introduction_lecture 9 water influx(castellano).ppt

79
WATER INFLUX Facultad de Petroleo y Gas Natural Preparo: Ing. Freddy Reynolds Pareja Cbba – Enero - 2011

Upload: david-zamorano-gongora

Post on 26-Sep-2015

230 views

Category:

Documents


1 download

TRANSCRIPT

  • WATER INFLUX

    Facultad de Petroleo y Gas NaturalPreparo: Ing. Freddy Reynolds ParejaCbba Enero - 2011

  • Water Influx Muchos reservorios estn limitados en una parte o la totalidad de sus periferias por capas acuferas llamadas acuferosLos acuferos pueden ser tan grandes en comparacin con los reservorios que colindan que parecen infinitas a todos los efectos prcticos o

    . Ellos pueden tener un rango hasta los tan pequeo como para ser insignificantes en sus efectos sobre el rendimiento del yacimiento.

  • Water Influx El propio acufero puede ser totalmente limitado por la roca impermeable para que el reservorio y el acufero juntos forman una unidad cerrada o volumtrica.

    Por otra parte, el reservorio puede tener afloramientos en uno o ms lugares donde puede ser repuesto por las aguas superficiales.

  • Water Influx En respuesta a una cada de presin en el reservorio el acufero reacciona para compensar o retardar la declinacin de la presin, proporcionando una fuente de afluencia de agua por (a) Expansin del agua y la compresin de los poros (b) El flujo de las aguas artesianas que se produce cuando el acufero se eleva a un nivel por encima del yacimiento.

  • Evaluacion del Water Influx Una parte integral del control normal del reservorio es un programa de evaluacin del influjo del agua activa. La primera fase de la evaluacion es el diagnostico, clasificacion y caracterizacion del empuje de agua. La segunda fase trata de identificar los modelos matemticos aplicables para ayudar en la simulacin del pasado y la prediccin del rendimiento futuro del acufero. Esta fase tambin incluye la estimacin de los parmetros del modelo.La fase final incluye la combinacin de los acuferos y modelos de los yacimientos, en un modelo comn que en ltima instancia, puede predecir el comportamiento del yacimiento y se puede utilizar para optimizar el agotamiento.

  • Clasificacion de los Acuiferos La nomenclatura del empuje de agua esta basado en la ubicacin de los acuferos con relacin al reservorio. Peripheral water drive: Acufero rodea el reservorio total o parcialmenteEdge water drive: Acufero se alimenta por un solo lado o en el flanco del reservorio

    Bottom water drive: Acufero esta debajo del reservorio y lo alimenta desde abajo

  • Clasificacion de los Acuiferos Clasificaciones basadas en el empuje. (es decir, el pozo que proporciona agua de recarga del acufero al reservorio y poder mitigar la disminucin de la presin del yacimientoStrong acuifero : Acufero en el que el caudal del influjo agua es similar que el caudal de extraccin de fluidos a condiciones de yacimiento. Estos yacimientos se llaman empuje completo de agua y se caracteriza por la pequea disminucin de la presin. Acuferos fuertes son generalmente muy grandes y bien comunicados con el reservorioModerado o debil acuifero: Acufero donde la caudal de recarga del agua es considerablemente inferior al caudal producido del reservorio de lquidos. Estos yacimientos se llaman pulsiones parciales de agua. Se caracteriza por una mayor disminucin de la presin mayor que la de un empuje de agua integral.Inactivo acuifero : Los acuferos sin influjo absoluto durante el agotamiento

  • Diagnosis del Empuje de Agua Diagnose through: Understanding reservoir geology: identify communicating and noncommunicating pathways. Consult map to identify reservoir trap and impenetratable surfaces by waterStudy performance parameters/variablesWOR history of wells and reservoir: steady rise is an indication of waterdrive. Be careful about water coningHistory of average reservoir pressure: Slower decline than expected is an indicationReservoir Pressure distribution: High pressures exists near reservoir/aquifer boundary. Lower pressures at more distant locations. A pressure contour map is useful.GOR is also an indication. Strong waterdrives have small changes in GORMBE analysis diagnostic plots such as this one for an undesaturated reservoir

  • Diagnosis via performance plotsUna indicacin fundamental es el aumento de la presin promedio del yacimiento cuando las caudales se reducen.

  • Propiedades Principales del Acuifero Las propiedades mas importantes del acufero son los siguientes por su importantes para el modelado del influjo de agua y su caracterizacin son:

    (1)size and shape (2) permeability (3)porosity (4) water compressibility (5) rock compressibility and (6) water viscosity.

