lee 1986 aquacultural-engineering

Upload: jorge-rodriguez

Post on 03-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    1/14

    Aquacultural Engineering 5 ( 19 86 ) I.4 7 - 1 6 0

    M a r i n e S h r i m p A q u a c u l t u r e :a N o v e l W a s t e T r e a t m e n t S y s t e m *

    C. S. Le e, J. N. Sw een ey and W . K. Richards Jr.Th e Ocean ic Inst itute , M akapuu Point , Waimanalo. Hawaii 9 67 95 . US A

    A B S T R A C TE cu a d o r ia n P e n a e u s v a n n a m e i were cu l tured in d i r t po nd s (each o fappro x ima te ly 163 m- ' ) a t fo ur d i f feren t s tock ing dens it ies , i . e . 5 shr im prn-- ', 10 sh rim p m -2, 15 sh rim p m -: an d 20 sh rim p m-'- . Experiments"were carr ied ou t over three d i f f eren t per iods dur ing the year . Eachexp er im en t l a s t ed f o r 1 1 -1 4 w eeks . N o co m me r c ia l f e e d w a s g i ven t oth e s h r imp . Th e o n l y i n p u t t o t h e p o n d s w a s a b o u t 3 0 kg o f ca ttlema n u r e p er p o n d p e r w eek. C h en t i ca l co m p o s i t i o n o f th e ca ttlentan ure was analy:e d. Water qual i~ ' par am eter s s t tch as temperat t tre ,pH , D O an d turb id i ty were recorded twice da i ly for each exper in ten t;nu tr ien ts (ni tr it e, n it ra te , a m m on iu m an d phosph a te) , wa ter A T P ,sed im en t ,4TP , H ,S a t td ch lorophyl l were meas't tred twice w eek ly forea ch exp erin ten t. S h r im p w er e s a m p led e i th e r w eek l y o r h i -w eek l y f o rb o d y w e ig ht mea s u r em en t s .The resu l t s showed a nega t ive corre la t ion be tween s tock ing dens i~ 'a t td growth . Weekly grow th rang ed f ro m 0 .44 to 1 "58 g week - t . Surv iva lwas over 50% in a l l t rea tmen ts a t td averaged a t 70 .8%. Under theses tock ing dens it ies , s hr im p pr odu ct ion ranged f ro m 4"4 to 18"8 kg ha - Iday - I . The s tock ing dens i O, o f 15 shr im ps m-- ' p rov ides be t ter prod uc-t io tt than the o the r s tockin g densit ies .Water qua l i t y da ta d id no t re la te to any shr imp growth . Waternu tr ien t l evel s in po n d d i scharge w ater ~ 'ere less than or equa l to thenu tr ien ts in the in com ing water in sp i te o f the week ly add i t ion oJ 'ca tt lem anu re a t td d id n o t increase wi th the add i t ion o f ca t tl e manure . Noco l i form bacter ia were de tec ted in any po t td wa ter sam ples through the

    *Part of these data was presen ted at the First International Co nfer enc e of PeneaidPrawns/Shrimps, Iloilo City, Philippines, 4 - 8 D e c em b e r 1 9 8 4 .

    147Aquacultural Engineering 0 1 4 4 - 8 6 0 9 / 8 6 / S 0 3 . 5 0 - '~ E ls ev ie r Appl ied Sc iencePublishers L td, England, 198 6. Printed in Great B ritain

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    2/14

    148 C . S . L e e , J . ,V . S w e e n ' . ~,~ K . R i c h a r d s J ~

    s t u d y p e r i o d . T h i s i n d i c a te s d i g e s t io n o f c a t t le m a n u r e i n m a r i n es h r i m p p o n d s w o u l d n o t p o l l u te t h e e n v i r o n m e n t w # h h i g h c o n ce n tr a -t i o n s o f d i s s o l v e d n u t r i e n t s .

    T h u s , a m a r i n e s h r i m p p o n d c a n b e c o n s i d e r e d a d i s s o lv e d n u t ri e n tm a r i n e t r e a t m e n t p l a n t c o n v e r t in g u n w a n t e d c a t tl e m a n u r e ~ 18 41 k gc a t tl e m a n u r e h a - I w e e k - I i n t h i s s t u d y ) i n t o a v a l u a b l e c o ~ n m o d i t y - -s h r i m p .

    INTRODUCTIONFor centuries, fish farming has been practiced as a means of supplyinganimal protein to mankind. Production costs depend on the strategy ofmanagement. As costs increase, the product can become tooexpensive to be consumed by the general public.Growth of cultivated animals can rely on both the naturalproductivity of the pond and external inputs such as fertilizer andfeed. Natural productivity includes the autotrophic (algae,phytoplankton) and heterotrophic (bacteria, protozoa, zooplankton)production in the pond.Autotrophic production is controlled both by the amount ofchlorophyll in the water and the incident solar energy. Productivitycannot exceed the limit set by the amount of solar energy penetratingthe pond surface. When primary productivity is the only source offood, fish production will be limited to only 1.2 kg carbon ha-~ day-or 12 kg of fresh fish ha-~ day-~. To achieve higher levels of fishproduction (i.e. 32 kg of fresh fish ha - ~ day- ~) another source of foodmust be present in the pond. That additional food source can be eitherheterotrophic organisms or commercial diet.The addition of commercial feed into the pond may not serve pondproduction directly. In fact, the feed may not be consumed by thecultured animals. Schroeder (1983) demonstrated that in a polyculturesystem half of the growth of common carp was based on natural foodsfound on the pond bottom and banks, even in the presence of a fullration of enriched feed pellets. The growth of tilapia, in the samesystem, was based 70% on natural foods while prawns in the poly-culture system almost completely relied on natural productivity.Compared to freshwater, the understanding of fertilizers in marineculture systems is very limited. Shrimp farming, for example, relies on

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    3/14

    Mar ine sh ri mp aquacult ure: a nove l waste trea tment svsrern 1"9

    commercial diets to produce the shrimp. Although Lee and Shleser(1984) indicated the rapid growth of shrimp in cattle manure enrichedponds, information on the growth of shrimp in ponds with fertilizationalone is limited and suggests a negative result to fertilization (Rubrighte t a l . , 1981; Garson e t a l . , 1984).

