magma supply system at batur volcano inferred from volcano

9
Indonesian Journal of Geology, Vol. 8 No. 2 June 2013: 97-105 Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism Sistem Suplai Magma di Gunung Batur yang diduga dari Pemunculan Gempa VT dan Mekanisme Fokus S. HIDAYATI and C. SULAEMAN Centre for Volcanological and Geological Hazard Mitigation, Geological Agency, Ministry of Energy and Mineral Resources Jln. Diponegoro 57 Bandung 40122, Indonesia ABSTRACT The Volcano-Tectonic (VT) earthquakes occurring during September - November 2009 were analyzed. The result shows that the epicentres aligning in NE- SW direction coincided with the weak zone of Batur Volcano Complex. The focal zone is located at the depth around 1.5 - 5.5 km beneath the summit. Migration of magma was detected by ground deformation measured by GPS and focal mechanism. Mechanism of VT earthquake shows mostly normal fault types during the swarm in November 2009. Keywords: Batur Volcano, magma supply system, hypocentre, focal mechanism, pressure sources ABSTRAK Gempa VT yang muncul pada September - November dianalisis. Hasil analisis memperlihatkan episentrum berarah timur laut - barat daya yang berasosiasi dengan zona lemah Kompleks Gunung Batur. Kedalaman gempa VT terletak pada 1,5 - 5,5 km di bawah puncak. Perpindahan magma diketahui dari pengukuran deformasi dengan GPS dan mekanisme fokus. Mekanisme gempa VT menunjukkan tipe sesar normal pada November 2009. Kata kunci: Gunung Api Batur, sistem suplai magma, hiposentrum, mekanisme fokus, sumber tekanan INTRODUCTION Batur Volcano (1717 m asl.) is one of the most active volcanoes in Indonesia, which is located at Panelokan Village, Kintamani, Bali. Batur is also well known as one of the most impressive calderas in the world. It is about 13.8 km x 10 km wide formed during the eruption of Bali Ignimbrite about 29,300 years ago (Sutawidjaja, 2009). Within the caldera there are Batur Volcano and a lake. The volcano rises 700 m above the lake surface, and it consists of a main cone with three summit craters (Figure 1). The first eruption of Batur Volcano was noted in 1804 and the latest one was in 2000. There were 28 eruptions recorded with 1 - 37 years of repose period. Historical eruptions were characterized by mild-to-moderate explosive activities, sometimes accompanied by lava flows. Basaltic lava flows from both summit and flank vents reached the caldera floor and the shores of Lake Batur. The large erup- tion occurred in 1963-1964 producing a huge lava flow (Kusumadinata, 1979). Since 1922, the repose period has become 1 - 3 years shorter, except the eruption of 1963 and 1994 which occurred after the quiet period of about 37 and 20 years, respectively (Figure 2). The eruption in 2000 was actually the continua- tion of the eruptive activity, which began in March 1999. During the year 1999 to 2000, some explo- 97 Manuscript received: March 28, 2013, final acceptance: June 12, 2013 Corresponding Author: [email protected]

Upload: phungkhue

Post on 17-Jan-2017

228 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Magma Supply System at Batur Volcano Inferred from Volcano

Indonesian Journal of Geology, Vol. 8 No. 2 June 2013: 97-105

Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism

Sistem Suplai Magma di Gunung Batur yang diduga dari Pemunculan Gempa VT dan Mekanisme Fokus

S. Hidayati and C. Sulaeman

Centre for Volcanological and Geological Hazard Mitigation, Geological Agency, Ministry of Energy and Mineral Resources

Jln. Diponegoro 57 Bandung 40122, Indonesia

AbstrAct

The Volcano-Tectonic (VT) earthquakes occurring during September - November 2009 were analyzed. The result shows that the epicentres aligning in NE- SW direction coincided with the weak zone of Batur Volcano Complex. The focal zone is located at the depth around 1.5 - 5.5 km beneath the summit. Migration of magma was detected by ground deformation measured by GPS and focal mechanism. Mechanism of VT earthquake shows mostly normal fault types during the swarm in November 2009.