  • Water Influx Models Los Modelos del influjo de agua son modelos matemticos que simulan y predicen muchas variables, pero lo ms importante es el historial de entrega -volumen o influjo del acufero . Hay varios modelos del acufero muy populares:

    Schilthuis model (1936) ( Steady state, ss) van Everdingen and Hurst model (1949, uss)Carter and Tracey model (1960, uss)Small/Pot Aquifer model (Havlena & Odeh, 1963)Fetkovitch model (1971, pss)

  • Actual Water Influx Dynamics En general, como la deplecion de la presion se origina en el reservorio, debido a las diferencias de presiones entre el reservorio y el aumento del acuifero causado por el influjo de agua. In time, the influx lessens the reservoir pressure decline to the point that the two (reservoir and aquifer) have nearly equal pressures. This interaction causes the water delivery rate to start at zero grow steadily , reach a maximum and then finally decline.

  • Actual Water Influx Dynamics Los modelos de estado no estacionarios tienen mas exito en la captura de la dinamica real en comparacion de los otros modelos pero a un precio de una mayor complejidad. El modelo de Van Everdingen and Hurst es un metodo (unsteady state) para un estado inestable y es el mas sofisticado que todos los anteriores metodos..Su principal ventaja es su capacidad de capturar la dianamica real del flujo de agua y por lo tanto, esta mas cercano a la realidad. Originalmente su principal desventaja es la necesidad de usar graficos y tablas repetitivamente para un calculo sencillo

  • Actual Water Influx Dynamics Hoy en dia, facilmente se pueden digitalizar sus graficos y tablas, la necesidad para otras alternativas ha disminuido. Sin embargo, para captar los diferentes mecanismos entre los metodos tambien se podra cubrirlos. The steady state method of Schithuis and Pseudo steady state method of Fetkovitch.

  • Pot aquifer model Si el acuifero es pequeo, permeabilidad es alta, buenacommunicacion entre el acuifero y los hidrocarburos del reservorioreservorio la transmicion de la disturvancia de la presion es facil y rapida para alcanzar la presion de equilibrio. i.e. la presion promedio en la zona del oil y el acuifero son los mismos.Por la caida de la presion promedio en el sistema reservoir/aquifer , (pi p) , el water en el aquifer se expandera y el influjo en elReservorio con una cantidad de :

    Donde B es la constante del acuifero se obtendra como:

  • Pot aquifer model Recordando que MBE en general

    Sustituyendo We dentro MBE obtendremos:

    Aqui MBE tiene 3 constantes desconocidas, N, m and B

  • Interpretation Plot Teniendo Et

    El plot de

    es una linea recta que se intercepta = N and slope = B.

    Si m no es conocida, entonces se procede por prueba y error hasta conseguir que la variable m sea una linea recta

  • Interpretation Plot

    Si m = 0 ( undersaturated reservoir), entonces el plot de

    es una linea recta que se intercepta = N and slope = Bno es necesario de utilizar la tecnica de prueba y error.

  • Steady-state models: Schilthius model El modelo Schilthius asume que: La presion en el limite externo del acuifero se mantiene en el valor inicial Pi,Y por tanto el reservorio alcanza el estado de equilibrio situation tal que la presion del reservorio se estabilizara a una presion determinada.Asi que el caudal del water influx desde el aquifer en el reservorio es igual a la produccion de fluidos (oil, gas and water) desde el reservorio.

  • Schilthius model

    Si durante un rasonable largo periodo ( 6 meses o mas) el caudal de produccion y la reservorio presionsigue siendo sustancialmente constante, entonces asumimos de que la interaccion del reservoirio y el acuifero estan bajo condiciones de steady state. Durante la condicion de steady state, el caudal volumetrico retido o mas el caudal vaciado del reservorio sera igual al caudal del water influx.

  • Schilthius modelEsta relacion en terminos de la MBE sera:

    Por definicion

    Donde Qo and Qw son los caudales diarios de produccion en superficie en STB y SCF.

  • Schilthius modelOnce dWe/dt is determined from production data, it is equated to;

    And solved for k. (The above relation holds because, the steady state rate flow into the reservoir, by Darcys law, is proportional to the pressure differential. )

  • Schilthius model

    Integrando dWe/dt el comportamiento de We como funcion del tiempo y p.

    We entonces podremos calcular numericamente para todas las porciones de los datos de produccion.Entonces tambien se podra utilizar para efectuar las predicciones del pozo.

