nyquist-rate a/d converters

26
slide 1 of 26 University of Toronto © D.A. Johns, K. Martin, 1997 Nyquist-Rate A/D Con ver ter s David Johns and Ken Martin University of Toronto ([email protected]) ([email protected])

Upload: others

Post on 13-Feb-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

slide 1 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Nyquist-Rate A/D Con ver ters

David Johns and Ken MartinUniversity of Toronto

([email protected])([email protected])

slide 2 of 26University of Toronto© D.A. Johns, K. Martin, 1997

A/D Con ver ter Basics

(1)

• Range of valid input values produce the sameoutput signal — quantization error .

A/DVin

Vref

Bout

Vref b121–

b222– … bN2

N–+ + +( ) Vin x±=

where 12---– VLSB x

12---VLSB< <

01

00

10

11

0 1/21/4

VLSB

Vref

----------- 1/4 1 LSB= =Bout

Vin

Vref

---------3/4 1

slide 3 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Analog to Digital Con ver tersLow-to-Medium

Speed,High Accuracy

Medium Speed,Medium Accuracy

High Speed,Low-to-Medium

Accuracy

Integrating Successiveapproximation

Flash

Oversampling(not Nyquist-rate)

Algorithmic Two-step

Interpolating

Folding

Pipelined

Time-interleaved

slide 4 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Integrating Con ver ters

• Low offset and gain errors for low-speed applications • Small amount of circuitry

• Conversion speed is 2N+1 times 1/Tclk

(Vin is held constant during conversion.)

Control

logicCounter

b1b2b3

bN

Clock

fclk1

Tclk-----------=

S2

S1Vin–

Vref

S1S2

R1

C1

Vx

Bout

Comparator

slide 5 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Integrating Con ver ters

• Count at end of T2 is digital output

• Does not depend on RC time-constant

Time

Vx

T1

Phase (I) Phase (II)

Vin1–

Vin2–

Vin3–

T2 (Three values for three inputs)

(Constant slope)

slide 6 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Integrating Con ver ters

• Notches the input frequencies which are multiples of1/T1

10 100

0

–10

–20

–30

60 120 180 240 300

–20 dB/decade slopeH f( )

(dB)

Frequency (Hz)

(Log scale)

slide 7 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Successive-Appr oximation Con ver ters

Sample

Start

Stop

No

Yes

No

Yes

bi 1= bi 0=

Signed input

Vin VD/A>

Vin VD/A, 0 i, 1= =

VD/A VD/A Vref 2i 1+⁄+→ VD/A VD/A Vref 2i 1+⁄( )–→

i i 1+→

i N≥

• Makes use of binary search algorithm

• /Requires N steps for N-bit converter

• Successively “tunes” a signal untilwithin 1 LSB of input

• Medium speed

• Moderate accuracy

slide 8 of 26University of Toronto© D.A. Johns, K. Martin, 1997

DAC Based Successive-Appr oximation

• Adjust until within 1 LSB of

• Start with MSB and continue until LSB found • D/A mainly determines overall accuracy • Input S/H required

S/H

D/A converter

Successive-approximation register(SAR) and control logic

b1 b2 bNBout

VD/A

Vin

Vref

VD/A V in

slide 9 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Charge Redistrib ution A/D

CC2C4C8C16C

1. Sample mode

CC2C4C8C16C

2. Hold mode

CC2C4C8C16C

3. Bit cycling

SAR

SAR

SAR

b1 b2 b3 b4 b5 s3

s1

s2

b1 b2 b3 b4 b5 s3

s1

s2

b1 b2 b3 b4 b5 s3

s1

s2

Vx 0≅

Vx V in–=

Vx Vin–Vref

2------------+=

Vin Vref

Vin Vref

Vin Vref

slide 10 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Charge Redistrib ution A/D • McCreary, 75 • Combines S/H, D/A converter, and difference circuit

• Sample mode: Caps charged to , compar reset.

• Hold mode: Caps switched to gnd so

• Bit cycling: Cap switched to . If cap leftconnected to and bit=1. Otherwise, cap back tognd and bit=0. Repeat times

• Cap bottom plates connected to side to minimizeparasitic capacitance at . Parasitic cap does notcause conversion errors but it attenuates .