    Shrimp can also grow on the marsh grass and shrimp shell waste(Venkataramiah e t a l . , 1978). Moriarty (1984) found that whenpelleted prawn food was thrown in a pond, it was supporting bacterialgrowth which in turn was eaten by the prawns. These results suggestthat shrimp will grow utilizing the pond's primary and secondaryproduction. In this study, we have determined shrimp production atdifferent stocking densities in cattle manured marine ponds. Benefitsfrom this approach are not only the savings in feed costs but also thedevelopment of a waste treatment system based on shrimp aquacul-ture.

    MATERIALS AND METHODSP e n a e u s v a m z a m e i were stocked in dirt ponds, with the average size of163 m 2 at densities of 5, 10, 15 and 20 shrimps m -2 Three experi-ments (Exp. 1, 2 and 3) were carried out during the winter, spring andsummer months, respectively. There were no replicates in Exp. 1 andExp. 2, but in Exp. 3 each stocking density was replicated in twoponds. Experiments 1 and 2 ran for 14 weeks and Exp. 3 for 11weeks. The initial average weight of the stocked shrimp was 3.83 g forExp. 1, 1"05 g for Exp. 2 and 2-70 g for Exp. 3. No commercial dietwas supplied to any of the ponds at any time. Feedlot cattle manurewas added weekly to each pond at a dosage of about 30 kg pond-week-~. The total amount of manure supplied to each pond throughthe grow-out period was 544 kg in Exp. 1, 560 kg in Exp. 2 and400 kg in Exp. 3. Shrimp were sampled from each pond bi-weekly forbody weight.

    Water quality parameters (temperature, pH, DO and turbidity~ wererecorded twice daily from each of the ponds. Nutrient levels (nitrate.nitrite, phosphate, and ammonium) in the ponds were measured twiceweekly with an auto-analyzer in Exp. 3. Nutrient content of themanure was also determined using the auto-analyzer. For Exp. 1 andExp. 2, BOD was monitored several times during the grow-out period.

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    4/14

    15 0 C . S . Lee , J . N . Saee n~ ' , ~ i K . R i chards Jr.I n E x p . 3 . H , S . A T P a n d p h y t o p l a n k t o n a n d z o o p l a n k t o n w e r e a l s om e a s u r e d w e e k l y . H y d r o g e n s u l f i d e w a s m e a s u r e d w i t h t h e O r i o nm o d e l 9 4 - 1 6 s u l fi d e io n e l ec t r o d e . W a te r A T P w a s m o n i to r e d w i th t h em e t h o d d e v e l o p e d b y K a r l ( 1 9 7 8 ) a n d s e d i m e n t A T P m e a s u r e m e n tf o l lo w e d t he m e t h o d o f K a rl a nd C r a v e n ( 1 9 8 0 ) . S a m p l e s fo r p h y t o -p l a n k to n a n d z o o p l a n k t o n m o n i t o r in g s w e r e c o l l e c te d in 2 5 0 m l d ar kN a l g e n e b o t t l e s a n d c o u n t e d f r e s h o r p r e s e r v e d f o r p h y t o p l a n k t o na n d p r e s e r v e d f o r z o o p l a n k t o n . O r g a n i s m s w e r e i d e n t i f i e d t o t h eg e n u s l e v e l . B e n t h i c m u d s a m p l e s w e r e c o l l e c t e d w i t h a 1 i n ( 2 . 5 4 c m )d i a m e t e r s y r i n g e . P l u g s o f s e d i m e n t w e r e c o l l e c t e d a n d t h e s u r f a c el a y er s w e r e s u r v e y e d f o r m i c r o s c o p i c f lo r a a n d f au n a .

    RESULTST h e a v e r a g e c o m p o s i t i o n o f n i t r o g e n , p h o s p h o r u s a n d p o t a s s i u m i nt he ca t tl e m a n u r e b a s e d o n t h e d r ie d w e i g h t w a s 2 . 3 6 + 0 - 4 8 % ,

    T A B L E 1W a t e r T e m p e r a t u r e , p H , D O a n d T u r b i d it y in E x p e r i m e n t 1

    S t ock i ng dens i t y 5 10 15 20(no . m - : )

    T e m p e r a t u r e a m 2 3 - 0 - 2 7 . 5 2 3 - 1 - 2 7 . 8 2 3 - 1 - 2 7 . 5 2 2 . 1 - 2 7 . 3( C ) 2 5 . 4 8 2 5 . 5 6 2 5 . 6 6 2 5 - 3 6

    p m 2 5 - 5 - 3 2 " 0 2 5 . 8 - 3 2 - 0 2 5 " 8 - 3 1 . 5 2 5 " 2 - 3 1 . 82 8 . 8 9 2 8 . 5 8 2 8 . 7 3 2 8 . 9 1

    p H a m 7 . 1 3 - 8 - 4 4 7 . 1 2 - 8 . 4 7 7 . 0 9 -8 " 5 1 7 . 1 5 - 8 ' 8 07 - 8 9 7 - 8 2 7 . 7 5 7 ' 8 2p m 7 . 4 5 - 8 " 8 0 7 . 2 8 - 8 . 9 7 7 ' 4 3 - 8 - 9 8 7 . 3 8 - 9 - 3 4

