particle methods for tortuosity factors in porous media · 2017-10-11 · particle methods for...

30
Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson 1 Arnaud Borner 1 Francesco Panerai 2 Nagi N. Mansour 3 1. Science and Technology Corp. at NASA Ames Research Center 2. Analytical Mechanical Associates Inc. at NASA Ames Research Center 3. Advanced Supercomputing Division, NASA Ames Research Center https://ntrs.nasa.gov/search.jsp?R=20170009457 2020-05-22T14:11:34+00:00Z

Upload: others

Post on 21-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Particlemethodsfortortuosityfactorsin

porousmedia

AblationWS,2017Bozeman,MT

JosephC.Ferguson1ArnaudBorner 1

FrancescoPanerai 2Nagi N.Mansour3

1.ScienceandTechnologyCorp.atNASAAmesResearchCenter2.AnalyticalMechanicalAssociatesInc.atNASAAmesResearchCenter3.AdvancedSupercomputingDivision,NASAAmesResearchCenter

https://ntrs.nasa.gov/search.jsp?R=20170009457 2020-05-22T14:11:34+00:00Z

Page 2: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Ablative Thermal Protection Systems

2

+

FiberForm® Resin

PICAArtist rendering of MSL entry

http://mars.nasa.gov/mer/gallery/artwork/entry_br.html

Page 3: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Material Design and Modeling

3

Page 4: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

X-ray micro-tomography

• AdvancedLightSource(ALS)attheLawrenceBerkeleyNatl.Laboratory

• Synchrotronelectronacceleratorusedtoproduce14KeVX-rays

• Usedformanyresearchareas,includingoptics,chemicalreactiondynamics,biologicalimaging,andX-raymicro-tomography.

BerkeleyLabs,Flickr

http://www2.lbl.gov/MicroWorlds/ALSTool

4

Page 5: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

X-ray micro-tomographyCollectX-rayimagesofthesampleasyourotate

itthrough180°Usethisseriesofimagesto“reconstruct”the3Dobject

MultipleanglesPenetratingpower Courtesy of D. Parkinson (ALS)

5

Page 6: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

X-ray micro-tomography

6

VisualizationofFiberForm inPuMA atmultiplescales

Page 7: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Porous Materials Analysis (PuMA) TechnicalSpecifications

• WritteninC++• GUIbuiltonQT• Visualizationmodulebasedon

OpenGL• ParallelizedusingOpenMP for

sharedmemorysystems

7

DomainGeneration

Visualization MaterialProperties MaterialResponse

Artificial Material

Generator

Micro-tomography Import, Processing, and Thresholding

Marching Cubes

OpenGL Surface

Rendering

Porosity

Specific Surface Area

Effective Thermal Conductivity

Effective Electrical Conductivity

Diffusivity / Tortuosity(Bulk and Knudsen)

Representative Elementary Volume

Oxidation Simulations

Transient Heat Transfer *

*Under Development

Page 8: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Tortuosity Factors• Quantifiesamaterialsresistancetoa

diffusiveflux• Importantinmodelingdiffusion/reaction

systems– suchasablativeTPSresponse

• 𝜂 = tortuosityfactors• 𝜀 = porosity• 𝐷%&' = referencediffusioncoefficient• 𝐷&'' = effectivediffusioncoefficient

8

𝜂 = 𝜀𝐷%&'𝐷&''

SurfacerenderingofFiberForm tomographyinPuMAV2.1.Visualizationcontains≈500milliontriangles.

Page 9: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

• Non-dimensionalnumberwhichdefinesthediffusionregime

• Continuum:Kn <<1• Transitional:Kn ≈ 1• Rarified:Kn >>1

9

LowKnudsen HighKnudsen

2DdiffusivitysimulationsusingarandomwalkmethodinPuMA.Particlepathsarevisualizedinred.

Kn = �̅�𝑙/=

MeanFreePathCharacteristicLength

Knudsen Number

Page 10: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Tortuosity Factors• Quantifiesamaterialsresistancetoa

diffusiveflux• Importantinmodelingdiffusion/reaction

systems– suchasablativeTPSresponse

• 𝜂 = tortuosityfactors• 𝜀 = porosity• 𝐷%&' = referencediffusioncoefficient• 𝐷&'' = effectivediffusioncoefficient

10

𝜂 = 𝜀𝐷%&'𝐷&''

SurfacerenderingofFiberForm tomographyinPuMAV2.1.Visualizationcontains≈500milliontriangles.