Keywords: Batur Volcano, magma supply system, hypocentre, focal mechanism, pressure sources

AbstrAk

Gempa VT yang muncul pada September - November dianalisis. Hasil analisis memperlihatkan episentrum berarah timur laut - barat daya yang berasosiasi dengan zona lemah Kompleks Gunung Batur. Kedalaman gempa VT terletak pada 1,5 - 5,5 km di bawah puncak. Perpindahan magma diketahui dari pengukuran deformasi dengan GPS dan mekanisme fokus. Mekanisme gempa VT menunjukkan tipe sesar normal pada November 2009.

Kata kunci: Gunung Api Batur, sistem suplai magma, hiposentrum, mekanisme fokus, sumber tekanan

IntroductIon

Batur Volcano (1717 m asl.) is one of the most active volcanoes in Indonesia, which is located at Panelokan Village, Kintamani, Bali. Batur is also well known as one of the most impressive calderas in the world. It is about 13.8 km x 10 km wide formed during the eruption of Bali Ignimbrite about 29,300 years ago (Sutawidjaja, 2009). Within the caldera there are Batur Volcano and a lake. The volcano rises 700 m above the lake surface, and it consists of a main cone with three summit craters (Figure 1).

The first eruption of Batur Volcano was noted in 1804 and the latest one was in 2000. There were

28 eruptions recorded with 1 - 37 years of repose period. Historical eruptions were characterized by mild-to-moderate explosive activities, sometimes accompanied by lava flows. Basaltic lava flows from both summit and flank vents reached the caldera floor and the shores of Lake Batur. The large erup-tion occurred in 1963-1964 producing a huge lava flow (Kusumadinata, 1979). Since 1922, the repose period has become 1 - 3 years shorter, except the eruption of 1963 and 1994 which occurred after the quiet period of about 37 and 20 years, respectively (Figure 2).

The eruption in 2000 was actually the continua-tion of the eruptive activity, which began in March 1999. During the year 1999 to 2000, some explo-

97

Manuscript received: March 28, 2013, final acceptance: June 12, 2013Corresponding Author: [email protected]

Page 2: Magma Supply System at Batur Volcano Inferred from Volcano

98 Indonesian Journal of Geology, Vol. 8 No. 2 June 2013: 97-105

sions produced incandescent materials, which fell around the crater and killed two persons, a German couple (Purbawinata, 2001). Ash emis-sion sometimes reached a height of 300 m above the summit and it continued until April 2000. After the eruption in 2000, the volcano shows no significant activities, except solfatara emission within the craters.

After nine years of quiescence, the Batur Vol-cano showed an increasing activity in September 2009 when the number of Volcano-Tectonic (VT) earthquakes gradually increased. The number of VT earthquakes significantly increased during October until the first week of November and the VT swarmed on November 8th 2009. The increase of VT usually indicates the beginning of an unrest stage, as observed previously at Merapi Volcano

(Ratdomopurbo and Poupinet, 2000; Hidayati et al., 2008), Sakurajima Volcano (Hidayati et al., 2007), and Kelud Volcano (Hidayati et al., 2009). The sud-den increase of VT earthquakes in November 2009 might be an indication of the magma migration from the deeper part to the shallower one. In order to describe the magma migration, the characteristic of the VT, their hypocentre, and focal mechanism will be discussed.

Methodology

Centre for Volcanology and Geological Hazard Mitigation (CVGHM) monitored the Batur Volcano using four seismometers, one tiltmeter, and Elec-tronic Distance Measurement (EDM). The seismic

Figure1. Batur Volcano and its craters (picture courtesy of Akhmad Solikhin, CVGHM).

Figure 2. Eruption interval of Batur Volcano.