    8 "1 6 8 . 1 3 8 " 0 9 8 ' 1 4" '9D O ( p p m ) a m 4 - 5 - 1 0 " 4 y 7 - 9 - _ 3 - 0 - 1 0 " 0 3 " 3 -8 " 0

    6 . 4 8 6 " 2 9 5 . 7 9 5 - 6 4p m 7 - 0 - 1 7 . 4 6 - 8 - 1 _ 9 - 2 5 . 7 - 2 0 + 5 " 5 - 2 0 +

    1 1 ' 5 8 1 2 - 3 3 1 1 - 6 8 1 2 . 6 1T u r b i d i t y ( c m i a m 6 0 - 1 2 0 + 5 0 - 1 2 0 + 5 5 - 1 2 0 + 6 0 - 1 2 0 +

    9 3 ' 4 5 9 1 - 8 1 9 0 " 5 1 8 1 " 3 4p m 6 0 - 1 2 0 + 4 0 - 1 2 0 + 5 0 - 1 2 0 + 5 ( 3 - 1 2 0 +9 0 " 7 4 8 9 .4 1 8 4 . 6 9 6 9 " 5 5

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    5/14

    M a r i n e sh r i m p a q u a c u l t u r e : a n o v e l w a s te t r e a t m en t ~ ' st em 1510 . 9 7 + 0 - 4 5 % a n d 3 . 7 2 + 1 . 5 5 % , r e s p e c t i v e l y . W a t e r t e m p e r a t u r e , p H ,D O a n d t u r b i d i t y f o r t h e t h r e e e x p e r i m e n t s a r e l i s t e d i n T a b l e s 1 , 2a n d 3 . T h e a v e r a g e t e m p e r a t u r e s f o r E x p . 1 , E x p . 2 a n d E x p . 3 w e r e25"5C, 26"1C and 27 . 0C in t he morn ing and 28"8C, 29"8C and3 0 . 8 C i n t h e a f t e r n o o n , r e s p e c t i v e l y . T h e a v e r a g e p H v a l u e s r a n g e df r o m 7 . 7 9 t o 8 - 3 0 , a n d c o n s i s t e n t l y d i s p l a y e d s l i g h t l y h i g h e r v a l u e s i nt h e a ft e r n o o n t h a n i n t h e m o r n i n g . T h e a v e r a g e p H w a s h i g h e r in E x p .3 t h a n t h e o t h e r t w o e x p e r i m e n t s . H i g h e r d e n s i t i e s o f p h y t o p l a n k t o ni n E x p . 3 w e r e d e t e c t e d f r o m t h e t u r b i d i t y r e a d i n g s m e a s u r e d b ysecch i d i sc .

    P l a n k t o n a n d b e n t h i c c o m m u n i t i e s a r e s u m m a r i z e d i n T a b l e 4 .C h a e t o c e r o s sp . and R h i z o s o l e n i a s p . w e r e t h e d o m i n a n t p h y t o p l a n k -t o n s p e c i e s i n t h e c u l t u r e p o n d s t h r o u g h o u t t h e e x p e r i m e n t . T h e c e l ld e n s i t i e s w e r e s e v e r a l t h o u s a n d p e r m i l li li te r in m o s t c a s e s , a n d u p t o am a x i m u m o f t w e l v e t h o u s a n d p e r m i llilite r. O c h r o r n o n a s s p . a p p e a r e din a l l o f t he ponds except t he pond wi t h a s t ock ing dens i t y , o f 5

    T A B L E 2W a te r T e m p e r a t u r e , p H , D O a n d T u r b id i ty i n E x p e r i m e n t 2

    Stocking densiO' 5 10 15 20Ozo. m - 9

    T e m p e r a t u r e a m 2 3 . 7 - 2 7 . 8 2 3 . 7 - 2 7 - 5 2 4 . 0 - 2 7 - 8 2 4 . 4 - 2 7 . 5( C ) 2 6 - 0 2 2 6 - 0 3 2 6 . 1 9 2 6 . 0 7

    p m 2 5 . 8 - 3 2 . 2 2 6 . 6 - 3 2 - 0 2 6 . 6 - 3 2 .0 2 6 ' 7 - 3 1 . 92 9 . 8 0 2 9 - 7 5 2 9 . 8 6 2 9 - 8 3

    p H a m 6 " 8 4 - 8 - 3 7 6 . 8 7 - 8 . 2 9 6 . 8 5 - 8 . 1 2 6 . 8 8 - 8 . 3 67 - 88 7 . 86 7 . 74 7 . 79p m 7 . 1 0 - 8 . 7 8 7 . 1 2 - 8 . 8 7 7 - 0 7 - 8 . 7 7 7 . 0 9 - 8 . 9 9

    8 . 26 8 - 22 8 - 15 8 . 19D O ( p p m ) a m 3 " 7 - 9 - 5 3 " 8 - 9 " 8 3 " 5 - 9 " 3 2 2 - 9 - 9

