phev vehicle level control strategy summary - presentations/hevs and...la92 0.1 0.15 0.2 share of...

17
PHEV Vehicle Level Control Strategy S Summary November 2008 November 2008 A ymeric Rousseau Argonne National Laboratory Sponsored by Lee Slezak This presentation does not contain any proprietary, confidential, or otherwise restricted information

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • PHEV Vehicle Level Control StrategySSummary

    November 2008November 2008

    Aymeric RousseauyArgonne National Laboratory

    Sponsored by Lee Slezak

    This presentation does not contain any proprietary, confidential, or otherwise restricted information

  • Objective: Assess Fuel Displacement Potential of Various PHEVs Control StrategiesVarious PHEVs Control Strategies

    Higher Electric Power

    Higher Electric Energy Higher Control Freedom

    Fuel Savings Potential

    Depending on various driven distance, several possible modes:– Below AER (All‐Electric Range) : Electric‐only (EV)

    – Above AER: EV? CS(Charge Sustaining)? Blended? 

    Common Strategy= EV+CS Blended Strategykm/h

    SOC

    % %km/h

    lowICE

    highICE

    offoff

    Veh. speed

    SOChighICE

    off

    highICE

    off off

    s

    EV MODE

    off

    CS MODE

    s

    BLENDED BLENDED

    2

    Control Optimization/Design Investigates Strategies Potential

  • Innovative 3-way Approach to Control OptimizationGl b l O ti i ti

    tSOCtP

    tJtSOCtP '0,000 ,1',1 tU 0 Optimal Control

    Teng Tmcωmc

    Global Optimization

    tSOCtP nm ,

    tJtSOCtP MMMM ',' ,1,1

    0

    tU M

    TX 0X.

    .

    .

    .

    .

    .

    Optimal Control, Minimal Fuel Cons.

    Backward model (not PSAT) Bellman Principle

    ωeng

    Backward model (not PSAT) p

    PSAT Various PSAT C t l St t iVarious

    Control Design

    Control StrategiesVarious Control Principles Rule-Based Control Design

    Heuristic OptimizationOptimally tuned

    ParametersPSAT

    Heuristic Optimization

    3

    Existing Control Logic DIRECT Algorithm

  • Global Optimization Showed Minimal Fuel Consumption Achieved in Blended Mode

    Global Optimization

    Consumption Achieved in Blended Mode

    0 9

    1

    UDDS 10 ( ti )Japan 10-15 x25 (optim)Japan 10-15 x25 (simu)

    0 7

    0.8

    0.9NEDC x10(optim)UDDS x10 (optim)

    3 cycles demonstrated

    0.6

    0.7

    SO

    C

    Blended strategy is optimal

    0.4

    0.5

    Example of EV+CS Mode for

    0 10 20 30 40 50 60 70 80 90 1000.2

    0.3Example of EV+CS Mode for comparison

    4

    % of total distance

  • Control Strategy Design Showed Significant ImprovementsImprovements

    EV/C

    S

    0 0%

    2.0%

    Up to 9% less

    ase

    Ove

    r

    -2.0%

    0.0%0 16 32 48 64 80 96 112

    fuel consumed when driving distance is 20 migy

    Incr

    ea

    -6.0%

    -4.0%

    Differential EnginePower distance is 20 mi

    uel E

    nerg

    -8.0%

    Full Engine Power

    Optimal EnginePower

    Trip distance (km)Fu -10.0%

    Power Split 10 miles AER (Prius), run on several UDDS cycles

    5

    p ( ), y

  • Different Optimization Methods Showed Control Depends on DistanceDepends on Distance

    Global Optimization Heuristic Optimization (UDDS)30O

    N

    UDDS 20ld

    25

    ch IC

    E is

    UDDSHWFETLA92 18

    20

    N th

    resh

    ol

    15

    20

    abov

    e w

    hic

    14

    16

    W) I

    CE

    ON

    10

    15

    eels

    (kW

    ) a

    12

    14

    whe

    els

    (kW

    0 10 20 30 40 505

    Distance (miles)

    Pwr w

    he

    10 20 30 40 50 6010

    Distance (miles)

