mul$pac$ng*in*rf*structure** · 2015. 3. 5. · mul$pac$ng*in*rf*structure**...

12
Mul$pac$ng in RF Structure Tianhuan Luo, CBP LBNL USPAS “Fundamental Accelerator Physics”, June 2014

Upload: others

Post on 11-May-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

Mul$pac$ng  in  RF  Structure    

Tianhuan  Luo,  CBP  LBNL  USPAS  “Fundamental  Accelerator  Physics”,  June  2014  

Page 2: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

Secondary  Electron  Emission  •  Secondary  emission  is  a  phenomenon  where  

primary  incident  par$cles  of  sufficient  energy,  when  hiLng  a  surface  or  passing  through  some  material,  induce  the  emission  of  secondary  par$cles.  

•  For  secondary  electron  emission:  the  number  of  secondary  electrons  emiPed  per  incident  par$cle  is  called  secondary  emission  yield  (SEY).                                        

Primary  

Secondary  

SEY  depends  on  the  material  and  surface  condi$on.    

When  SEY  >  1,  more  secondary  electron  emiPed  out  than  primary  electron.      

Page 3: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

•  Three  Steps  of  Secondary  electron  emission:  –  Produc$on  of  internal  secondary  electrons  by  kine$c  impact  of  the  

primary  electrons.  –  transport  of  the  internal  secondary  electrons  through  the  sample  bulk  

toward  the  surface  –  escape  of  the  electrons  through  the  solid-­‐vacuum  interface.    

Secondary  Electron  Emission  

Most  internal  secondary  electrons  is  generated  at  the  end  of  its  penetra$ng  path.  

The  higher  the  primary  E,  the  deeper  the  penetra$ng  depth,  thus  harder  for  the  internal  secondary  electron  to  escape  the  surface.    

Page 4: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

Mul$pac$ng  •  Mul$pac$ng  :  mul$pling  impacts  

RF  Source  

A  parallel  plates  connected  to  a  RF  power  source.    

Page 5: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

Mul$pac$ng  •  Mul$pac$ng  :  mul$pling  impacts  

RF  Source  

A  parallel  plates  connected  to  a  RF  power  source.    

E_impact  gives  SEY=2  

Page 6: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

Mul$pac$ng  •  Mul$pac$ng  :  mul$pling  impacts  

RF  Source  

A  parallel  plates  connected  to  a  RF  power  source.    

Page 7: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

Mul$pac$ng  •  Mul$pac$ng  (MP)  is  a  resonant  RF  electron  discharge  in  vacuum  with  electron  mul$plica$on  due  to  the  secondary  electron  re-­‐emission  process.  

•  To  have  mul$pac$ng  one  need  the  occurrence  of  two  condi$ons:  –   electron  synchroniza$on  with  the  RF  fields:  the  $me  interval  between  two  impacts  is  an  integer  of  half  RF  period.  

–   electron  mul$plica$on  via  secondary:  SEY  >1  (even  slightly),  with  right  impact  energy.    

Page 8: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

Solve  MP  Analy$cally  For  simple  geometry,  some$mes  with  proper  approxima$on,  we  can  solve  the  resonant  trajectory  of  MP  analy$cally.    

Page 9: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

Solve  MP  Numerically  •  Numerical  simula$on  tools:  FishPac  (2D),  CST  Par$cle  Studio  (3D),  SLAC  ACE3P  (3D).  

•  Solve  the  RF  field  in  the  structure.  •  Track  electrons’  mo$on  in  the  $me  varying  RF  field,  adding  any  external  sta$c  E  or  B  field,  and  iden$fy  the  resonant  trajectories  and  impact  energy.    

•  With  the  material  SEY  informa$on,  one  can  inden$fy  the  mul$pac$ng.    Enhancement  Counter:    

(E,        )    

EC = δ1 *δ2 * ...*δm

Page 10: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

Solve  MP  Numerically  

Page 11: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

Possible  Damage  from  MP  •  Hea$ng.  •  Out  gassing:  vacuum  loss.  •  Change  the  coupling:  power  

reflec$on.    

•  Energy  absorp$on:  can’t  increase  the  voltage.  

•  Sparking,  RF  breakdown.  •  Severe  damage  of  cavity,  

unrecoverable.    

•  CW  and  superconduc$ng  RF  cavity  are  especially  vulnerable  to  MP.    

11  

Yellow  Mag  I  eq.  0.391T/Unit,  Red  –  radia$on    mRem/hr  Green  –  vacuum    In  Torr.  E-­‐7,  The  X  axis  is  $me  in  sec.  

RF  cavity  test  at  Fermilab  MTA,  from  Al  More$i  

Page 12: Mul$pac$ng*in*RF*Structure** · 2015. 3. 5. · Mul$pac$ng*in*RF*Structure** Tianhuan*Luo,*CBP*LBNL* USPAS*“FundamentalAcceleratorPhysics”,June2014 *

How  to  Suppress  MP  •  Improve  the  RF  structure  design.  •  Add  external  sta$c  E  or  B  field.  •  Cavity  surface  treatment:  baking,  Argon  Glow  Discharge,  TiN  coa$ng  etc,  to  lower  the  surface  SEY.