Crater I

Crater II

Crater III

1804

Year

1847

1854

1897

1905

1922

1924

1926

1965

1968

1971

1973

1976

1998

2009

Inte

rval

0

20

10

30

40

17

26

52

34

9 7

1

16

1 1 1 1 1 22 1 2 2 1 1 1 1

18

4 2

Interval of eruption

37

Page 3: Magma Supply System at Batur Volcano Inferred from Volcano

99Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism (S. Hidayati and C. Sulaeman)

Figure 3. Permanent seismic network of Batur Volcano operated by CVGHM. Triangle and solid squares indicate the highest peak of the volcano and seismic stations, respectively.

Tabel 1. Location of Seismic Station

No Station Code Longitude Latitude Elevation1 BTR 115°22.578’ -8°14.712’ 1363

2 MPH 115°20.748’ -8°14.521’ 1125

3 SGN 115°23.298’ -8°13.788’ 1277

4 DNU 115°23.136’ -8°16.158’ 1054

115 18' Eo

115 18' Eo

115 18' Eo

115 26' Eo

115 26' Eo

08 1

2' S

o

08 1

2' S

o

08 1

8' S

o

08 1

8' S

o

0 2.5 5 km

Bali Volcano Observatory

Kutadalem Pekatan

Yehmampen

Pinggan

SGN

BTR

Trunyan

Abang

MPH

Batuanyar

Penelukan

Museum

DNU

Songan

stations were BTR, MPH, SGN, and DNU, all were located at the craters (Table 1 and Figure 3). All seismic and tilt data were telemetered to Ba-tur Volcano Observatory, Kintamani, using radio waves. Moreover, all of the data were also sent to

the head office in Bandung via Very Small Aperture Terminal (VSAT). Meanwhile, EDM measurement was conducted daily from the observatory, at the location close to the lake, to three reflectors placed on each slope of the craters.

Page 4: Magma Supply System at Batur Volcano Inferred from Volcano

100 Indonesian Journal of Geology, Vol. 8 No. 2 June 2013: 97-105

VT earthquake of the Batur Volcano is char-acterized by a sharp onset of P-waves arrival time at all stations and the frequency dominant at 3 - 7 Hz, as shown in Figure 4. Determination of those hypocentres were performed using 4 P-wave arrival times recorded at each station and assumption of a homogeneous isotropic medium with Vp = 2.7 km/s, and Vp/Vs = 1.73. During daytime DNU station could not be used since it was noisy due to on-going construction. Therefore, there were only twenty well-located VT events.

A focal mechanism of VT earthquake is de-termined in order to get a better understanding of magma migration. As mentioned above that seismicity of the Batur Volcano is monitored using four seismic stations and equipped with a single component (vertical), so it is difficult to estimate the focal mechanism from polarities of the first arrivals. Therefore, to get more stable and better constrained solution, a grid search method using the polarities and amplitude of P-wave first mo-tion by assuming double couple mechanism and homogenous half space will be used (Hidayati et al., 2008). The following equation is used to determine the focal mechanism which was developed by Aki and Richard (1980) for far-field displacement of P-wave from a point double-couple source with standard fault orientation parametersφ (azimuth),φ s(strike) ,δ (dip), λ (rake), and source take off angle ( hi ). The equation is as follows:

Figure 4. Seismogram and frequency dominant of VT earthquake recorded at four seismic stations (BTR, MPH, SGN, and DNU). This VT was recorded on November 8th, 2009, at 14:31 WITA.

Where: UP (r,t) = far-field displacement for P-wave,

PR = radiation pattern for P wavesr = geometrical spreadingM = seismic moment = velocity of P-waves ρ = densityThe amplitude of P-wave first motion and its

polarity take an important role in determining the mechanism as well as calculating the radiation pattern. To avoid ambiguity of determination of focal mecha-nism, VT earthquake with M>1 was used for analysis.

results

In a normal state, the occurrence of VT earthquake in Batur Volcano is about 10 events per month. Visu-ally, the volcano emitted white smoke from solfatara field at the summit craters. The increases in seismicity were detected in September 2009, when about 32 VT events were recorded. In October 2009, there were 48 VT earthquakes, as seen in Figure 5. At the beginning of November 2009, there were 19 of VT earthquakes recorded. On November 8th, VT earthquakes swarmed and reached 69 events (Figures 5 and 6). The fol-lowing day, on November 9th, the number decreased to 30. Since November 10th, the occurrence of VT earthquake seemed to decrease by 1 event in a day.

