mts315114 - assessment report 2014 - tqa.tas.gov.au · mathematics specialised course code:...

16
Mathematics Specialised Course Code: MTS315114 2014 Assessment Report Page 1 of 8 To a large extent, the quality of candidate work in this examination was very pleasing. The examiners were also pleased to observe that, with the possible exception of Section C, candidates were generally much more thoughtful with the use of their calculators – with relatively little inappropriate use. SECTION A – Criterion 4 Question 1 Reasonably well done by those who recognised they were dealing with a series and not a sequence, although a surprising number failed to give an integral answer! Question 2 Not as well done as it should have been. It was sufficient to equate the expression to the fraction given and comment that since the solution for n was not a positive integer, then the given fraction was not a member of the sequence. Too many candidates equated and solved numerators and denominators separately. Question 3 Almost every candidate split the sum into three separate series, but quite a few tried to make one of these a geometric series by counting 4 2 twice! A surprising number also treated the separated series as arithmetic. The major problem, however, was careless use of algebra, particularly dealing with negatives or subtraction. Question 4 Reasonably well done. The vast majority used a substitution method, usually appropriately and adequately justified. Those who use the quadratic formula need to remember that their final expression should not contain ±. Candidates are required to make some kind of appropriate statement involving the definition of convergence. Question 5 Most set up the problem correctly using the standard method of differences, but often ended up with v r v r+1 instead of v r v r+3 . Of those who completed this first step correctly, many did not apply the differences correctly and so failed to obtain six final terms.

Upload: dangdiep

Post on 12-Dec-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Mathematics Specialised

Course Code: MTS315114

2014 Assessment Report

Page  1  of  8  

To  a   large  extent,   the  quality  of  candidate  work   in  this  examination  was  very  pleasing.  The  examiners  were  also  pleased  to  observe  that,  with  the  possible  exception  of  Section  C,  candidates  were  generally  much  more  thoughtful  with  the  use  of  their  calculators  –  with  relatively  little  inappropriate  use.      SECTION  A  –  Criterion  4    Question  1    Reasonably  well   done  by   those  who   recognised   they  were  dealing  with   a   series   and  not   a   sequence,  although  a  surprising  number  failed  to  give  an  integral  answer!      Question  2    Not  as  well  done  as  it  should  have  been.  It  was  sufficient  to  equate  the  expression  to  the  fraction  given  and  comment  that  since  the  solution  for  n  was  not  a  positive  integer,  then  the  given  fraction  was  not  a  member   of   the   sequence.   Too   many   candidates   equated   and   solved   numerators   and   denominators  separately.      Question  3    Almost  every  candidate  split   the  sum  into  three  separate  series,  but  quite  a  few  tried  to  make  one  of  these  a  geometric  series  by  counting  42  twice!  A  surprising  number  also  treated  the  separated  series  as  arithmetic.  The  major  problem,  however,  was  careless  use  of  algebra,  particularly  dealing  with  negatives  or  subtraction.      Question  4    Reasonably   well   done.   The   vast   majority   used   a   substitution   method,   usually   appropriately   and  adequately  justified.  Those  who  use  the  quadratic  formula  need  to  remember  that  their  final  expression  should  not  contain  ±.  Candidates  are  required  to  make  some  kind  of  appropriate  statement   involving  the  definition  of  convergence.      Question  5    Most  set  up  the  problem  correctly  using  the  standard  method  of  differences,  but  often  ended  up  with    vr   –  vr+1   instead  of  vr   –  vr+3.  Of   those  who  completed   this   first   step   correctly,  many  did  not  apply   the  differences  correctly  and  so  failed  to  obtain  six  final  terms.    