    6-02 6-01 5 .51 5-19p m 5 . 4 - 2 0 + 5 . 7 - 2 0 + 4 . 9 - 2 0 + 5 . 2 - 2 0 +

    12-31 11 .83 11-76 11 .44T u r b i d it y ( c m ) a m 6 0 - 1 2 0 + 6 0 - 1 2 0 + 4 5 - 1 2 0 + 4 5 - 1 2 0 +

    93- 44 86 - 07 88 - 61 83" 81p m 6 0 - 1 2 0 + 6 0 - 1 2 0 + 5 0 - 1 2 0 + 4 5 - 1 2 0 +8 9 - 7 7 8 3 - 2 8 8 4 " 3 0 8 0 - 1 1

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    6/14

    i'J

    TABLE3

    WaeTmpauepH,DOaTbdynE

    me3

    Stockingdensy

    Otom-9

    5

    10

    15

    20

    Pn

    Tmpaue

    pH

    DO(pm)

    4

    5

    1

    8

    3

    6

    2

    7

    am202525252025252

    202

    223202

    2524

    21

    2

    21

    27

    2

    2

    21

    28

    pm231203

    23302532283

    2532203

    253

    Tbdycm)am

    41 6

    pm

    46-111

    6

    t"

    39

    38

    39

    3

    36

    38

    3

    3

    am7280

    7

    85

    7186748

    718

    7184

    698

    7084

    81

    7

    7

    80

    7

    80

    78

    79

    pm7690

    7389

    738

    7689

    784

    7389

    748

    789

    8

    84

    81

    83

    8

    8

    8

    83

    '~

    am5296

    449

    369

    369

    4980

    4287

    3385

    3279

    8

    67

    6

    58

    5

    6

    5

    53

    52

    pm7216

    742

    522

    5516

    62

    862

    4814

    551

    ~

    17

    1

    12

    13

    16

    14

    19

    16

    31

    51

    41

    61

    41

    31

    41

    7

    7

    7

    9

    6

    5

    6

    3(96

    43-100

    44-100

    511

    46-100

    35-95

    3

    11

    6

    6

    6

    8

    6

    5

    6

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    7/14

    M arine shrim p aquacu l ture: a nov el waste trea tme nt sys temT A B L E 4

    Micro Community in the Culture Pond

    t53

    Tccronomic Group S to ck in g d en s i ty5 10 15 20

    Wa ter C o h tm nC h a e to cero s (D ia to m ) A A A AR h izo so len ia (Diato m) A A A AO ch ro m o n a s(F la g e l la t es ) P P PG y m n o d i n i u m P P P P(Dino Flagellates)Rotifer (Rotifera) P P P PCiliates (Ciliophora) P P P PBen th ic F loraNavicu la (Diatom) M M M MP leu ro sig m a (D ia to m ) M M M MB en th ic F a u n aNematode (Nematoda) P P P PAmoebae (Amoebas) P P P PCiliates (Ciliophora) P P P PA = AbundanceP= PresentM=M~or Species

    shrimps m- z at the end of the experiment. Gymnodiniumsp. appearedoccasionally. Ciliates and rotifers were found in the zooplanktonsamples from all ponds. Naviculasp. and Pleurosigmasp. were majorbenthic flora found in the ponds. Nematodes, amoebae and ciliateswere the benthic fauna.NO 3 and NO, concentrations were lower than 0"5 ~M in the ponds,although some high concentrations were found occasionally. Therewere no differences in the concentrations of NO3 and NO_, among thedifferent stocking densities. PO4 concentrations ranged from 0-3 to5.4 ~M and averaged around 1.4 ,uM. NH4 concentration fluctuatedless than the other nutrients and averaged at 1"3 to 1"8/~M. H2Saveraged from 0-18 to 0"42 ppm and was lower in the highest stockingdensity than the other three stocking densities. Water ATP fell within

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    8/14

    1 5 4 C . S . L e e , J . ~ : S w e e n ~ ; W . K . R i c h a r d s Jr .t h e r a n g e o f 2 0 0 0 n g l i t e r - t t o 6 0 0 0 n g l i te r - t a n d a v e r a g e d a t3 5 0 0 n g l i t e r - t . S e d i m e n t A T P m e a s u r e m e n t s w e r e m o s t l y b e t w e e n2 0 0 n g g - 1 a n d 4 0 0 n g g - t. B o t h w a t e r A T P a n d s e d i m e n t A T P w e reh igher in 15 and 20 sh r im p m -2 than the o the r s tock ing dens i ti e s .C h l o r o p h y l l c o n c e n t r a t i o n s h o w e d t h e s a m e t r e n d a s A T E T h ea v e r a g e c o n c e n t r a t i o n f o r c h l o r o p h y l l w a s b e t w e e n 6 .5 a n d 8 -4 m gl i t e r - t . B O D m e a s u r e m e n t s f lu c t u a te d s i m i l a rl y a m o n g t h e d if fe r e nts t o c k i n g d e n s i t i e s w i t h n o s i g n i f i c a n t d i f f e r e n c e s a m o n g t h e m . T h e yr a n g e d f r o m 1 m g l i t e r - t d a y - t t o 2 .5 m g l i t e r - t d a y - I.