Vin

Vx Vin–=

Vref Vx 0<Vref

N

Vref

Vx

Vx

slide 11 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Algorithmic (or Cyc lic) A/D Con ver ter

Sample V = Vin, i = 1

Start

V > 0

V → 2(V – Vref /4) V → 2(V + Vref /4)

i → i + 1

i > N

Stop

No

Yes

No

Yes

bi 1= bi 0=

Signed input• Operates similar to successive-approx converter

• Successive-approx halves ref voltageeach cycle

• Algorithmic doubles error eachcycle (leaving ref voltage unchanged)

slide 12 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Ratio-Independent Algorithmic Con ver ter

• McCharles, 77; Li, 84 • Small amount of circuitry — reuse cyclically in time • Requires a high-precision multiply by 2 gain stage

S/H

S/HX2

Cmp

Vref /4

–Vref /4

VinShift register

Out

Gain amp

slide 13 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Ratio-Independent Algorithmic Con ver ter

• Does not rely on cap matching • Sample input twice using C1; hold first charge in C2

and re-combine with first charge on C1

CmpVerr

C1

Q1

C2

1. Sample remainder and cancel input-offset voltage.

CmpVerr

C1

Q1

C2

2. Transfer charge Q1 from C1 to C2.

Q1

CmpVerr

C1

Q2

C2

3. Sample input signal with C1 again

Q1

CmpVerr

C1

Q1+Q2

C2

4. Combine Q1 and Q2 on C1, and connect C1 to output.

Vout = 2 Verr

after storing charge Q1 on C2.

slide 14 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Flash (or P arallel) Con ver ters • Peetz, 86; Yoshii, 87; Hotta, 87; and Gendai, 91

Vref

Vin

(2N–1) to N

encoder

N digitaloutputs

Over range

Comparators

R

R

R

R

R

R

R

Vr1

Vr2

Vr3

Vr4

Vr5

Vr6

Vr7

R2----

R 2⁄

• High-speed

• Large size and power hungry

• 2N comparators

• Speed bottleneck usually large capload at input

• Thermometer code out of comps

• Nands used for simpler decodingand/or bubble error correction

• Use comp offset cancellation

slide 15 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Issues in Designing Flash A/D Con ver ters • Input Capacitive Loading — use interpolating arch. • Resistor-String Bowing — Due to Iin of bipolar

comps — force center tap (or more) to be correct. • Signal and/or Clock Delay — Small arrival diff in

clock or input cause errors. (250MHz 8-bit A/D needs5ps matching for 1LSB) — route clock and Vintogether with the delays matched [Gendai, 1991].Match capacitive loads

• Substrate and Power-Supply Noise —and 8-bit, 7.8 mV of noise causes 1 LSB error —shield clocks and use on-chip supply cap bypass

• Flashback — Glitch at input due to going from trackto latch mode — use preamps in comparators andmatch input impedances

Vref 2 V=

slide 16 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Flash Con ver ters — Bubb le Err ors • Thermometer code should be 1111110000 • Bubble error (noise, metastability)— 1111110100 • Usually occurs near transition point but can cause

gross errors depending on encoder

• Can allow errors in lower 2 LSB but have MSBsencoder look at every 4th comp [Gendai, 91]

(2N–1) to Nencoder

N digitaloutputs

Vin

Vri

……

……… …

[Steyaert, 93]

slide 17 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Reduced A uto-Zer oing • Tsukamoto et al, ISSCC/96 • Spalding et al, ISSCC/96 • Reduce the auto-zero portion of conversion

— auto zero when not performing conversion— add one more comparator and ripple up auto-zero

Advantages

• Lower power — less current drawn from ref string • More speed — more time for conversion

Disadvantage

• 1/f noise not rejected as much

slide 18 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Two-Step A/D Con ver ters

• High-speed, medium accuracy (but 1 sample latency) • Less area and power than flash • Only 32 comparators in above 8-bit two-step • Gain amp likely sets speed limit • Without digital error correction, many blocks need at

least 8-bit accuracy

4-bit

A/D4-bitD/A 16

First 4 bits

Vin

Gain amp

V1

Vin

VqMSB

4-bit

A/DLSB

Lower 4 bitsb1 b2 b3 b4, , ,( ) b5 b6 b7 b8, , ,( )

slide 19 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Digital Err or Correction

• Relaxes requirements on input A/D• Requires a 5-bit 2nd stage since Vq increased• Example, see [Petschacher, 1990].