2014  Assessment  Report  

Page  2  of  8  

Question  6    The  major   difficulty   candidates   had  with   this   problem  was   dealing  with   the   ‘inner’   summation   –   not  knowing  how  to  handle  a  sum  from  k  to  n.  Most  simply  used  1  to  k  or  n.  Those  who  used  a  difference  generally  took  the  sum  from  1  to  n  and  subtracted  the  sum  from  1  to  k,  instead  of  k-­‐1.  Even  when  this  first  step  was  done  correctly,  very  many  candidates  did  not  know  how  to  handle  the  terms  involving  n  in  the  second  summation.    There   is  a  very  simple  way  to  solve   this  problem,  but  only   two  candidates   found   it!  A   few  candidates  who  obtained   the   correct   answer  were   surprised   to   find   a   familiar   formula   and  perhaps  wondered   if  they  had  made  an  error.    A  pleasingly  small  number  of  candidates  simply  used  their  calculators,  gaining  only  one  mark.      SECTION  B  –  Criterion  5    Question  7    Reasonably  well  done,  although  many  candidates  omitted  reasons  and  many  others  gave  reasons  which  were  incomplete  or  vague.      Question  8    Well   done   by   most   candidates,   as   they   recognised   the   appropriate   method.   There   was   a   variety   of  errors,   including   with   the   formula   for   the   area   of   a   circle,   and   not   knowing   that   the   area   must   be  positive.        Question  9    The  best  way   to  approach   this  question  was  not  understood  by  many  candidates.  The  key   to   success  here  is  to  leave  the  matrices  as  they  are,  and  to  recognise  that  matrix  multiplication  is  not  commutative,  meaning   that   PQ   is   not   the   same   as  QP.   Unfortunately,   for   those   candidates   seeing   a   difference   of  squares,  (P-­‐Q)(P+Q)  is  not  the  same  as  (P+Q)(P-­‐Q).  It  was  common  for  very  able  candidates  to  lose  the  majority  of  their  marks  on  this  question.      Question  10    This   question  was   generally   answered   very  well.   Candidates  mostly   found   the   correct   transformation  matrix  and  then  knew  what  to  do  with  it.  It  was  not  considered  necessary  for  candidates  to  expand  and  simplify  after  substitution.  It  is  worth  noting  that  a  majority  of  marks  is  still  possible  by  using  a  correct  method,  even  if  an  error  is  made  early  on.        

2014  Assessment  Report  

Page  3  of  8  

Question  11    Most   candidates   successfully   obtained   the   correct   matrix   in   reduced   row-­‐echelon   form.   Too   many  candidates   gave   incorrect  or   incomplete   solutions  and/or   interpretation.   These  were  both   specifically  asked  for.  It  would  be  very  wise  at  some  stage  to  check  your  solution  on  your  calculator.  Whilst  markers  are  always  keen  to  give  follow  on  marks  after  an  error,  the  number  of  marks  available  is  reduced  when  a  candidate  has  changed  the  question  into  a  much  easier  one!      Question  12    There   is   an   interesting   number   of  ways   to   solve   this   question.   Candidates   generally   did   better  when  using   a   series   of   transformations.   Candidates  who   first   reflected   in   each   axis   had  more   success   than  those  who   first   reflected   in   the   line  y=x.  Many  candidates  who  tried   to  obtain   the  required  matrix  by  mapping   from   object   to   image   points   did   not   use   appropriate   pairs   of   points.   As   with   question   10,  candidates  were  not   required   to  expand  and  simplify  after   substitution.  As   in  previous  years,  a   linear  transformation  was  required  to  answer  part  (a).  A  matrix  was  not  considered  to  be  sufficient.    Teachers  might  well  use  this  question  (asking  candidates  to  come  up  with  as  many  solutions  as  possible)  as  an  analysis  problem.      SECTION  C  –  Criterion  6    In   this   section,   where   explicit   instructions   were   given   (and  where   a   standard   solution  was   required)  candidates,   in  general,  presented  their   solutions  well.  However,  where  conceptual  understanding  was  required  to  unpack  a  question,  many  candidates  found  difficulty  in  interpreting  the  requirements  of  the  question  and  determining  the  methodology  required  to  present  an  adequate  solution.      Question  13    A   disappointing   number   of   candidates   appeared   to   be   unfamiliar   with   the   standard   integral  