  • Application of the Schilthius methodEl unico ejemlo en los libros de texto de Schilthius de su propio trabajo. Desde un ploteo de datos de produccion , a continuacion donde se puede identificar una porcion donde se tiene:La presion del reservorio esta estabilizada. El caudal production es sustancialmente constante. El GOR es bastanteconstante.

  • Application of the Schilthius method

    Schilthius has identified the portion between 28 to 34 months from the start of production and collected the following data.The pressure has stabilized at 2090 psia Oil rate was substantially constant at 44100 STB/D.GOR 825 SCF/STB and Rsoi is 600 SCF/STBBt=7.520 cuft/STB and Bg=0.0063 cuft/SCF at 2090 psiaThe initial pressure was 2275 piadWp/dt=0

  • Application of the Schilthius methodFor the mentioned section of production plots, one calculates thedaily viodage (i.e. reservoir volume of daily production rates ofreservoir fluids) which must be equal to rate of water influx. Hence,

    Since the calculated will also be equal to

    Solving the influx constant yields. cuft/day/psi.

    This value can be used for calculating the water influx for bothstabilized and changing reservoir pressure intervals.

  • Application of the Schilthius method If, in the production plot, the pressure stabilizes but withdrawal rates are not reasonably constant the water influx for the stabilized period may be found from the total oil, gas and watervoidage for the period ,

    Then the influx constant is calculated as:

  • Application of the Schilthius methodEl cumulativo del influx es obtenido por la integracion numericaesquematicamente sera:

    Sustituyendo esto en la Material Balance Equation obtedremos:

    Si m = 0:

    Teniendo en cuenta que con esta aproximacion se ocacionaran grandes errores en N pero no en k.

  • Unsteady-state modelsMetodo Van Everdingen and Hurst (VEH) :

    p = pressure (psia or psig)r = radial distance (ft)t = time (days)k = permeability (md) = porosity (fraction)ct = total compressibility = cw+cf = water viscosity (cp)Area (oil zone) = rR2Area (aquifer) = (raq2 - rR2)rRraqOil zoneAquifer

  • Metodo Van Everdingen and HurstLa solucion cuando la presion en los limites del reservorio/acuifero es presentado en funcion de la forma adimensionaldel water influx, WeD como una funcion del tiempo adimensionless, tD y del radius, raqD

    Esta solucion asume que estos cambios de intervalos entre el reservorioy la presion del acuifero. Seran:

    Donde pi es la presion inicial del acuifero y pR es la presion en los limites del reservoior/acuifero con lo que supone que tambien es uniforme en todo el reservorio..Por lo tanto esta solucion se denomina en terminos de la presion constante.

  • Van Everdingen and Hurst methodLas variables en la solucion estan definidas a continuacion:tD = 6.33x10-3 k t/( ct rR2) = t = 6.33x10-3 k/( ct rR2) = constante de conversion del tiemporaqD = raq/Rr

    B = Water influx constant (bbl/psi) = 1.119 ct rR2 h/360 = angle representing the portion of the oil zone in contact with the aquifer, full circle =360 (degrees)h = thickness of the aquifer (ft)

  • Water influx function, WeD

  • Water influx function, WeD

  • Water influx function, WeD

  • Water influx function, WeD

  • SuperposicionLa solucion de VEH asume que la presion del rervorio es constante, mientras que en realidad la presion del reservorio decrese con el tiempo.

    Para hacer frente a esta limitaciont, representaremos que la declinacion de la presion del reservorio es continua con una serie de intervalos de decrementos de la presion y aplicando el principio de la superposicion para calcular el volumen acumulativo del water influx.

  • SuperposicionPara aplicar por primera vez la superposicion, el tiempo y la presion del reservorio seran dominios discretizados.. Una vez, que el dominio del tiempo se discretiza en (n+1) puntos (t0, t1, t2,.tn) donde (t0< t1, t1< t2, t2< t3.. tn-1< tn ) y t0=0, que conduce automaticamente al conjunto discreto de las correspondientes presiones promedio delreservorio ( p0, p1, p2,.pn) donde p0 es la presion inicial del reservorio

  • La ilustracion grafica de la presion y el tiempo discretizados y los intervalos de los decrementos de la presion partiendo desde t=0.p0=(p0-p1)/2p0p1p2p1=(p0+p1)/2-(p0+p2)/2 = (p0-p2)/2p3p2= (p1-p3)/2PressureTimet0t1t2t3

  • SuperposicionLet ti >tj. in the discretazied time domain.At any time (ti), the contribution of a step drop in pressure that has occurred at a previous time tj (pj) is equal to the drop times the dimensionless water influx (WeD) corresponding to the time lapse since that step drop occurred: We ( at time t=ti ) due to a step drop occurred at tj will be equl to the product B pj WeD((ti-tj)D)

    The total influx We at time (t=ti) is the sum of contributions of all previous step drops that occurred at time levels j=0,1(i-1).

