el azufre gaseoso presenta un color amarillo naranja. Cuando la temperatura aumenta, el color se torna rojo profundo y después se aclara, aproximadamente a 650º (202ºF), y adquiere un color amarillo paja. El azufre es un elemento activo que se combina directamente con la mayor parte de los elementos conocidos. Puede existir tanto en estados de oxidación positivos como negativos, y puede forma compuestos iónicos así como covalentes y covalentes coordinados. Sus empleos se limitan principalmente a la producción de compuestos de azufre. Sin embargo, grandes cantidades de azufre elemental se utilizan en la vulcanización del caucho, en atomizadores con azufre para combatir parásitos de las plantas, en la manufactura de fertilizantes artificiales y en ciertos tipos de cementos y aislantes eléctricos, en algunos ungüentos y medicinas y en la manufactura de pólvora y fósforos. Los compuestos de azufre se emplean en la manufactura de productos químicos, textiles, jabones, fertilizantes, pieles, plásticos, refrigerantes, agentes blanqueadores, drogas, tintes, pinturas, papel y otros productos.

Compuestos principales: El sulfuro de hidrógeno (H2S) es el compuesto más importante que contiene sólo hidrógeno y azufre. Es un gas incoloro que tiene un olor fétido (semejante al de los huevos podridos) y es muchísimo más venenoso que el monóxido de carbono, pero se advierte su presencia (por su olor) antes de que alcance concentraciones peligrosas.

Page 11: Proyecto Azufre

Los sulfuros metálicos pueden clasificarse en tres categorías: sulfuros ácidos (hidrosulfuros, MHS, donde M es igual a un ion metálico univalente), sulfuros normales (M2S) y polisulfuros (M2S3). Otros sulfuros son los compuestos de carbono-azufre y los compuesto que contienen enlaces carbono-azufre. Algunos compuestos importantes son: disulfuro de carbono, CS2, líquido que es un disolvente excelente del azufre y del fósforo elemental; monosulfuro de carbono, CS, gas inestable formado por el paso de una descarga eléctrica a través del disulfuro de carbono; y oxisulfuro de carbono, SCO, constituido por monóxido de carbono y azufre libre a una temperatura elevada. Los compuestos de nitrógeno-azufre que han sido caracterizados son el nitruro de azufre, N4S4 (llamado también tetrasulfuro de tetranitrógeno), disulfuro de nitrógeno, NS2, y el pentasulfuro de nitrógeno, N2S5, que pueden ser denominados más propiamente nitruros debido a la gran electronegatividad del nitrógeno, aunque en la literatura se les llama casi siempre sulfuros.

Los compuestos de fósforo-azufre que se han caracterizado son P4S3, P4S5, P4S7 y P4S10. Los cuatro son materiales cristalinos, amarillos y se utilizan en la conversión de compuestos orgánicos oxidados (por ejemplo, alcoholes) en los correspondientes análogos de azufre.Los óxidos de azufre que han sido caracterizados tienen las fórmulas SO, S2O3, SO2, SO3, S2O7 y SO4. El dióxido de azufre, SO2, y el trióxido de azufre, SO3, son de mayor importancia que los otros. El dióxido de azufre puede actuar como agente oxidante y como

Page 12: Proyecto Azufre

agente reductor. Reacciona con el agua para producir una solución ácida (llamada ácido sulfuroso), iones bisulfito (HSO3-) y sulfito (SO32-). El dióxido de emplea como gas refrigerante como desinfectante y conservador, así como agente blanqueador, y en el refinado de productos de petróleo. Sin embargo, su uso principal está en la manufactura de trióxido de azufre y ácido sulfúrico. El trióxido de azufre se utiliza principalmente en la preparación del ácido sulfúrico y ácidos sulfónicos.