cxdxx +=∫ tan sec2

,   and   rewrote   dxx sec4

0

2∫π

π   as   ∫ +4

0

2 )tan1(π

π dxx  for   which   the   Casio   Classpad  

returned  the  result   [ ]xxx −+ tanπ  between  the  bounds  0  and   4π ,  and  hence  returned  the  appropriate  

volume  generated.    As   a   ‘C’   standard   question,   it   should   not   have   been   necessary   to   use   a   calculator   to   demonstrate  achievement  of  the  standard.    

Furthermore,  some  candidates  attempted  to  integrate   2)cossin(xx by  means  of  a  substitution.  It  is  probably  

a  good  idea  to  be  familiar  with  the  standards  document  of  the  syllabus.          

2014  Assessment  Report  

Page  4  of  8  

Question  14    

A  number  of  candidates  confused  the   1cos−  in  the   )sin(cos 1 x−  with  the  reciprocal  ratio  xcos

1 ,  instead  

of  the  inverse  function   1cos−=y (x).  Consequently,  the  function  to  be  differentiated  and  simplified  was  unwieldy.    

Of  those  who  interpreted  the  function  statement  correctly,  many  gave  the  result  to  be  x

x2sin1

cos

−− .  It  

was  expected  that  this  fraction  would  have  been  simplified  using  the  trigonometric  identities.  

Since  2

0 π<< x ,   some   candidates   neatly   used   the   fact   that   xx −=−

2)sin(cos 1 π .   The   differentiated  

function   1−=dxdy  followed  succinctly.  

   Question  15    This  question  proved  to  be  the  most  poorly  answered  in  this  section  with  only  a  small  percentage  of  the  candidature  able  to  provide  a  viable  proof.    Once   again   the   nomenclature   for   inverse   trigonometric   functions   proved   to   be   confusing.   Many  candidates  rewrote   )(cot 1 x−  as   -1)cot( x  and  proceeded  from  there  to  differentiate.  Since  the  formula  sheet  (and  calculators  used  in  the  coursework)  use   111 tan and cos ,sin −−−  (rather  than  the  arcsin,  arccos  and  arctan  options),  it  is  expected  that  candidates  are  familiar  with  this  notation.    In  general,  many  candidates  were  not  able  to  see  the  relationship  between  the  given  information  and  

proving  dxd ( )(cot 1 x− )  =  

211x+

− .  In  fact,  the  question  implies  that  the  given  information  be  used.  

 Furthermore,   since   candidates   were   unfamiliar   with   the   procedures   for   the   derivation   of  

xyxyxy 111 tan and cos ,sin −−− ===  from  known  information,  this  exacerbated  the  problem  and  no  solution  strategy  could  be  determined  after  candidates  circuitously  rewrote  the  given  information  of  the  question  (many  times).      Question  16    While   the   majority   of   candidates   answered   this   question   well,   there   was   a   significant   number   of  candidates  who  did  not  determine  that  the  two  curves  intersected  where   1=x .  As  a  consequence,  the  challenging  evaluation  of  literal  expressions  did  not  yield  the  required  result.    The   arithmetic   error   of   removing   the  parentheses   of   )24(2 −− xx   to   obtain   242 −− xx  was   a   frequent  disappointing   one,   while   a   significant   number   of   candidates   evaluated   the   area   (inefficiently,   but  

correctly)  by  using   ∫∫∫ −−−+21

21

21

0

1

0

2)-4())24(2(2 dxdxdx xxxx .  