  • SuperposicionPor ejemplo, aplicando para i=1,2 y 3 se obtiene:

  • Systematic water influx calculation steps:1. Discretizando el domonio del tiempo y la presion (los intervalos del tiempo seran iguales a los intervalos del tiempo que aceleraran los calculos) originando una tabla del t y la p [ (n+1) points] i=0,1,..n2. Calcular la constante de conversion del tiempo. = 6.33x10-3 k/( ct rR2) and raqD = raq/rR

    3. Calcula tDi los valores de cada momento y aadir a la tabla

    4. Calculate time average values of pressures for each time interval

    5. Determinar los valores de algunas caidas de presion, pi (i=1,2..,n) usando,

    Tomar en cuenta el patron resultante (discretizacion central):

    p0 = (p0 p1)/2 and p1 = (p0 p2)/2 and pi = (pi-1 pi+1)/2

  • Systematic water influx calculation steps: Steps from 6 to 10 is a repetitive procedure for the application of superposition. To calculate cumulative water influx at a given time ti [i.e at the end if ith decrement]

    6. For (j=0,1,2i-1) , Write down all (tDi- tDj ) values in the previous table in reverse Order (i.e.from greatest to least) in a separate column to form a new table

    7. Calculate and Write down WeDj values for each (tDi- tDj ) in the next column

    8. Again for (j=0,1,2i-1), Write down pj values of the first table in normal order in the next column of the new table

    Note in such an ordering, each pressure drop, pj is related to its, the elapsed time tj=(t-tsj) tsj = starting time for the pressure drop, and hence to its dimensionless elapsed time is (tD-tDj) = (t-tsj)

  • Systematic water influx calculation steps:9. Determinar el water influx adimensional debido a los decrementos de la presion:WeDx pj y se adjunta a la tabla10. Calcular el water influx adimensional desde: WeDx pj11. Usinando la constante del water influx (bbl/psi) B = 1.119 ct rR2 h /360Calcular el water influx adimensional usando:B WeDx pj

  • Example of water influx calculation (VEH)El historial de caidas de presion y aquifer propiedades del acuifero se tendra a continuacion.Time (day) Pressure (psig) 0 2500 365 2300 1095 2200k = 100 md = 0.2 = 1 cp ct = 7x10-6 psi-1rR = 10,000 ft raq = 50,000 fth = 50 ft = 360Calcular el water influx para un t = 1095 days.

  • Example. 3 punto de discretazacionp0=(p0-p1)/2p0p1p2p1= (p0-p2)/2PressureTime03651095itipi0 0 2500 25001365 2300240021095 2200 2250

  • Example of water influx calculation (VEH)Los resultados de la discretizacion seran tabulados como sigue: ( ya que deseamos We para t = 1095 days)t (day) p (psig) iti tDi pi pi 0 25000t0=00 p0 =2500 2500 0 365 23001t1=365 1.65 p1 = 2300 2400 100 1095 2200n=2t2=1095 4.95 p2 = 2200 2250 150

    Tener en cuenta el patron pi, como se ilustra en el grafico anterior

    p0=(p0-p1)/2=(2500-2300)/2=100and

    p1=(p0-p2)/2=(2500-2200)/2=150

  • Example of water influx calculation (VEH)Usando = 6.33x10-3x100/(0.2x1x7x10-6x108) = 0.00452 day-1, raqD = 5B = 1.119x0.2x7x10-6x108x50x360/360 = 7833 (bbl/psi)

    Since we want to calculate at t=1095 days (i=2 in previous table thushence j=0,1 in the new table below.)

    jtDi-tDjWeDpjWeDx pj04.95-0=4.95 ?100 ?14.95-1.65=3.3 ?150 ? (tD-tDj)= * (t-tj) and WeD values needs to be obtained fromfigures of dimensionless solutions given earlier or tables such as below.