Aunque se conocen sales (o ésteres) de todos los oxiácidos, en muchos casos el ácido mismo no ha sido aislado a causa de su inestabilidad. El ácido sulfuroso no se conoce como sustancia pura. El ácido sulfúrico (H2SO4) es un líquido viscoso, incoloro, con un punto de fusión de 10.31ºC (50.56ºF). Es un ácido fuerte en agua y reacciona con la mayor parte de los metales tanto diluido como concentrado. El ácido concentrado es un poderoso agente oxidante, especialmente a temperaturas elevadas. El ácido pirosulfúrico (H2S2O7) es un excelente agente sulfonante y pierde trióxido de azufre cuando se calienta. También reacciona vigorosamente con agua, liberando gran cantidad de calor. Se conocen los ácidos persulfúricos (el ácido peroximonosulfúrico, H2SO5, llamado ácido de Caro, y el ácido peroxidisulfúrico, H2S2O8, llamado ácido de Marshall), así como las sales. Se conocen los ésteres y halógenos de ácidos sulfénicos. Los ácidos sulfínicos se forman por la reducción de los cloruros de ácido sulfónico con zinc o por la reacción con reactivos de Grignard sobre dióxido de azufre en solución etérea. Los ácidos sulfónicos (alquil) se preparan al oxidar mercaptanos (RSH) o sulfuros alquílicos con ácido nítrico concentrado, por el tratamiento de sulfitos con haluros de alquilo o por la oxidación de ácidos sulfínicos.

Page 13: Proyecto Azufre

Otros compuestos orgánicos importantes que contienen oxígeno-azufre incluyen los sulfóxidos, R2SO (que pueden ser considerados como derivados del ácido sulfuroso), y las sulfonas, R2SO2 (del ácido sulfúrico).Derivados halogenados importantes del ácido sulfúrico son los halogenuros orgánicos de sulfonilo y los ácidos halosulfónicos. Los compuestos de halógenos-azufre que han sido bien caracterizados son S2F2 (monosulfuro de azufre), SF2, SF4, SF6, S2F10, S2Cl2 (monoclururo de azufre), SCl2. SCl4 y S2Br2 (monobromuro de azufre). Los cloruros de azufre se utilizan en la manufactura comercial del hule y los monocloruros, que son líquidos a la temperatura ambiente, se emplean también como disolventes para compuestos orgánicos, azufre, yodo y ciertos compuestos metálicos.

Page 14: Proyecto Azufre

CARACTERISTICAS.El azufre es un elemento químico de carácter no metálico, de color amarillo, es blando, frágil, ligero, que a su vez desprende un olor característico a huevo podrido y arde con llama de color azul desprendiendo dióxido de azufre. Es insoluble en agua pero se disuelve en disulfuro de carbono. Aunque también al mezclarse óxido de sulfuroso con agua produce lluvia ácida. Posee como valencias el +2, +4 y el +6.SímboloEl Azufre tiene como símbolo la letra S. El uso de los símbolos en la química y no solo en ésta sino también en la alquimia, tiene una función importante, la cual es representar de manera abreviada los cuerpos simples e incluso algunos compuestos conocidos en la antigüedad. Los primeros que iniciaron en éste arte combinaban sus doctrinas con la magia además de atribuir a los planetas, puesto que estos tenían una indudable influencia sobre las cosas y fenómenos de la Tierra, por ello, los metales eran conocidos por distintas divinidades planetarias. Número Atómico El número atómico del Azufre es el número 16, esto trata de expresar la cantidad de protones existentes en el núcleo atómico, representándose con un número entero positivo. Este es característico de cada uno de los elementos químicos y representa una propiedad fundamental del átomo: su carga nuclear. El número atómico es el número Z que acompaña al símbolo X de un elemento. Henry Moseley en 1913, fue el que demostró la regularidad existente entre los valores de las longitudes de onda de los rayos X emitidos por diferentes metales tras ser bombardeados con electrones, y los números atómicos de estos elementos metálicos. Este hecho permitió clasificar a los elementos en la tabla periódica en orden creciente de número atómico.

Page 15: Proyecto Azufre

Masa AtómicaLa masa atómica es de 32,064 que se refiere a la suma de los neutrones y protones, que contienen los diferentes átomos que constituyen químicamente, la estructura del elemento, en los cuales se incluyen los isótopos.

Estado de Oxidación Posee un estado de oxidación de número -2, que vendría siendo la suma de las cargas positivas y negativas de un átomo, lo cual indirectamente indica el número de electrones que el átomo ha aceptado o cedido, es decir una aproximación conceptual de procesos de oxidación y reducción.