2014  Assessment  Report  

Page  5  of  8  

There  were,   however,   some   candidates  who  added   the  definite   integral   ,dxx∫21

0

2)-4(  while   there  were  

others  who  did  not  consider  the  region  below  the  x-­‐axis  as  being  between  the  curves.    A  few  very  adventurous  candidates  used  the  area  between  the  curves  and  the  y-­‐axis.  This  proved  to  be  more  complex  algebraically  but  some  struggled  through  successfully.      Question  17    This  question  generally  was  answered  well   by   candidates   and  any  errors  were  mainly  of   an  algebraic  nature  only.    However,  a  number  of  candidates  made  the  error  in  perception  regarding  the  points  of  contact  of  the  tangents.  At   the  points  of   intersection  with   the  y-­‐axis,   the  x-­‐coordinate   is   zero   implying   the  points  of  contact  are  (0,  3)  and  (0,  -­‐1),  evaluated  from  the  y-­‐intercepts  found  in  part  a.    All  but  one  of  the  candidates  who  back-­‐substituted  the  y-­‐coordinates  (which  had  been  found  in  part  a)  into  the  equation  of  the  curve  took  the  non-­‐zero  solutions  and  hence  found  equations  of  tangents  other  than  those  that  were  required.  A  few  candidates  obtained  a  value  of  the  gradient  function  at  (0,  3)  or  (0,  -­‐1)  that  was  undefined  and  hence  stated  that  the  tangent  did  not  exist.  [Although  this  was  not  the  case  here;  a   line   through   (0,  3)  with  a  gradient   that   is  undefined  would  have  an  equation  of   0=x ,   (the  y-­‐axis).]    One  candidate   found   the  equations  of   tangents  at   the  points  where   the  graph   intersected   the  x-­‐axis,  obtaining  exact  surds  for  the  intercepts.  The  examiner  was  most  thankful  to  have  a  calculator  to  trace  the  given  solution  from  that  point  on!      Question  18    Many  candidates  ignored  the  instructions  given  within  the  question  requiring  exact  values  to  be  given,  and  the  calculator  not  to  be  used  in  the  first  two  parts.  Although  the  preceding  parts  led  candidates  to  the  resultant  sketch  in  part  d,  it  was  apparent  that  this  leading  information  was  ignored  and  a  calculator  was  unnecessarily  the  main  resource  that  was  used  to  sketch  the  curve.  Nevertheless,  there  was  a  good  proportion  of  candidates  whose  solutions  showed  good  promise.    In  part  b,  the  question  asks  candidates  to  determine  and  classify  the  stationary  points  of   )x(f .  A  good  proportion  of  the  candidates  found  the  x-­‐  coordinates  of  the  stationary  points,  but  not  both  coordinates  of  the  points.  Furthermore,  a  number  of  candidates  were  thrown  by  the  instruction  the  ‘your  calculator  should  not  be  used’.    It  was  evident  that   in  many   instances  candidates  relied  unduly  on  the  use  of  calculators,  and  perhaps  candidates  would  benefit  from  appropriate  calculator-­‐free  times  during  lessons.          

2014  Assessment  Report  

Page  6  of  8  

SECTION  D  –  Criterion  7    Question  19    Reasonably  well  done.  A  large  number  candidates  recognised  that  they  were  dealing  with  a  substitution  problem   (u=x2-­‐1)   and   not   integration   by   parts.   Integration   by   parts  was   attempted   unsuccessfully   by  some   candidates.   It  was   pleasing   that   very   few   candidates   used   their   calculator   to   just   integrate   the  expression  (and  received  no  marks  in  that  instance).      Question  20    Generally  well  done.  Finding  the  derivative  and  substituting  in  to  show  that  the  equation  was  satisfied  was  the  most  common,  and  simplest,  solution.  An  alternative  was  to  separate  the  variables  and  solve  the  resultant  differential  equation.      Question  21    The  method  for  solving  separable  equations  was  well  understood  by  many  candidates.  There  were  some  incorrect  integrals  used  by  a  small  number  of  candidates.      Question  22    Homogeneous   equations   were   generally   well   understood   and   completed   fully   by   many   candidates.  There  were  still  many  answers  that  did  not  take  into  account  the  negative  value  when  simplifying  a  y2  

