machel morrison doug schweizer tasnim hassan (pi)

29
Experiments and Simulations of an Innovative Performance Enhancement Technique for Steel Building Beam-Column Connections Machel Morrison Doug Schweizer Tasnim Hassan (PI)

Upload: tress

Post on 17-Feb-2016

37 views

Category:

Documents


0 download

DESCRIPTION

Experiments and Simulations of an Innovative Performance Enhancement Technique for Steel Building Beam-Column Connections. Machel Morrison Doug Schweizer Tasnim Hassan (PI). Post Northridge Research. Bolted Extended Endplate. Bolted Flange Plate . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Experiments and Simulations of an Innovative Performance Enhancement Technique for Steel

Building Beam-Column Connections

Machel MorrisonDoug Schweizer

Tasnim Hassan (PI)

Page 2: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Post Northridge ResearchAISC 341 Performance Criteria θd =0.04 Radians

Bolted Extended Endplate Bolted Flange Plate

Kaiser Bolted Bracket Reduced Beam SectionWUF-W

Figures from Hamburger et. al 2009

Page 3: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Heat Treated Beam Section (HBS)

Mf ∝ MRBS

Mf ∝ MHBS

Page 4: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Heat Treated Beam Section (HBS)

Time (min)

Air Cool

Slow Cool

Tem

p ˚C

Figure from :http://textbooks.elsevier.com

0% 10% 20% 30% 40% 50% 60%0

10

20

30

40

50

60

70Uniaxial Tension Stress-Strain Response (A992)

Unconditioned 700 C

800 C 1050 C

1050 C Slower cooling rate

εx (%)

σx (ksi)

Page 5: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Induction Heating- Eddy currents “induced” by alternating magnetic field

Advantages: •Lower energy Input than traditional heating sources

•Easy to localize heat input

Induction heating provided by Ameritherm Inc.

Page 6: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Induction HeatingChallenges:

-Difficult to control temperature uniformity

-Prescribed slow cooling rate was not achieved

Page 7: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Experimental Program-4 Full Scale WUF-W

-3 HBS and 1 Unconditioned

-Sub assemblage similar to Engelhardt et al 1998- DB5

Page 8: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Experiment Results

0

20000 HBS -Cyclic Response

Interstory Drift θ (radians)

Mom

ent (

in-K

ip)

00 0.02 0.04 0.06

0

10

20

30

40 Cyclic Response of HBS & WUF-W

WUF-W

HBS

Interstory Drift θ (radians)

M(x 1000 in-Kip)

Page 9: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

HBS

Experiment Results WUF-W HBS

Page 10: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

HBS

Experiment ResultsWUF-W

Page 11: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Challenges-Significant yielding spread beyond HBS region and higher moments than expected

0 0.1 0.2 0.3 0.4 0.50

20

40

60

80

UnconditionedInduction Heat treatedFurnace Heat treated

εx (in/in)

σx (ksi)

Uniaxial Tension Stress-Strain Response (A992)

Page 12: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

FE Simulations

-Finite Strain, Large Displacement Formulation

-Initial Geometric Imperfections (Flange thickness variation, out of straightness)

-Quadratic Shell Elements

ANSYS 12.1 Mechanical ADPL

Page 13: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

FE Simulation- Constitutive Model-Non Linear Kinematic Hardening Model (Chaboche 1986)

23

p pi i i ida C d a d

1 23

2( ) [ ( ) ( )] 0of s a s a s a

Chaboche Kinematic Hardening Rule

4

1i

i

da da

p fd d

-1.5 -1 -0.5 0 0.5 1 1.5

-80

-60

-40

-20

0

20

40

60

80

Experiment

Chaboche Model

σx (ksi)

εx (%)

A992 Beam FlangeYield Surface

Flow Rule-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

-80

-60

-40

-20

0

20

40

60

80σx (ksi)A572 Gr 50

εx (in/in)

Experiment results from Kaufmann et. al 2001

Chaboche Model

Experiment

Page 14: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Validation of FE Simulation

-0.05 -0.03 -0.01 0.01 0.03 0.0500000000000001

-40

-20

0

20

40Cyclic Response of WUF-W

WUF-W Expt Response

WUF-F Simulation (Chaboche)

M (x 1000 in-Kip)

θ-0.05 -0.03 -0.01 0.01 0.03 0.0500000000000001

-40

-20

0

20

40Cyclic Response of HBS

HBS Experiment Response

HBS Simulation

M (x1000 in-Kip)

θ

Page 15: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Validation of FE Simulation

-5 -3 -1 1 3 5

-1500

-1000

-500

0

500

1000

1500Strain Profiles

εx (microstrain)

Position along flange (in.)