    I n d i v i d u a l s h r i m p g r o w t h r a t e w a s l o w e s t i n t h e h i g h e r s t o c k i n gd e n s i t y ( T a b le s 5 - 7 ) a n d r a n g e d f r o m 0 .4 4 to 1 .5 8 g w e e k - t . A m o n gt h e e x p e r i m e n t s , s h r i m p g r o w t h w a s h i g h e s t i n E x p . 3 , f o l l o w e d b yE x p . 2 a n d t h e n E x p . 1.S u r v iv a l i n th e t h r e e e x p e r i m e n t s a v e r a g e d a t 70 "8 % . T h e r e w a s n oa p p a r e n t r e l a t io n b e t w e e n s u r v i v a l a n d s t o c k i n g d e n s i t y ( T a b le s 5 - 7 ) .U n d e r t h e s e s t o c k i n g d e n s i t i e s , t h e s h r i m p p r o d u c t i o n r a n g e d f r o m4.4 to 18 .8 kg ha - l day -~ (Tab les 5 -7) . Av erage bo dy weigh t o fs h r i m p s t o c k e d a t 1 5 s h r i m p m - 2 o r u n d e r i n c r e a s e d t h r o u g h o u t t h ee x p e r i m e n t a l p e r io d s . G r o w t h o f s h ri m p i n t h e 2 0 s h r i m p m - 2 p o n ds t o p p e d n e a r t h e en d o f t h e e x p e ri m e n t . T h i s p h e n o m e n o n w a s v e r ys ign i f ican t in E xp . 3 .

    T A B L E 5G r o w t h , S u rv iv a l a n d P r o d u c t i o n o f P . v a n n a m e i a t D i f f e r e n t S t o c k i n g D e n s i ti e s o v e r

    a 1 4 W e e k P e r i o d in E x p e r i m e n t 1S t o c k i n g d e n s i t y ( n o . m - ' - ) 5 1 0 1 5 2 0

    I n it ia l m e a n b o d y w e i g h t 3 ' 8 3 3 . 8 3 3 . 8 3 3 . 8 3(g)F i n a l m e a n b o d y w e i g h t 1 8 -1 5 1 5 - 94 1 5 . 2 0 1 2 - 9 0(g)G r o w t h ( g w e e k - t ) 1 .0 2 0 . 8 7 0 .8 1 0 - 6 5S u r v iv a l r a t e ( % ) 6 0 . 0 0 4 5 . 9 0 5 9 . 0 6 7 - 4B i o m a s s i n c r e a s e 4 2 . 9 6 5 5 ' 5 9 1 0 0 . 6 3 1 2 2 . 2 6( g m - 2)Pr od uc t ion 4 .4 5"7 10-3 12"5( k g h a - ~d a y - t)

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    9/14

    M arine shr imp aquacu l ture: a nov el waste t rea tmen t sys tem 155T A B L E 6

    Growth, Survival and Production of P. v a n n a m e i at Different Stocking Densities overa 14 Week Period in Experiment 2

    Stockin g densi ty (no. m -: ) 5 10 15 20Initial mean body weight 1-05 1.05 1.05 1.05(g)Final mean body weigJat 16.64 14.18 12-63 10.53(g)Growth (g week- t) 1.11 0'94 0"83 0-68Survival rate (%) 74.7 75.6 81-7 76.4Biomass increase 58"23 99.26 141.91 144.85(g m-Z)Production 5"9 10.1 14-5 14-8

    (kg ha- ' day- ')

    TABLE 7Growth, Survival and Production of P. vannarnei at Different Stocking Densities Overan i 1 Week Period in Experiment 3Sto ckin g dens ity (no. m-2 ) 5 10 15 20Pond 4 5 i 8Initial mean body weight 2.7 2.7 2-7 2.7(g)Final mean body weight 17-22 20-05 15-95 16.59(g)Growth (g week -t ) 1'32 1'58 1.21 t'26Survival rate (%) 84-0 53'7 61.7 82.2Biomassincrease 60-98 46"59 81-75 114.18(gm -2)Production 7.9 6' i 10 .6 14.8(kg ha- ' day- ')

    3 6 2 72.7 2.7 2"7 2"714"40 7"56 7"58

    1"06 0.44 0.4482-6 79 "5 78'0144-96 77-27 76'1318-8 10-0 9"9

    D I S C U S S I O NA v e r a g e d a i l y w a t e r t e m p e r a t u r e a m o n g t h e e x p e r i m e n t s d i f f e r e da b o u t I C . I n c r e a s e in th e w a t e r t e m p e r a t u r e f r o m E x p . 1 t o E x p. 3m a y b e o n e o f th e r e a s o n s f o r t h e d i f fe r e n c e i n th e g r o w t h a m o n g t h e

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    10/14

    156 C. S. Lee, J. N. Sw eeney, W. K. R icha rds Jr.T A B L E 8Com parison of Som e Environmental Parameters in Pon ds W ith Different Stocking

    Densities by Friedm an's Method ( 1-4 indicates the or de r of increase in the ob serveddata)Stocking de nsi~ 5 10 15 20 Di fference(shrimps m-:)NO 3and NO , 4 2 i 3 NoneNH4 3 4 2 1 NonePO~ 1 3 2 4 NoneW ater ATP 1 2 3 4 P < 0-005Sediment ATP 2 1 4 3 P < 0.025Chlorophyll 2 1 3 4 NoneH,S 2 3 4 1 P < 0"005

    e x p e r i m e n t s . F a s t e r g r o w t h i n E x p . 3 i s c o r r e l a t e d w i t h t h e h i g h e rw a t e r te m p e r a t u r e .