Hypocentral distribution of VT earthquakes recorded during September - November 2009 were plotted as shown in Figure 7. The epicentres align

0911081431

DNU

BTR

MPH

SGN

1000h

1001h

1002h

1003h

241777

158969

-759220356848

-10482314626040

-905844

15330520

1

1

5000

10000

0

15000

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

9

10

10

10

10

11

11

11

11

12

12

12

12

13

13

13

13

14

14

14

14

15

15

15

15

16

16

16

16

17

17

17

17

18

18

18

18

19

19

19

19

20

20

20

20

Frequency (Hz)

Frequency (Hz)

Am

pli

tud

o

Frequency (Hz)

Frequency (Hz)

0

0

00

5000

10000

0

15000

Am

pli

tud

o

20000

1000

40000

200060000

300080000

4000

00

100000

5000 120000

Am

pli

tud

o

Am

pli

tud

o

0911081431

09110814310911081431

0911081431DNU

MPHSGN

BTR

rtMR

rtrU PP

34

1,

Page 5: Magma Supply System at Batur Volcano Inferred from Volcano

101Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism (S. Hidayati and C. Sulaeman)

Figure 5. Daily number of seismic events originated at the Batur Volcano during period January 2009 - October 2011. The swarm of VT earthquakes occurred at November 8th, 2009.

Figure 6. Seismogram of VT earthquakes during the swarm at 13:00 - 17:00 WITA (local time: GMT+8) on November 8th, 2009.

0

008-Aug-09 26-Nov-09 16-Mar-10 04-Jul-10 22-Oct-10 09-Feb-11 30-May-11 17-Sep-11

Date

Nu

mb

er o

f ev

ents

20

20

40

40

60

60

0

0

20

20

40

40

60

60

08-Aug-09

08-Aug-09

08-Aug-09

26-Nov-09

26-Nov-09

26-Nov-09

16-Mar-10

16-Mar-10

16-Mar-10

04-Jul-10

04-Jul-10

04-Jul-10

22-Oct-10

22-Oct-10

22-Oct-10

09-Feb-11

09-Feb-11

09-Feb-11

30-May-11

30-May-11

30-May-11

17-Sep-11

17-Sep-11

17-Sep-11

B-type

VT

TEC TONIC

LOCAL TECT

From: 2009/11/08 12:00:00 PM To: 6:00:00 PM Interval 6 hours Scale: 25 % of 200 (Max Amp) bit:21BTR-UD12:00

13:00

14:00

16:00

17:00

15:00

:40

:40

:40

:40

:40

:40

:20

:20

:20

:20

:20

:20

Page 6: Magma Supply System at Batur Volcano Inferred from Volcano

102 Indonesian Journal of Geology, Vol. 8 No. 2 June 2013: 97-105

Figure 7. Hypocentral distribution of VT earthquakes of the Batur Volcano recorded during period of September - November 2009. (a). Epicentre distribution of VT earthquakes. (b) Hypocentres are plotted on the vertical cross section of A-B. Yellow and blue solid circles represent VT event occurred on June-October 2009 and November 2009, respectively.

in NNE - SSW direction and it seemed to coincide with the weak zone in Batur Volcano Complex (Figure 7a). Furthermore, the focal zones of VT earthquakes were located at the depth of 1.5 - 5.5 km below the summit as seen in Figure 7b. During period of September - October 2009, the focal zones

2

1

0

-1

-2

-3

-4

-5

(km)

Batur IIIBatur II

Batur I

1717 m asl

BA

June - October, 2009

November, 2009

b

a

ranged at the depth of 2.5 - 5.5 km and spread around southwest region of the volcano. While in Novem-ber, especially on November 8th, 2009, hypocentres were concentrated around the summit area between Crater II and III with the depth of 2.5 - 3.0 km. This suggests the possibility of migration of magma was

Page 7: Magma Supply System at Batur Volcano Inferred from Volcano

103Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism (S. Hidayati and C. Sulaeman)

Figure 8. The result of focal mechanism of VT earthquakes. The red open circles, purple solid circles, open squares, and solid triangle represent hypocentre during September-October 2009, hypocentre during the swarm on November 2009, seismic station, and main crater, respectively.

from the deeper part to the shallower depth and stopped at a depth of 2.0 - 5.0 km from the summit.