Punto de Fusión El punto de fusión del Azufre es de 119,0, que como ya sabemos es la temperatura por la cual un sólido cambia a líquido y en las sustancias puras, el proceso de fusión ocurre a una sola temperatura y el aumento de temperatura por la adición de calor se detiene hasta que la fusión es completa.

Punto de Ebullición Tiene un Punto de Ebullición de 444,6 que se refiere a la temperatura por la cual se produce la transición de la fase líquida a la gaseosa. En el caso de sustancias puras a una presión fija, el proceso de ebullición o de vaporización ocurre a una sola temperatura; conforme se añade calor la temperatura permanece constante hasta que todo el líquido ha hervido.

Page 16: Proyecto Azufre

Configuración ElectrónicaSu configuración electrónica también conocida con el nombre de estructura atómica es de [Ne]3s23p4 que es la manera en que están organizados los electrones en el átomo y determina las características del mismo.Su Grupo y PeríodoSe encuentra en el grupo 16 del sistema periódico, es decir, cada elemento se encuentra encolumnados en grupos, por lo cual cada uno de ellos pertenece a un mismo grupo que presentan características similares. En el caso del azufre los elementos del grupo 16 son: O (Oxígeno), Se (Selenio) y S (Azufre) que constituyen la familia de los no metales, Te (Telurio), Po (Polonio) que constituyen la familia de los metaloides y el Unh (Ununhexio) que es el que constituyen el de la familia de los metales del bloque p. El período en el cual se localiza el Azufre es en el período 3, es decir, en cada una de las filas horizontales se encuentran una serie de elementos que se caracterizan por sus propiedades físicas y químicas que varían gradualmente. El primer elemento de la tabla periódica presenta un carácter metálico, pero a medida que avanza horizontalmente el carácter metálico disminuye y aparece el no metálico, siendo el último elemento de la tabla periódica netamente no metálico. Radio IónicoEl Radio Iónico del Azufre es 1,84, es decir, es el radio que ostenta un átomo cuando ha perdido o ganado electrones, adquiriendo la estructura electrónica del gas noble más cercano.

Page 17: Proyecto Azufre

Radio AtómicoEl Radio Atómico es de 1,27; es como la mitad de la distancia entre dos núcleos de un mismo elemento unidos entre sí. Estas distancias se calculan mediante técnicas de difracción de rayos X, neutrones o electrones.

Radio CovalenteEs la mitad de la distancia entre dos átomos iguales que están unidos mediante un enlace covalente simple en una molécula neutra Su radio covalente es de 102 pm.

Entalpía de Fusión Su Entalpía de Fusión o calor de fusión es de 1,7175 kJ/mol se refiere a la cantidad de energía necesaria para hacer que una mol de un elemento que se encuentre en su punto de fusión pase del estado sólido al líquido.

Entalpía de Vaporación La Entalpía de Vaporización en el Azufre no se ha encontrado por lo tanto se presenta sin datos, éste trata de formular la cantidad de energía necesaria para que un mol de un elemento que se encuentre en equilibrio con su propio vapor a una presión de una atmósfera pase completamente al estado gaseoso.

Afinidad ElectrónicaLa Afinidad Electrónica es la energía liberada cuando un átomo gaseoso en su estado fundamental capta un electrón libre y se convierte en un ión mononegativo. En el caso del Azufre posee una afinidad electrónica de 200,4 kJ/mol

Page 18: Proyecto Azufre

Electronegatividad Posee una electronegatividad de 2,5 eso que refiere a una medida de fuerza de atracción que ejerce un átomo sobre los electrones de otro en un enlace covalente, es decir es la capacidad de una átomo en una molécula para atraer hacia el los electrones. La Electronegatividad de un elemento químico depende de su estado de oxidación y, por lo tanto, no es una propiedad invariable, esto quiere decir que un mismo elemento puede presentar distintas electronegatividades dependiendo del tipo de molécula en la que se encuentre.

Densidad También tiene una densidad de 2,07 g\mol, es decir es la propiedad intensiva de la materia definida como la relación de la masa de un objeto dividida por su volumen. La masa es la cantidad de materia contenida en un objeto (Expresado en g.) y el volumen es la cantidad de espacio ocupado por la cantidad de la materia (Expresado en ml.)