    T h e h i g h e r a v e r a g e p H v a lu e s s e en in th e a f te r n o o n c o m p a r e d w i tht h e m o r n i n g w a s a r e s u l t o f p h o t o s y n t h e t i c a c t i v i t i e s o f t h e p h y t o -p l a n k t o n p o p u l a t i o n s w i th i n t h e p o n d s . T h e l a r g e d i u r n a l D O v a r ia -t io n s d i d n o t s e e m t o a f fe c t t h e g r o w t h o f t h e s h r im p . N u t r i e n t l e v el sw e r e g e n e r a l ly a b o v e c o n c e n t r a t io n s w h i c h w o u l d l im i t p h y t o p l a n k t o ng r o w t h .

    N o l o g i c a l e x p l a n a t i o n c a n b e m a d e f o r t h e a s y s t e m a t i c v a r i a b i l i t yin th e w a t e r n u t r i e n t l e v el s, B O D , H 2 S , A T P a n d c h l o r o p h y l l a m o n gp o n d s a n d s t o c k i n g d e n s i t i e s t h r o u g h o u t t h e t r i a l p e r i o d s . I t a p p e a r st h a t s h r i m p g r o w t h is n o t c o r r e l a t e d w i t h a n y o f th is i n f o r m a t i o n , b u tm o r e i n f o r m a t i o n i s r e q u i r e d t o r e v e a l if a r e la t i o n s h i p b e t w e e n t h e s ep a r a m e t e r s a n d t h e g r o w t h o f s h r i m p e x is ts .C o m p a r i s o n s o f w e e k l y v a l u es i n s o m e p a r a m e t e r s b y F r ie d m a n ' sm e t h o d ( S o k a l a n d R o h l f , 1 9 6 9 ) s h o w e d a si g n if ic a n t d i f f e r e n c e i nw a t e r A T E s e d i m e n t A T P a n d U ES a m o n g s t o c k in g d e n s it ie s b u t n od i f f e r e n c e i n n u t r i e n t l e v e l s a n d c h l o r o p h y l l ( T a b l e 8 ) . T h e r e w a s a l s on o d i f f e r e n c e i n w a t e r n u t r i e n t s a m o n g t h e t r e a t m e n t s o f fe e d in g , f er ti -l iz in g a n d n o f e e d i n th e s t u d y o f R u b r i g h t e t a l . ( 19 81 ).

    I n c o m i n g s e a w a t e r i n th is e x p e r i m e n t h a d a c o n c e n t r a t i o n o f N H 4o f 1 .0 4 /~ M , N O 3 a n d N O 2 o f 2 3 . 1 6 ~ M a n d P O ~ o f 1 "5 2 U M. T h e s el e v e l s a r e h i g h e r t h a n t h e n u t r i e n t l e v e l s i n t h e p o n d , i n s p i t e o fa d d i t i o n a l n u t r i e n t s a d d e d a s c a t t l e m a n u r e . W i t h i n 2 4 h , 2 9 " 5 ~ M o f

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    11/14

    Marine shr imp aquaculture: a novel waste treatment ~'stem 15 7

    N H , , 3 "1 2 # x t o f N O ~ a n d N O , a n d 2 0 #M o f P O a w a s r e le a s e d i n t othe wa te r f rom ca t t l e m anu re tha t was app l ied to the po nd every , week .T h i s i n f o r m a t i o n i n d i c a t e s t h a t t h e d i s c h a r g e w a t e r f r o m t h e c a t t l em a n u r e - e n r i c h e d p o n d w i ll n o t i n c r e a s e t h e n u t r i e n t l ev e ls i n th es u r r o u n d i n g a r e a . N o c o l i f o r m b a c t e r i a w e r e d e t e c t e d i n t h e c u l t u r es y s te m u s i ng t he m e t h o d o f E P A ( 1 97 5 ).T w o s h r i m p f r o m e a c h p o n d w e r e d i s s e c t e d a n d e x a m i n e d f o r t h econ ten t s o f the d iges t ive t rac t . In genera l , the gu t samples re f lec tedw h a t w a s o b s e r v e d i n t h e b e n t h i c s a m p l e s . B e n t h i c d i a t o m s w e r eiden t i f i ab le in the gu t bu t no t nematodes and c i l i a tes . Rubr igh t e t aL( 1 9 8 1 ) s t a te d t h a t b e n t h i c p o p u l a t i o n s s u p p o r t t h e g r o w t h o f s h r im p .K u m a r i e t a L ( 1 9 7 8 ) i n d i c a t e d t h a t d e t r it u s h a d h i g h e r n u t r it i v e v a l u et h a n p h y t o p l a n k t o n o r z o o p l a n k t o n . T h e r e f o r e , t h e b o t t o m c o m -m u n i t y p r o v i d e s a n i m p o r t a n t f a c t o r i n t h e g r o w t h o f s h r i m p .A v e r a g e i n d i v i d u a l g r o w t h r a t e s w e r e n e g a t iv e l y c o r r e l a t e d w i t hleve ls o f s tock ing d ens i ty ; g row th ra tes a t the h ighes t s tock ing dens i tyw e r e a p p r o x i m a t e l y 4 4 % o f t h o s e p r e v a i l i n g a t t h e l o w e s t s t o c k i n gd e n s it y . T r i m b l e ( 1 9 8 0 ) i n d i c a t e d t h a t P e n a e u s v a n n a m e i grew 1.2 gw e e k - t a t a s t o c k i n g d e n s i t y o f 2.5 a n i m a l s m - 2 w i th 6 3 % s u r v iv a la f te r 63 days . At a s to ck ing de ns i ty o f 5 .25 m -2, pos t l a rva l P.. vanna-m e i grew to 6"9 g in fed pon ds and 5"9 g i n u n f e d p o n d s i n 1 1 0 d a y s( H u g h e s a n d T o r r e s , 1 9 8 4) . O u r s t u d i e s i n d i c a t e d t h e g ro w t h o f 1 "2 6 gw e e k - t a t t h e s t o c k i n g d e n s i t y o f 5 s h r i m p m -2 . C o m p a r i s o n s o fb i o m a s s p r o d u c t i o n s h o w e d t h a t th e h i g h e st s h r im p p r o d u c t i o no c c u r r e d a t t h e h i g h e r s t o c k i n g d e n s i t y ( 1 5 m - 2 ) . T h i s p r o d u c t i o n o fu p t o 1 8 - 8 k g h a - ~ d a y - I is c o m p a r a b l e t o p r o d u c t i o n a c h i e v e d i nc o m m e r c i a l s h r i m p f a r m s i n H a w a i i w h i c h u s e p e l l e t i z e d f e e d s t on o u r i s h t h e s h r i m p . A t 1 5 s h r i m p m - 2 t h e i n c r e a s e d s h r i m p p r o d u c -t i o n r e s u l t i n g f r o m h i g h e r s t o c k i n g l e v e l s o u t w e i g h e d t h e d e p r e s s i n gi n f lu e n c e o f i n c r e a s e d s t o c k i n g d e n s i t y o n i n d i v i d u a l g r o w t h r at e. T h ea v e r a g e b i o m a s s i n c r e a s e w a s p o s i t i v e l y c o r r e l a t e d w i t h s t o c k i n gd e n s i t ie s u p to 1 5 s h r i m p m - 2 b u t n e g a t i v e ly c o r r e l a t e d a t 2 0 s h r i m pm - 2 ( F ig . 1 ). U s i n g th e S t u d e n t - N e w m a n - K e u l s t e s t ( S o k a l a n d R o h l f ,1 9 6 9) , t h e d i f f e r e n c e s i n b i o m a s s i n c r e a s e a m o n g t h e s to c k i n g d e n s i-t ie s a r e s h o w n i n t h e f o l lo w i n g b y u n d e r l i n i n g t h o s e m e a n s t h a t a re n o ts ignif ica nt ly d i f fere nt a t P < 0-05.