From the VT earthquake recorded at 2009 focal mechanism of 15 VT events out of 20 well-located ones could be determined. Fault plane solution of the VT is shown in Figure 8. Polarities of P-wave first motion are plotted on upper hemisphere of the focal sphere by stereographic projection. The plane solution shows strike slip, normal and reverse fault types. The strike-slip fault type is dominantly the mechanism with 7 out of 14 events. Meanwhile, reverse fault and normal fault types are 5 and 3 out of 14 events, respectively.

dIscussIon

Focal MechanismA sharp decline in number of VT earthquakes

after November 8th, 2009 swarm can be interpreted as a period of aseismic, though there were still the possibility of magma supply from a deeper part to a shallower one. No VT earthquakes as shown on the seismograms might interpret that the upward movement of magma did not require much effort. In some volcanoes, a period of aseismic in many cases was followed by an eruption.

West - East (km)

Sou

th -

Nor

th (

km

)

-4

-4

-5-3

-3

-2

-2

0

0

-1

-1

1

1

2

2

3

3

4

MPH

DNU

SON

BTR

KW 1

The normal fault type mechanism occurred dur-ing the swarm on November 2009. Ground deforma-tion measured by GPS showed the inflation during this period. It might indicate a magma supply from a deeper part. Magma migrates to a shallow part may cause an increase in the horizontal tension around the conduit and normal fault of VT events could be generated. Furthermore, the reverse fault type might associate with the horizontal compression by a pressure decrease. The occurrence of VT in both normal and reverse fault types during November 2009 might indicate that the Batur Volcano is under a complicated state.

The strike-slip fault type mechanism occurred with the orientation mostly in NE-SW direction. It might coincide with the geological structure around the Batur Volcano Complex showing weak zones within the caldera as indicated by the fissure system where the craters of Batur I, II, and III aligned in NE-SW direction (Figure 7).

DeformationGPS campaign was carried out in November

2009 at ten benchmarks around the edifice of Batur Volcano. This work was a continuation of previous measurement in 2008. The result (Sulaeman et al., 2008) of the 2008 measurement was compared to the result of 2009 which showed the vertical and horizontal displacements (Figures 9 and 10). Horizontal displacement was observed at stations located in down slopes (DB12, TABU, DB5, DB6, PJ5, DB17, DB10, and DB19) of the volcano with vector lines directed toward the crater. While the sta-tions KW1 and KW2 located at the upper slope and closer to the crater, showed a displacement outward from the crater.

The displacement pattern indicated that there might be two magma pockets located beneath the Batur Volcano craters, the deep and the shallow one. When the pressure source of deep magma pocket decreased, the ground deflated at the downslope, which was indicated by the vector lines directed toward the crater. The shallow magma pocket, on the other hand, showed an increase pressure and caused the ground inflation demonstrated by the vector lines directed outward the crater. Increasing pressure at the shallow magma pocket (inflation) was expressed by the occurrence of VT earthquakes in early November 2009. However, due to lack of

Page 8: Magma Supply System at Batur Volcano Inferred from Volcano

104 Indonesian Journal of Geology, Vol. 8 No. 2 June 2013: 97-105

DBT1

1 cm

Scale

Db17

Pj05

DBT6

DBT5

Kw1Kw2

DBT19

DBT10

Db12TABU

9.093

9.09

9.092

9.089

9.088

9.087

9.086

9.085

9.084

9.083

3.17 3.18 3.19 3.2 3.21 3.22 3.23 3.24 3.25 3.26

Horizontal Displacement Vector Data

West - East (UTM)

Sou

th -

Nor

th (

UT

M)

x 106

1 cm

9.093

x 106

9.09

9.092

9.089

9.088

9.087

9.086

9.085

9.084

9.083

3.17 3.18 3.19 3.2 3.21 3.22 3.23 3.24 3.25 3.26

Vertical Displacement Vector Data

West - East (UTM)

Sou

th -

Nort

h (

UT

M)

99 cm

Scale

DBT1

Db17

Pj05

DBT6

DBT5

Kw1Kw2

DBT19

DBT10

Db12TABU

Figure 9. Horizontal displacement November 2009 - October 2008.