Page 11: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Reference Diffusion Coefficient• 𝐷%&' = referencediffusioncoefficient

• 𝐷>?@A = BC�̅��̅�,whichisundefinedasthe

meanfreepathapproachesinfinity• 𝐷%&' thereforemustbebasedonalength

scale.Inthiscase,theDiffusioncoefficientthroughacapillaryofdiameter𝑙/

�̅� =meanthermalvelocity�̅� =meanfreepath

11

Continuum FreeMolecular

𝐷%&' = 𝐷>?@A 𝐷>?@A doesnotexist

Page 12: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Bosanquet Approximation• Usedtoapproximate𝐷%&' basedonknown

valuesfor𝐷> and𝐷A.[1]

• Rewrittenforsinglespeciesdiffusioninacapillary,𝐷%&' becomes[2]

12

1𝐷%&'

= 1𝐷>

+1𝐷A

𝐷%&' = 13�̅�

�̅�𝑙/�̅� + 𝑙/

[1]Tomadakis,1998[2]Pollard,1948

Page 13: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Choice of Length Scale

1. Define𝑙/ basedonanapproximategeometriclengthscaleforthematerial.TypicallyHI

Jormean

interceptlength.(Tomadakis,Lachaud,Geodict)

2. Define𝑙/ afterthesimulationsarecompleteasthevaluewhichmakesthetortuosityfactorvs.Knudsennumberplotconvergetoasinglevalue.(Zalc)

13

Poresizedistribution,computedinGeoDict,ofFiberForm.

Page 14: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Length Scale Option #1Define𝑙/ basedonanapproximategeometriclengthscaleforthematerial.TypicallyHI

Jormean

interceptlength.(Tomadakis,Lachaud,Geodict,PuMA)

• Mostoftenusedintheliteratureandsoftware

• Requiresvaluesof𝜂>, 𝜂A and𝑙/ inordertoapplytheBosanquet approximation

• 𝜂 isnolongerapurelygeometricalproperty,asitisnowafunctionoftheKnudsennumber

• Since𝜂> hadnophysicalmeaningwithout𝑙/,thiscanproduceconfusingresultsof𝜂A<1

14

FigurefromTomadakis,1993

Page 15: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Length Scale Option #2Define𝑙/ afterthesimulationsarecompleteasthevaluewhichmakesthetortuosityvs.Knudsennumberplotconvergetoasinglevalue.(Zalc,PuMA)

• Requiresonlyonevalueof𝜂 andacomputedlengthscale,𝑙/, inordertoapplytheBosanquetapproximation

• 𝜂 isnowlongerapurelygeometricalproperty,nolongerafunctionofKn

• Easiertounderstandandimplement

15

TortuosityfactorvsKnudsenNumberfor1Dfibers,computedinPuMA,showingtheparallelandperpendiculartortuosityfactorsforOption#1andOption#2

Page 16: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Choice of Length Scale

1. Define𝑙/ basedonanapproximategeometriclengthscaleforthematerial.TypicallyHI

Jormean

interceptlength.(Tomadakis,Lachaud,Geodict)

2. Define𝒍𝑫 afterthesimulationsarecompleteasthevaluewhichmakesthetortuosityfactorvs.Knudsennumberplotconvergetoasinglevalue.(Zalc)

16

Poresizedistribution,computedinGeoDict,ofFiberForm.

Page 17: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Applying Tortuosity Factors• Usedtocompute𝐷&'' withinaporous

media,withknowntortuosityfactor,𝜂,knownlengthscale,𝑙/,andknowngasproperties.

• UsingBosanquet approximationtoapproximate𝐷%&',theequationbecomes

17

𝐷&'' = 𝜀𝐷%&'𝜂

SurfacerenderingofFiberForm tomographyinPuMAV2.1.Visualizationcontains≈500milliontriangles.

𝐷&'' = 𝜀3𝜂 �̅�

�̅�𝑙/�̅� + 𝑙/

Page 18: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Numerical Methods

18

Continuum Rarified

• Canbesolvedusingtypicalnumericalmethodssuchasfinitevolumeandfinitedifference

1. Geodict - ExplicitJumpSolver2. PuMA – ExplicitJumpSolver3. TauFactor – FiniteVolumesolver

• MustbesolvedusingparticlemethodstoaccountforKnudseneffects

1. PuMA – Randomwalksolver2. Geodict – Randomwalksolver

(Knudsenregime)3. SPARTA– DirectSimulationMonte

Carlo

Page 19: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Random Walk Solver• Particlemethodforsolvingdiffusion• Velocityandmeanpathforeachparticlebasedon

exponentialdistribution• Diffusereflectionsareusedforsurfacecollisions• Symmetricboundaryconditions

• 𝜉O isthemeansquaredisplacementoftheparticles

• Meanthermalvelocity,�̅�,andmeanfreepath,�̅�, areimposedtosimulatethedesiredgasspeciesandconditions.