Tension Flange

Compression Flange Experiment Simulation

0.005 Rads

0.00375 Rads

0.0075 Rads

0.005 Rads

0.00375 Rads

WUF-W

Page 16: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

FE Simulation Results

-6 -4 -2 0 2 4 6

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

Compression Flange

Position along Flange (in)

0.01 Rads

0.02 Rads

0.03 Rads

εpx (%)

Furnace HT Proper-ties

Induction HT Prop-erties

Page 17: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Expt Results- Flange Buckling HBS WUF-W

Page 18: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Validation of FE Simulation

Page 19: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

FE Results- Flange Buckling

0 5 10 15 20 25 30

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Local Flange Buckling WUF-W

WUF-W Simulation

WUF-W Experiment Results

Distance from Column Face (in)

δ (in)

Page 20: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

FE Results- Flange Buckling Shear tab w/Supplemental Weld

No Shear tab/Supplement weld

Page 21: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

FE Results- Flange Buckling

0 5 10 15 20 25 30

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5 Local Flange Buckling WUF-W

WUF-W Simulation

WUF-W Experiment Results

WUF-W Simulation (No Shear Tab/ Supplemental Weld)

Distance from Column Face (in)

δ (in)

Page 22: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

FE Results –Flange Buckling

-6 -4 -2 0 2 4 6

-25

-20

-15

-10

-5

0

5

10

0.04 rads

0.03 rads

0.02 rads

εpx (%)

Compression Flange

Position along flange (in.)

Shear tab w/Supplemental Weld

-6 -4 -2 0 2 4 6

-25

-20

-15

-10

-5

0

5

10 εpx (%)

0.02 rads 0.03

rads 0.035 rads

0.04 rads

Compression Flange

Position along flange (in.)

No shear tab/Supplemental weld

WUF-WWUF-W

Ricles et. al 2002

Page 23: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Summary-Heat treatment of beam flanges reduces strength of steel and initiates yielding in the heat treated regions

-Future experiments are being planned with new heat treatment technique

-Uniform heat pattern difficult to achieve with Induction heating, σ-ε response varied from furnace heat treatment

-Heavy shear w/supplemental fillet weld to beam web influences local flange buckling

Page 24: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Acknowledgments-National Science Foundation (NSF)

-Network for Earthquake Engineering Simulation (NEES)

-MAST LAB @ U of Minnesota

-Lejune Steel Company

-Ameritherm Inc.

Page 25: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

New Heat treatment Technique

0 0.1 0.2 0.3 0.4 0.5 0.60

20

40

60

80

Unconditioned

Induction Heat treated

New Heat treatment Method

εx (in/in)

σx (ksi)

Uniaxial Tension Stress-Strain Response (A992)

Page 26: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

COMPARISON WUF-W, HBS & RBSWUF-W No Shear tab/Supplemental weld

HBS No Shear tab/Supplemental weld

RBS No Shear tab/Supplemental weld

Page 27: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

COMPARISON WUF-W, HBS & RBS

WUF-W

From Hassan and Syed 2009

Page 28: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Moment Response

-0.05 -0.03 -0.00999999999999998 0.01 0.03 0.0500000000000001

-40

-20

0

20

40Cyclic Response of WUF-W

WUF-W

WUF-W Simulation (Multilinear)

M (x 1000 in-kip)

θ

Page 29: Machel  Morrison Doug  Schweizer Tasnim  Hassan (PI)

Moment Response

0 0.02 0.04 0.060

10

20

30

40Cyclic Response of HBS & WUF-W

WUF-W Expt

WUF-W Simulation

HBS Expt

HBS Simualtion Induction HT

HBS Simulation Improved HT

Interstory Drift θ (rad)

M(x 1000 in-Kip)