    Pwr w

    6

    Small SUV, Parallel Pre-tx, 10 miles AER

  • “ Engine On” Is Linked to Wheel Power35

    =.95

    Cycle:

    Global Optimization

    25

    30

    h P(

    ICE=

    ON

    )= Cycle:

    HWFETUDDS

    LA92

    15

    20

    ) abo

    ve w

    hich

    10 miles20 miles

    Driven Distance

    0

    5

    10

    wr w

    heel

    s (kW

    ) 20 miles40 miles

    Power at wheels above which ICE is on 95% of the time, similar to wheel 

    0 50 100 150 200 2500P

    Plug-to-wheel Electric Consumption (Wh/km)

    power threshold used in rule‐based controls

    Higher Electric Energy Use → ICE starts “later”

    Wheel Power Threshold follows linear trend

    7

    Wheel Power Threshold follows linear trend

    Little influence of driving cycle

  • Engine Power Depends on Cycle and Electricity Use

    Global Optimization

    Electricity Use

    30

    35

    W)

    20

    25

    age

    Pow

    er (k

    W

    Cycle:

    HWFETUDDS

    LA92

    10

    15

    Engi

    ne A

    vera

    10 miles

    Driven Distance

    0 50 100 150 200 2500

    5E

    Plug-to-wheel Electric Consumption (Wh/km)

    20 miles40 miles

    UDDS: ICE power increases with Wh/km

    LA92: ICE power constant, because cycle is aggressive enough for the ICE to operate 

    g p ( )

    8

    efficiently

  • Charging from ICE Likely When ICE is Predominant and Wheel Power is Low

    Global Optimization

    Predominant and Wheel Power is Low

    0.35

    0.4

    Cycle:UDDS

    0 2

    0.25

    0.3 Engine Efficiency

    HWFET

    Driven

    LA92

    0.1

    0.15

    0.2

    Share of Engine Output Energy Used to Charge the Battery

    10 miles20 miles40 miles

    Distance

    0 50 100 150 200 2500

    0.05

    Pl t h l El t i C ti (Wh/k )

    UDDS: when ICE is used often, it has to operate often above requested wheel power

    LA92: ICE operates efficiently, even in CS mode because average ICE power is high

    Plug-to-wheel Electric Consumption (Wh/km)

    9

    LA92: ICE operates efficiently, even in CS mode because average ICE power is high

  • 5 Vehicles with Different Energy and AERGlobal Optimization

    90 90

    Power to meet EV-mode requirements on UDDS…

    70

    80

    90

    65.8046

    y (A

    h) …Different UDDS All-Electric Range

    10 miles AER on UDDS

    40

    50

    60

    44.5589

    y C

    apac

    ity

    UDDS

    10

    20

    30

    11.9045

    23.2123

    Bat

    tery

    5 10 20 30 400

    10

    All-Electric Range (miles)

    10

  • For a Given Electric Consumption, AER Has Little Influence on Control

    Global Optimization

    For a given electric consumption, ICE‐On behavior does not depend on the energy sizing…

    b ibl l i i i li i d l i

    40954095

    …but possible electric energy consumption is limited : same electric consumption corresponds to different SOC 

    25

    30

    35

    40

    ch P

    (ICE=

    ON

    )=.9

    Maximal battery depletion

    25

    30

    35

    40

    ch P

    (ICE=

    ON

    )=.9

    AER5AER10AER20AER30AER40

    10

    15

    20

    AER10

    AER20

    AER30

    AER40

    (kW

    ) abo

    ve w

    hic

    10

    15

    20

    s (kW

    ) abo

    ve w

    hi AER40

    0 0.2 0.4 0.60

    5

    AER5

    SOC0 - SOC

    end

    Pwr w

    heel

    s CS mode

    0 50 100 150 200 2500

    5

    Electric Energy Consumption (Wh/km)

    Pwr w

    heel

    s

    11

    UDDS, 20 mi

  • Minimal Fuel Consumption Distance Traveled < AER

    Global Optimization

    Distance Traveled  AER

    – Decrease in fuel consumption is proportional to increase in AER

    – 1.5 L/100 km difference between UDDS and LA92

    5

    6

    7

    (L/1

    00km

    )