  • Water influx function

  • Example of water influx calculation (VEH)From the last colum in the previous table we read:j (tD-tDj)= * (t-tj) WeD 3.0 3.195 0(tD tD1) = 3.3 ? 3.5 3.542 4.5 4.193 1(tD tD0) = 4.95 ? 5.0 4.499

  • Example of water influx calculation (VEH)Linear interpolation formula for tD(m)< tD < tD(m+1) :WeD(tD)= WeDm + (tDtDm) (WeD(m+1) WeDm)/(tD(m+1)tDm)

    Linear interpolation formula for raqD:WeD(rD)= WeDm + (rDrDm) (WeD(m+1) WeDm)/(rD(m+1)rDm)

    Thus for the values in the previous slideWeD(tD2-tD1) = 3.195 + (3.33.0)(3.5423.195)/(3.53.0) = 3.403WeD(tD2-tD0)= 4.193 + (4.954.5)(4.4994.193)/(5.04.5) = 4.468

  • Example of water influx calculation (VEH) jtDi-tDjWeD(tDi-tDj)pjWeDx pj04.95-0=4.95 4.468100 446.814.95-1.65=3.3 3.403150 510.5

    = 7,883[446.8 +510.5] = 7,546,002 bbl = 7.546 MM bbl

  • Pseudosteady-state modelFetkovich Method:pi = Initial pressure (psi)rR = radius of the oil reservoir (ft)raq = radius of the aquifer (ft)t = time (days)k = permeability (md)h = thickness (ft) = porosity (fraction)ct = total compressibility = cw+cf = angle of contact with the aquifer (deg)

  • PSEUDOSTEADY-STATE PROCEDURE1. Calcular la intrusion inicial del water, Wei (bbls):

    2. Calcular el Productivity Index, J, para el flujo desde el acuifero hasta el reservorio sin flujo limite exterior:

  • PSEUDOSTEADY-STATE MODEL3. Dividir el historial de la presion en intervalos de tiempo. El tamao de algunos intervalos de tiempo sera: tn=tn-tn-1.

    Definiendo las presiones a continuacion:

  • PSEUDOSTEADY-STATE MODEL4. Calcular la presion promedio de reservorio para algunos intervalos de tiempo :

    Para t=0, desde n=0, establecer lo aiguiente:

    y efectuar los pasos 6 al 8 para algunos intervalos de tiempo n=1,2,nt sucesivamente (nt es el numero de los intervalos de tiempo):

  • PSEUDOSTEADY-STATE MODEL6. Calcular el water influx durante el intervalo de tiempo:

    7. Calcular el total water influx at the current time:

    8. Calcular la presion promedio en el acuifero at the end of the time step:

  • EXAMPLE OF WATER INFLUX CALCULATION (FETKOVICH)

  • EXAMPLE OF WATER INFLUX CALCULATION (FETKOVICH)

  • EXAMPLE OF WATER INFLUX CALCULATION (FETKOVICH)

  • COMPARACION DE RESULTADOS We (MM bbls) Time VEH FETKOVICH 360 1.577 1.389 1095 7.546 7.442

  • COMPARACION DE RESULTADOS

  • VEH RESULTADOS

  • FETKOVICH RESULTADOS

  • EXEMPLO DE COMPARACION

  • EXAMPLE OF WATER INFLUX PARAMETERS DETERMINATIONEl volumen de water influx puede ser obtenida con la ecuacion del l balance de materia:

    We = NpEp+ WpBw - N Et

    donde y

    Con el metodo VEH We = B pjWeDj

    Donde, WeD = f(tD ,raqD) y tD = t,

    De esta manera podemos encontrar dos parametros, B y raqD. El ploteo de We vs. pjWeDj con los valores correctos de y raqD y la pemdiente de la linea recta= B y la intecepcion = 0

  • EXAMPLE OF WATER INFLUX PARAMETERS DETERMINATION

    Sheet1

    PETE 301 - Example showing the determination of initial oil in place and water influx parameters

    Time constm

    40.3

    TimePressureBgRpTimeEoEgEo+mEgFF/(Eo+mEg)

    (months)(psia)(bbl/SCF)(SCF/STB)(months)(bbl/STB)(bbl/STB)(bbl/STB)(MM bbl)(MM STB)