expression.      Question  23    This  question  was  attempted  in  two  ways.  The  most  common  way  was  to  express  the  repeated  fractions  with   denominators   of   Ax+B   and   Cx+D   as   they   were   both   quadratic   denominators   and   this   was  overlooked  by  some  candidates.  Comparing  coefficients  was  a  much  more  suitable  technique  to  find  the  constants  rather  than  substituting  numbers  which  was  a   laborious  process.  The  alternative  method  to  rearrange   the   numerator   was   much   more   efficient   and   setting   up   the   fractions   (4x2+4)/(1+x2)2   +  4x/(1+x2)2  made  the  question  less  laborious.  The  common  factor  could  be  simplified  in  the  first  fraction  and  with  the  use  of  integration  by  substitution  this  method  was  generally  well  done  by  those  candidates  who  saw  this  method.    Question  24    For   candidates  who  made   it   to   this   question,   the   concept   of   integration   by   parts  was   generally  well  understood.  There  were  a  number  of  arithmetic  and  algebraic  errors  in  the  solutions  of  some  candidates  but  the  process  was  clearly  presented  by  most  candidates  who  had  a  serious  attempt  at  this  question.      

2014  Assessment  Report  

Page  7  of  8  

SECTION  E  –  Criterion  8    Most  candidates  had  a  competent  understanding  of  Complex  Numbers  and  many  scored  highly.      Of  the  candidates  who  demonstrated  this  competent  understanding,  marks  were  lost  mainly  in  the  first  few  questions.      Question  25    Many   candidates   made   an   error   with   the   Principal   Argument   –   choosing   –𝜋 6  instead   of  

5𝜋6.  

Candidates  needed  to  realise  that  tan  𝑧 = − 13    

∴ 𝑧 = −𝜋 6  𝑜𝑟  5𝜋

6  ;  position  z  and  hence  acknowledge  that  z  was  in  the  3rd  quadrant.  

   Question  26    Most  candidates  failed  to  realise  that  Arg 𝑤 = 𝜋

3    is  a  real  number  𝜋 3   ≈ 1.047…  .  ie  a  point  on  the  x  axis.  Most  candidates  instead  drew  a  line  representing  {w:  Arg 𝑤 = 𝜋

3  }      Question  27    This   question  was  well   done  with   a   variety   of   options   for   the   diagonal   line   using   regions   defined   by  Arg 𝑧 ≥ −𝜋 4  ;  Im 𝑧 ≥ −Re(𝑧)  ;  etc      Question  28    (a)   A  straight  forward  expansion  was  all  that  was  required  ie  1  line  of  working.  (b)   Recognising   this   expression   as   a   quadratic   and   solving   it   using   the   quadratic   formula   quickly  

revealed  where  to  use  part  (a)  and  hence  only  3  or  4  lines  of  working  were  required  to  reveal  the  2  solutions  for  z.  (z=3+i  or  -­‐2-­‐i)  Unfortunately  many  candidates  tried  to  equate  real  and  imaginary  parts  and  could  not  complete  without  ‘fudge’  intervention  from  their  calculator.  

   Question  29    Most  candidates  were  able  to  gain  full  marks  on  this  question.    (a) No  problem  with  this  part  (b) Most   candidates   used   long   division   to   identify   the   second   quadratic   factor   (𝑧! + 4)   and  

immediately  saw  this  as  the  difference  of  squares  (𝑧! − (2𝑖)!).      

2014  Assessment  Report  

Page  8  of  8  

Question  30    This  question  was  done   successfully  by  most   candidates  who   factorised   initially  𝑃 𝑧 = 𝑧(𝑧! + 16) =0   ∴ 𝑧 = 0  or  𝑧! = −16  .   Candidates  who   solved   for   z   using   the   conventional  method   completed   this  successfully  and  mostly  gained   full  marks:-­‐   ie  z= 2(!!!!"