Figure 10. Vertical displacement November 2009 - October 2008.

Page 9: Magma Supply System at Batur Volcano Inferred from Volcano

105Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism (S. Hidayati and C. Sulaeman)

GPS data the interpretation of the occurrence of two magma pockets is very weak. Suganda (2008) found that the pressure sources are located at 1.8 to 2.1 km.

The pattern of vertical displacement mostly showed downward vector lines, except at DB5 (Fig-ure 10). The largest vector lines occurred at DB17 and PJ5 attaining a distance of about 1 m. However, the vertical displacement measured by GPS was not accurate enough compared to the horizontal mea-surement. Therefore, it could not be used.

conclusIon

Increasing activity of the Batur Volcano began in September 2009 and escalated in November 2009. It peaked on November 8th, 2009 when the VT earthquakes swarmed. Hypocentral distribution of the earthquakes during September - November 2009 showed a migration of magma from the deep part to the shallow one. This interpretation was supported by GPS analysis where the horizontal displacement oriented towards the crater in the distance bench-mark measurement. Outward direction (away from the crater) as shown by benchmarks, which were located close to the crater, might imply the pressure increase. Moreover, the epicentre of VT earthquake distributes in NE - SW direction which was coinci-dent with the weak zone on Batur Volcano Complex.

Acknowledgments---The authors thank Akhmad Solikhin, I Gede Bagiarta, and I Nyoman Gina Wijaya for their helps during the fieldwork in Batur Volcano.

references

Aki, K. and Richards, P.G., 1980. Quantitative seismology.Second edition, University Science Books, California, p.106-109

Hidayati, S., Ishihara, K., and Iguchi, M., 2007. Volcano-tectonic Earthquake during the Stage of Magma Accumulation at the Aira Caldera, Southern Kyushu, Japan. Bulletin of Volcanological Society of Japan, 52 (6), p.289-309.

Hidayati, S., Ishihara, K., Iguchi, M., and Ratdomopurbo, 2008. Focal mechanism of volcano-tectonic earthquake at Merapi volcano, Indonesia. Indonesian Journal of Physics, 19 (2), Bandung, p.75-82.

Hidayati, S., Basuki, A., Kristianto, and Mulyana, I., 2009. Emergence of Lava Dome from the Crater Lake of Kelud Volcano, East Java. Jurnal Geologi Indonesia, 4(4), p.229-238.

Kusumadinata, K., 1979. Data Dasar Gunungapi Indonesia.Direktorat Vulkanologi, 819pp.

Purbawinata, M.A., 2001. Evaluasi Kegiatan G. Batur, Purna Letusan 7 Juli s/d April 2001. Unpublished report. Direktorat Vulkanologi, Bandung.

Ratdomopurbo, A. and Poupinet, G., 2000. An overview of the seismicity of Merapi, Java, Indonesia, 1983-1994. Journal of Volcanology and Geothermal Research, 100, p.193-214.

Suganda, O. K., 2008. Pemetaan Karakteristik Deformasi Gunung Api Batur dari Pengamatan Metode Geodetik. Disertasi Program Studi Teknik Geodesi dan Geomatika, ITB.

Sulaeman, C., Kriswati, E., Prambada, O., and Sugiyo, 2008. Laporan Penelitian G. Batur. Pusat Vulkanologi dan Mitigasi Bencana Geologi.

Sutawidjaja, I.S., 2009. Ignimbrite Analyses of Batur Caldera, Bali, based on 14C Dating. Jurnal Geologi Indonesia, 4. (3), p.157-227.