    Driven Distance: 10 miles

    250

    300

    350

    (Wh/

    k)

    Driven Distance: 40 miles

    Wh/km (UDDS)Wh/km (HWFET)Wh/km (LA92)

    3

    4

    5

    el C

    onsu

    mpt

    ion

    L/100km (UDDS)L/100km (HWFET)L/100k (LA92)

    150

    200

    250

    Cti

    ( )

    0

    1

    2

    Min

    imal

    Fue

    5 10 20 30 40

    L/100km (LA92)

    5 10 20 30 405 10 20 30 400

    50

    100

    Elt

    iE

    12

    5 10 20 30 40AER (miles)

    5 10 20 30 405 10 20 30 40AER (miles)

  • Fuel Consumption Follows a Linear Trend and Depends on Wh/km

    Global Optimization

    p

    Small AER vehicles consume slightly less fuel due to lower weight, but difference in consumption is minimal

    For a given electric consumption, fuel consumption is comparable

    For 2 vehicles (e.g. AER 30 & AER 40) travelling less than their AER (e.g. 20 mi on UDDS), same EV mode electric consumption 

    4

    5

    6

    100k

    m)

    AER5AER10AER20AER30

    UDDS, 20 miles

    2

    3

    4

    onsu

    mpt

    ion

    (L/1 AER30

    AER40

    0 50 100 150 200 2500

    1

    2

    Fuel

    Co

    13

    0 50 100 150 200 250

    Plug-to-wheel Electric Consumption (Wh/km)

  • 5 Vehicles With Different PowerGlobal Optimization

    120

    Same Battery Energy… … Different Electric Power

    100

    89.4366

    104.3427

    W)

    60

    80

    59.6244

    74.5305

    10 miles AER ony

    Pow

    er (k

    W

    20

    4044.7183

    AER on UDDS

    Bat

    tery

    0.6 0.8 1 1.2 1.40

    20

    Power Scaling Ratio

    14

    Power Scaling Ratio

  • Maximum Power Impacts Wheel Power Threshold for Engine ON

    Global Optimization

    Threshold for Engine ON The engine starts “earlier” when the electric system has lower 

    powerpower

    30

    35

    E=O

    N)=

    .95

    Ratio 0.6Ratio 0.8

    20

    25

    e w

    hich

    P(IC

    E

    Ratio 1Ratio 1.2Ratio 1.4

    5

    10

    15

    ls (k

    W) a

    bove

    20 miles UDDS

    0 50 100 150 2000

    5

    Electric Energy Consumption (Wh/km)

    Pwr w

    heel

    15

  • Less Electric Power Results in Higher Fuel Consumption

    Global Optimization

    Consumption

    Especially true on aggressive cycle (LA92), and distance traveled close to AER

    Hi h l t i d t i ifi tl d f l ti Higher electric power does not significantly reduce fuel consumption

    UDDS seems to be a good choice for power requirements (In terms of energy use)

    4

    5

    L/10

    0km

    )

    200

    250

    n (W

    h/km

    )

    2

    3

    Con

    sum

    ptio

    n (L

    100

    150

    gy C

    onsu

    mpt

    ion

    L/100km (UDDS)L/100km (HWFET)L/100km (LA92)

    Wh/km (UDDS)Wh/km (HWFET)Wh/km (LA92)

    0

    1

    Min

    imal

    Fue

    l

    0

    50

    Elec

    tric

    Ene

    rg

    16

    0.6 0.8 1 1.2 1.4

    Power Scaling Ratio

  • Control Strategy Assessment Provided Insights on PHEVs Optimal OperationsPHEVs Optimal Operations

    When the trip distance is greater than the All Electric Range, i h i h h h i (bl d d l) iusing the engine throughout the trip (blended control) is 

    preferable to depleting the battery as fast as possible

    Optimum control depends on the distanceOptimum control depends on the distance

    Engine On/Off is linked to wheel power demand and available electrical energy

    When used, engine should be operated at high efficiency

    17