!),  k=   -­‐2,   -­‐1,  0,  1  AND  remembered   the  extra  

factor  of  z  from  the  original  factorising.    

2014 Mathematics Specialised Solutions

1. ∑ involves a geometric series of n terms with and common

ratio 4, and thus requires

.

Thus the lowest integral value of n required is 15.

2. Consider

Since there is no positive integral solution,

is not a member of the sequence.

3. Sum

∑ ∑

{ }

{ }

4. It is required that for any such that |

| .

This is true if |

|

i.e. if

i.e. if

[

]

i.e. if

i.e. if

i.e. if

Thus

is a suitable N and so the sequence converges to 1.

5. Let

Sum to n terms

Sum to infinity

6. This can be done several ways. Perhaps the simplest is what follows.

Sum

and so on

Another approach is:

∑(∑

) ∑(∑

)

∑ (

)

which leads to the same solution.

7. (a) X = AB does not exist because the number of columns in A does not match the

number of rows in B.

(b) Y = BA does exist because the number of columns in B matches the number of

rows in A.

(c) does not exist because does not exist since A is not a square

matrix.

8. Matrix T (

) and its determinant = . Hence the area of the image is

.

9.

10. Let the transformation be T.

Hence matrix T (

) or ( √

)

Thus the original curve is √

(

)

( √ )

or √ √

11. (

)

(

)

(

)

(

) ⇒

, which is the equation of a straight line

12. (a) There are several ways in which a suitable transformation T can be found – the

following is one:

Reflect Ellipse A in the line ⇒ (

), and then dilate by

vertically

and 2 horizontally ⇒ (

).

Thus (

) (

) (

) (

) | |

(

) (

)

(

)

(

)

13. Volume ∫ [ ]

14.

15. Let

[Differentiating with respect to x]

16. ⇒

⇒ ⇒

Hence .

Area ∫ [

]

(

) (

)

17. (a) The y-intercepts of the curve occur when

. Hence ⇒

Thus the y-intercepts are .

(b) Differentiating the equation of the curve with respect to x:

Thus at

Hence the tangents are

.

(c) To find the intersection point:

Hence the tangents intersect at the point .

18. (a) ⇒

(b) ⇒

If ⇒ minimum

If ⇒ maximum

(c) As

(d) Zeros: ⇒

y-intercept:

Endpoint:

19. ∫

√ ∫

[

]

when

√ √ √ √

20.

, as required.

21.

⇒ ∫

but when

(

)

22.

[

⇒ ⇒

]

∫ ∫

| |

| |

but when ⇒

| |

23. Let

⇒ ⇒

∫ (

)

[

]

24. ∫

(

)

(

)∫

25. √ √ ( √

) | | √

26.

27. | |

28. (a)

(b) ⇒ √

29. (a)

⇒ is a root of the polynomial equation

(b) Since the equation has real coefficients, is also a root, and so the

polynomial is divisible by .

Hence

Clearly , and by expanding and equating like terms it is easily

seen that .

30.

Consider ⇒

for

(

) (

) (

) (

)

√ √ √ √ √ √ √ √

(

) (

)

( √ )( √ )

TASMANIAN QUALIFICATIONS AUTHORITY

ASSESSMENT PANEL REPORT

MTS315114 Mathematics Specialised

15% (27) 25% (45) 42% (75) 18% (33) 180

20% (39) 24% (48) 38% (74) 18% (36) 197

10 % 19 % 39 % 32 %

20 % 25 % 36 % 19 %

11 % 19 % 39 % 30 %

64% (116) 36% (64) 3% (6) 97% (174)

72% (142) 28% (55) 2% (3) 98% (194)

70% 30% 1% 99%

This year!

Last year!

Previous 5 years!

EA HA CA SA Total

Previous 5 years (all examined subjects)!

Last year (all examined subjects)!

Award Distribution

Student Distribution (SA or better)

This year!

Last year!

Previous 5 years!

Male Female Year 11 Year 12