Abundancia TerrestreLa abundancia terrestre del azufre es de 0.052%, es decir es la cantidad de azufre que se encuentra en la corteza terrestre o en el agua del mar

Page 19: Proyecto Azufre

USOS INDUSTRIALES.El azufre se usa en multitud de procesos industriales como la producción de ácido sulfúrico para baterías, la fabricación de pólvora y el vulcanizado del caucho. El azufre tiene usos como fungicida y en la manufactura de fosfatos fertilizantes. Los sulfitos se usan para blanquear el papel y en cerillas. El tiosulfato de sodio o amonio se emplea en la industria fotográfica como «fijador» ya que disuelve el bromuro de plata; y el sulfato de magnesio (sal Epsom) tiene usos diversos como laxante, exfoliante, o suplemento nutritivo para plantas. La aplicación industrial más importante del azufre es la fabricación de compuestos como ácido sulfúrico, sulfitos, sulfatos y dióxido de azufre, todos ellos ya citados. En medicina, el azufre ha cobrado gran relevancia por la extensión del uso de las sulfamidas y su utilización en numerosas pomadas tópicas. Se emplea también para fabricar fósforos, caucho vulcanizado, tintes y pólvora. En forma de polvo finamente dividido y frecuentemente mezclado con cal, el azufre se usa como fungicida para las plantas. La sal tiosulfato de sodio, Na2S2O3·5H2O, llamada impropiamente hiposulfito, se emplea en fotografía para el fijado de negativos y positivos. Combinado con diversas láminas de minerales inertes, el azufre constituye un pegamento especial utilizado para sujetar objetos metálicos a la roca, como en el caso de los rieles o vías de tren y cadenas. El ácido sulfúrico es uno de los productos químicos industriales más importantes, pues además de emplearse en la fabricación de productos que contienen azufre sirve también para elaborar una gran cantidad de materiales que no contienen azufre en sí mismos como el ácido fosfórico. Las industrias también lo utilizan como materias prima para fabricar sustancias para el cuidado de las plantas ya que es esencial ingrediente proteico; estimula la formación de hojas y el crecimiento vigoroso en la planta; ayuda a mantener el color verde oscuro y también ayuda en el uso de nitrógeno.

Page 20: Proyecto Azufre

El azufre es necesario para disminuir el pH del suelo. El azufre tiende a acidificar el suelo, cuando el azufre elemental se desdobla con el agua. Este proceso llamado oxidación se acelera cuando las temperaturas son altas. Al tener el azufre tantas aplicaciones industriales y de otro tipo, se considera un elemento químico de vital importancia para la realización de diversas actividades, en el mundo de la medicina, la química, la biología y la industria propia de manufacturación, hoy en día se extrae como cualquier otro mineral, así como el hierro.

IMPACTO AMBIENTAL.El azufre puede encontrarse en el aire en varias formas diferentes. Puede provocar irritaciones en los ojos y garganta de los animales, cuando la toma tiene lugar a través de la inhalación del azufre en su fase gaseosa. El azufre se aplica extensivamente en las industrias y es emitido al aire, debido a las limitadas posibilidades de destrucción de los enlaces de azufre que se aplican.

Los efectos dañinos del azufre en los animales son principalmente daños cerebrales, a través de un malfuncionamiento del hipotálamo, y perjudicar el sistema nervioso.

Pruebas de laboratorio con animales de prueba han indicado que el azufre puede causar graves daños vasculares en las venas del cerebro, corazón y riñones. Estos tests también han indicado que ciertas formas del azufre pueden causar daños fetales y efectos congénitos. Las madres pueden incluso transmitirles envenenamiento por azufre a sus hijos a través de la leche materna.

Por último, el azufre puede dañar los sistemas enzimáticos internos de los animales.

Page 21: Proyecto Azufre

BIBLIOGRAFIA.

FECHA: 25 DE NOVIEMBRE DE 2008.http://www.lenntech.com/espanol/tabla-peiodica/s.htmhttp://es.wikipedia.org/wiki/Azufrehttp://www.prodigyweb.net.mx/degcorp/Quimica/Azufre.htmhttp://redescolar.ilce.edu.mx/redescolar/publicaciones/publi_rocas/azufre.htmhttp://fisicarecreativa.net/geoquimica/tema13.htmlhttp://www.uned.es/cristamine/fichas/azufre/azufre.htm