19

𝐷&''P =𝜉O

2𝑡

HighKnudsenLow

Knudsen

Page 20: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Wall Collisions• Diffusereflectionsusedforsurfacecollisions• Collisiondetectioncanbebasedonisosurface or

cuberille grid

20

HighKnudsenLow

Knudsen

Isosurface (a)andcuberille (b)approximationsofacylinderwithradius3voxels.

(a) (b)

Page 21: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Wall Collisions• Diffusereflectionsusedforsurfacecollisions• Collisiondetectioncanbebasedonisosurface or

cuberille grid

21

HighKnudsenLow

Knudsen

Percentdifference(isosurface vscuberille)vsKnudsennumberforthreedifferentidealgeometries

Page 22: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Comparison to Literature

The 5% error is likely due to the limitations of computing in 1993.Simulations by Tomadakis were using only 200 particles andlikely on a small dataset. The PuMA simulations were run on200,000 particles for a total walk length of 10,000 times thedomain length 22

TestCase#1

• 3DFibers,5123• Intersecting,isotropic• 0.6porosity

Page 23: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Comparison to Literature

The 5% error is likely due to the limitations of computing in 1993.Simulations by Tomadakis were using only 200 particles andlikely on a small dataset. The PuMA simulations were run on200,000 particles for a total walk length of 10,000 times thedomain length 23

TestCase#2

• 1DFibers,512x512x256• Nonintersecting• 0.7porosity

Page 24: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Bosanquet Analysis

24

TestCase#1

• 3DFibers,5123• Intersecting,isotropic• 0.6porosity

Page 25: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Bosanquet Analysis

25

TestCase#2

• FiberForm,0.8mm3

• Transverseisotropic• 0.89porosity

Page 26: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Direct Simulation Monte Carlo• DSMCisaparticlemethodtosimulate

transitionalandrarifiedflowswithhighfidelity

• Verycomputationallyexpensive,preventinglargeorfrequentsimulations

• DSMCdiffusionsimulationsconductedinSPARTA,developedatSandiaNationalLabs.

• Pressurevariedtochangethemeanfreepath,andthereforetheKnudsennumber

• Usedasaverificationcasefortherandomwalkmethod

26

DSMCsimulationoftransitionalflowovertheSpaceShuttle.Sparta.sandia.gov

Page 27: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Direct Simulation Monte Carlo

27

TestCase#1

• 3DFibers,5123• Intersecting,isotropic• 0.6porosity

Page 28: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Conclusion and Outlook

28

DomainGeneration

Visualization MaterialProperties MaterialResponse

Artificial Material

Generator

Micro-tomography Import, Processing, and Thresholding

Marching Cubes

OpenGL Surface

Rendering

Porosity

Specific Surface Area

Effective Thermal Conductivity

Effective Electrical Conductivity

Diffusivity / Tortuosity(Bulk and Knudsen)

Representative Elementary Volume

Oxidation Simulations

Transient Heat Transfer *

*Under Development

• Implemented finite difference and random walk tortuosity factor solvers into PuMA V2.1

• Demonstrated the necessity of using an isosurface collision detection for complex 3d media, a capability which currently only exists in PuMA

• Verified random walk model for tortuosity factors against Direct Simulation Monte Carlo (DSMC) simulations.

• Recommend changing current definitions of tortuosity factor to restore the value as a purely geometrical property.

Page 29: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Acknowledgements

• This work was supported by the Entry System Modeling project (M.J. Wright project manager) of the NASA Game Changing Development program.

• T. Sandstrom, C. Henze, D. Ellsworth, and B. Nelson for useful discussions during the development of PuMA and the parallelization of the oxidation model.

• A.A. MacDowell, H.S. Barnard, D.Y. Parkinson are acknowledged for their assistance with tomography measurements.

• The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

29

Page 30: Particle methods for tortuosity factors in porous media · 2017-10-11 · Particle methods for tortuosity factors in porous media Ablation WS, 2017 Bozeman, MT Joseph C. Ferguson

Questions?

AblationWS,2017Bozeman,MT

JosephC.Ferguson1ArnaudBorner 1

FrancescoPanerai 2Nagi N.Mansour3

1.ScienceandTechnologyCorp.atNASAAmesResearchCenter2.AnalyticalMechanicalAssociatesInc.atNASAAmesResearchCenter3.AdvancedSupercomputingDivision,NASAAmesResearchCenter