    5 10 15 20

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    12/14

    1 5 8 C . S . L e e , J . N . S w e e n e y . W~ K . R i c h a r d s J r .

    2 01 81 6

    ~ 1, ,

    o 64

    ~ " 1 6 0E" ~ 1 4 0v 1 2 0

    1 0 0~ a o- 6 0~ 40E 2 0o~ o

    F i g . 1 .

    5 1 0 1 5 2 0D e n s i t y ( p c s / m ?)

    Average weekly biom ass increase of shrimp at different stocking densities.

    F i g . 2 .

    6 7

    5 p c s / m 2[ ] 1 0 p c s / m 2[ ] 1 5 D c s / m 2[ ] 2 0 p c s / m 2

    0 1 2 3

    S h r im p G r o w t h D e n s i t y

    4 5 8 9 tOT i m e ( w e e k s )

    W e e k l y g r o w t h r a t e o f P e n a e u s v a n n a r n e i a t d i f f e r e n t s t o c k i n g d e n s i t ie s .

    T h i s f in d i n g s u g g es ts t h a t t h e 1 5 s h r i m p m 2 s h o u l d p r o v i d e b e t t e rp r o d u c t i o n t h a n t h e o t h e r s t o ck i n g d e n s it ie s t es t ed u n d e r t h e m a n u r e dp o n d c o n d i t io n .

    F r o m t h e g r o w t h r a t e v e r s u s s t o c k i n g d e n s i t y d a t a ( E x p . 3 ) , w e c a ns e e t h a t t h e c a r ry i n g c a p a c it y o f t h e m a n u r e e n r i c h e d p o n d is r e a c h e dw he n 20 s h r i m p m - 2 r e a c h a 9 g s i z e o r 180 g m 2 ( F ig . 2 ). I t w i l l bei n t e r e s t i n g t o i n v e s t i g a t e i n t h e f u t u r e w h a t f a c t o r s d e t e r m i n e t h i sc a r r y i n g c a p a c i t y a n d h o w c a n i t b e r a i s e d i n e x p e n s i v e l y .

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    13/14

    Marine shrim p aquaculture: a novel waste treatment s}'stem 15 9A m a r i n e s h r i m p c u l t u r e s y s te m h a s b e e n d e m o n s t r a t e d w h i c h

    p r o d u c e s m a r k e t s iz e s h r i m p a t p r o d u c t i o n l ev e ls e q u i v a l e n t t oc o m m e r c i a l fa r m s . T h i s s y s t e m u s es n o c o m m e r c i a l fe e ds . S h r i m pg r o w t h i n th is s y s t em i s d e p e n d e n t o n t h e m a n u r e e n r i c h e d e c o s y s t e mf o r n o u r i s h m e n t . I n a d d i t i o n t o r e d u c i n g a m a j o r c o s t o f s h r i m p g r o w -o u t b y e l i m i n a t i n g f e e d c o s t s , t hi s s y s t e m p r o v i d e s a m e t h o d f o r u ti li z-i ng f e e d l o t c a tt le m a n u r e w h i c h n o r m a l l y p r e s e n ts d i s p o s a l p r o b l em s .F u t u r e w o r k n e e d s t o s t u d y t h e f a c t o r s w i t h i n t h e m a n u r e e n r i c h e dm a r i n e e c o s y s t e m w h i c h p r o v i d e th e s h r i m p n o u r i s h m e n t a n d h o w t om a x i m i z e th e p r o d u c t i v i t y o f th a t p a r t o f t h e e c o s y s te m .