S/H14-bit

A/D

S/H2

4-bitD/A 8 S/H3

ErrorcorrectionD

8 bits

Digital delay

4 bits

5 bits

Vin

Gain amp

(4-bit accurate)(8-bit accurate)

(5-bit accurate)

(5-bit accurate)

(8-bit accurate)

(8-bit accurate)

V1

Vin

VqMSB

5-bit

A/DLSB

slide 20 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Interpolating A/D Con ver tersVref 1 V=

Vin

R

R

R

R

0.75 V

0.5 V

0.25 V

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

Digitallogic

b1b2b3b4

(Overflow)

Inputamplifiers

Latchcomparators

V1

V2

V3

V4

V2a

V2b

RRR

R

RRRR

V2c

R

R

R

R

R

R

R

R

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

• Goodenough, 1989

• Steyaert, 1993

• Kusumoto, 1993

• Use input amps toamplify input aroundreference voltages

• Latch thresholds lesscritical

• Less cap on input (fasterthan flash)

• Match delays to latches

• Often combined withfolding architecture

slide 21 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Interpolating Con ver ters

Vin1.0

(Volts)

(Volts)

0.750.50.2500

5.0

Latch thresholdV1

V2

V2a

V2b V2c

9

I1 I2a I2b I2

933

3333

(Relative width sizing shown)(All lengths same)

current interpolation

slide 22 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Folding A/D Con ver ters

Foldingblock

Foldingblock

2-bitMSB A/Dconverter

Latch

Latch

Latch

Latch

Digitallogic

Vin

b1

b2

b3

b4

V1

V2

V3

V4

Vin

V1

Vin

V2

Vin

V3

Vin

V4

Threshold

Threshold

Threshold

Threshold

Folding block responses

1(Volts)

(Volts)Vr

416------

816------

1216------

1616------, , ,

=

Vr316------

716------

1116------

1516------, , ,

=

Vref 1 V=

Vr216------

616------

1016------

1416------, , ,

=

Vr116------

516------

916------

1316------, , ,

=

416------

816------

1216------ 10

0

316------ 7

16------

1116------

1516------

216------

616------ 10

16------

1416------

116------

516------ 9

16------

1316------

1

Foldingblock

Foldingblock

• Reduce number oflatches using folding

• Save power and area

• Similar concept to 2-step

• Folding rate of 4 shownfor 4 bit converter

slide 23 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Folding Cir cuit

Ib Ib IbIb

Vin

Vout

R1 R1

Vr1Vr2 Vr3 Vr4

Vin

Vout

VCC

VEE

VCC VBE–

VCC VBE– IbR1–

Vr1 Vr2 Vr3 Vr4

(b)

(a)

Q1 Q2VaVb

slide 24 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Folding with Interpolation

Foldingblock

Foldingblock

2-bitMSB A/Dconverter

Latch

Latch

Latch

Latch

Digitallogic

Vin

b1

b2

b3

b4

V1

V2

V3

V4

Vin

V1

Vin

V2

Vin

V3

VinV4

Threshold

Threshold

Threshold

Threshold

Folding-block responses

1(Volts)

(Volts)

Vr316------

716------

1116------

1516------, , ,

=

Vref 1 V=

Vr1

16------

516------

916------

1316------, , ,

=

416------ 8

16------

1216------

100

316------ 7

16------

1116------

1516------

216------

616------

1016------ 14

16------

116------ 5

16------

916------

1316------

R

R

V4

V4

V4

R

R

• Folding usually usedwith interpolation

• Reduces input cap (

• Without interp, sameinput cap as flash

• [van Valburg, 1992]

• [van de Grift, 1987]

• [Colleran, 1993]

slide 25 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Pipelined A/D Con ver ters

D1

Q1

DN-2

QN-1

DN

QN

D1

Q1D1

Q1

DN-2

QN-1

1-bitDAPRX

1-bitDAPRX

1-bitDAPRX

1-bitDAPRX

Vin

N–

1-b

it sh

ift r

egis

ter

Analog pipeline(DAPRX - digital approximator)

b1

b2

bN

bN 1–

S/H

2

Cmp

–Vref/4

Vref/4

Vi–1

Vi

bi

slide 26 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Time-Interlea ved A/D Con ver ters [Blac k, 80]

• Use parallel A/Ds and multiplex them• Tone occurs at fs/N for N converters if mismatched• Input S/H critical, others not — perhaps different tech for input S/H

S/H

S/H

S/H

S/H

S/H

N-bit A/D

N-bit A/D

N-bit A/D

N-bit A/D

Dig.mux

Digitaloutput

f2

f3

f4

f1

f0

Vin