    A C K N O W L E D G E M E N T ST h i s r e s e a r c h w a s s u p p o r t e d b y t h e A q u a c u l t u r e D e v e l o p m e n tP r o g r a m , S t a t e o f H a w a i i , U S A . W e a l s o e x t e n d o u r t h a n k s t o D r J .W y b a n f o r h i s r e v ie w a n d c o m m e n t s , t o V . S a t o f o r m o n i t o r i n g p l a n k -t o n a n d b e n t h i c o r g a n i s m s , t o R . D e u p r e e f o r g r a p h s , to E . H a r p e r f o rt a b le s a n d t o A . B e l a n g e r f o r ty p i n g .

    R E F E R E N C E SAmer i can Publ i c Hea l t h Assoc i a t i on , Amer i can Wate r Works Assoc i a t i onand Water Pol lut ion Cont rol Federa t ion (1975) . S t a n d a r d M e t h o d s f o r t heEx am ina t ion o f Water an d Was tewater , 14, 928, Washington DC .G arson, G. I ., B ieber , G. & Sm i therman , R . O. (1984). T he e ffec t s of manuresand pe l le ted feed on surviva l, gro wth an d y ie ld of Pe na eu s stylirostris and t..vannarne i i n Panama . P re sen t ed a t W o r m M a r i c u lm r e S o c i e ty 1 5th A n n u a lMeet ing , Vancouve r , 18-22 March 1984 .Hu ghes , D. G. & Torres , A . (1984) . Pro du ct ion and g rowth charac te r is t i cs ofpure and mixed s tocks o f Penaeus s tyl irostr is and P. v a n n a m e i in fed andunfed ea r then ponds dur ing t he d ry sea son i n Panama . P re sen t ed a t FirstIn t e r n a t i o n a l C o n f e r en ce o n t h e C u l tu r e o f P en a e id P r a w n s /S h r imp s , IloiloCi ty , Phi l ippines , 4-8 December 1984.Kar l , D. M. (1978) . Occurrence and ear ly s igni f icance of ATP in the oceanand m icrobial cel ls . App l . an d Environ . M icrob io l ., 3 6 , 3 4 9 - 5 5 .Karl , D. M. & C rave n, D . B. (1980). Effects of a lkal ine phos ph atase activityon nuc l eo t i de m easurem ent s i n aqua ti c mic rob i a l comm uni t ie s . A p p l . a n d

    Environ . Microb io l . , 40 , 549 - 61 .Kumari , L. K., Sumitra , V., Wafar, M. V. M., Royan, J . P. & Rajendran, A.(1978 ). Studies on detri tus in a trop ical estuary. Ind. J. Mar. Sci., 7 , 2 6 3 - 6 .

  • 7/28/2019 Lee 1986 Aquacultural-Engineering

    14/14

    160 C S. Lee, J. N. Swee n~', L~ K. Rich ards Jr.Lee , C. S . & S hleser, R . A. (1984) . P rod uct io n of P e n a e u s v a n n a r n e i i n cattle-m a n ur e - e n r i c he d e c os ys te m i n H a w a i i. J . W or ld M ar ic . Soc . , 15 , 52-60 .M oriar ty , D. I. W. (1984) . R ole of bac te r ia an d m eiofau na in the prod uct ivi tyo f p r a w n a qua c u l t u re ponds . P r e s e n t ed a t F i r st I n t e r n a t i o n a l C o n f e r e n c e o nt h e C u l t u r e o f P e n a e i d P r a w n s ~ S h r im p s , Iloi lo City, Phi l ippines, 4-8D e c e m b e r 1 9 8 4.Rubright , J . S . , Harre l l , J . L . , Holcomb, H. W. & Parker , J . C . (1981) .Responses o f p l ank ton i c and ben th i c communi t i e s t o fe r t i l i z e r and feedappl i ca t i ons i n shr imp mar i cu l tu re ponds . J . W or ld M ar ic . Soc . , 12(1),2 8 1 - 9 9 .Sch roeder , G. L . (1983) . T h e s table i sotopes of carbon: indigen ous t racers inaquacul tu re food webs . B a r n e d g e h , 35( 3 ), 7 9 - 9 0.Sokal , R. R. & Rohlf, F. J . (1969). Biorne t r y , W. H. Freeman and Company ,San Franc isco, 776 pp.Tr imble, W. C . (1980) . P rod uc t ion t ri al s fo r m ono cul tu re and po lycu l tu re o fwhi t e shr imp ( P e n a e u s v a n n a r n e i ) or blue shr imp (P. stylirostris) withF l o r i da pom pa no ( T r a c h i n o t u s c a r o l i n u s ) i n A l a ba m a , 1978 - 1979 . Proc .W o r l d M a r i c. S o c . , 1 1 , 4 4 - 5 9 .Ven kataramiah, A . , Co ok , D. W. , Bies iot, P . & Laksh m i , G. J. (1978) . Nu t r i-t iona l va lue of high marsh grass and shr imp she l l waste r for commerc ia lb r ow n s h r im p ( P e n a e u s a z t e c u s Ives). Proc . W or ld M ar ic . Soc ., 9 , 2 1 7 - 2 4 .