    029200.001222000.0000.0000.0000.000

    2027900.001313870200.0460.1130.0809.098114.325

    3027450.001348860300.0640.1560.11115.786142.071

    4026800.001402810400.0940.2230.16124.406151.477

    6026300.001444830600.1190.2760.20240.022198.567

    8026150.00145850800.1210.2830.20650.759246.536

    10025950.0014798701000.1370.3190.23361.675264.487

    12025850.0014899101200.1430.3310.24370.942292.532

    raqD = 12raqD = 15raqD = 20

    TimeWepWeDpWeDpWeD

    205.78E+052.22E+032.31E+032.34E+03

    301.23E+064.67E+034.93E+035.05E+03

    402.01E+067.45E+038.03E+038.32E+03

    603.65E+061.28E+041.46E+041.57E+04

    805.05E+061.67E+042.02E+042.27E+04

    1006.18E+061.94E+042.47E+042.92E+04

    1207.08E+062.13E+042.83E+043.51E+04

    Sheet2

    Sheet2

    577500577500577500

    123250012325001232500

    200750020075002007500

    365000036500003650000

    505000050500005050000

    617500061750006175000

    707500070750007075000

    ReD=12

    ReD=15

    ReD=20

    pWeD

    We

    y = 250 x

  • EXAMPLE OF WATER INFLUX PARAMETERS DETERMINATION

    Sheet1

    PETE 301 - Example showing the determination of initial oil in place and water influx parameters

    Time constm

    40.3

    TimePressureBgRpTimeEoEgEo+mEgFF/(Eo+mEg)

    (months)(psia)(bbl/SCF)(SCF/STB)(months)(bbl/STB)(bbl/STB)(bbl/STB)(MM bbl)(MM STB)

    029200.001222000.0000.0000.0000.000

    2027900.001313870200.0460.1130.0809.098114.325

    3027450.001348860300.0640.1560.11115.786142.071

    4026800.001402810400.0940.2230.16124.406151.477

    6026300.001444830600.1190.2760.20240.022198.567

    8026150.00145850800.1210.2830.20650.759246.536

    10025950.0014798701000.1370.3190.23361.675264.487

    12025850.0014899101200.1430.3310.24370.942292.532

    ReD = 12ReD = 15ReD = 20

    TimeWepWeDpWeDpWeD

    205.78E+052.22E+032.31E+032.34E+03

    301.23E+064.67E+034.93E+035.05E+03

    402.01E+067.45E+038.03E+038.32E+03

    603.65E+061.28E+041.46E+041.57E+04

    805.05E+061.67E+042.02E+042.27E+04

    1006.18E+061.94E+042.47E+042.92E+04

    1207.08E+062.13E+042.83E+043.51E+04

    Sheet2

    Sheet2

    577500577500577500

    123250012325001232500

    200750020075002007500

    365000036500003650000

    505000050500005050000

    617500061750006175000

    707500070750007075000

    raqD = 12

    raqD = 15

    raqD = 20

    pWeD

    We

    y = 250 x

  • MATERIAL BALANCE EQUATIONF = Np[Bo+Bg(Rp-Rs)] + WpBw - WiBwF = N[Eot+mEgt] +WeF/[Eot+mEgt] = N + B pWeD/[Eot+mEgt]A plot of F/[Eot+mEgt] vs. pWeD/[Eot+mEgt] la linea recta con la intercepcion = N y la pendiente = B si m no es conocida, entonces se a trail and error procede con el procedimiento de prueba y error para diferentes valores de m hasta la obtencion de una linea rectaSi la constante conversion del tiempo, no es conocida, entonces tambien tendran que ser varidas hasta obtener la linea recta.Si m = 0, entonces:F/Eot = N + B pWeD/EotDel ploteo de F/Eot vs. pWeD/Eot es obtenida la linea recta con la intercepcion = N y la pendiente = B

  • MATERIAL BALANCE EXAMPLE

    Sheet1

    PETE 301 - Example showing the determination of initial oil in place and water influx parameters

    Time ConstRsim

    48000.3

    TimePressureBtBgNpRpWpWiTimeEoEgEo+mEgF

    (months)(psia)(bbl/STB)(bbl/SCF)(MM STB)(SCF/STB)(MM bbl)(MM bbl)(months)(bbl/STB)(bbl/STB)(bbl/STB)(MM bbl)

    029201.51660.0012220.0000.0000.00000.0000.0000.0000.000

    2027901.56230.0013135.5008700.0000.000200.0460.1130.0809.098

    3027451.58080.0013489.5008600.0000.000300.0640.1560.11115.786

    4026801.61070.00140215.0008100.0350.000400.0940.2230.16124.406

    6026301.63550.00144425.1508300.4002.600600.1190.2760.20240.022

    8026151.63760.0014532.1008500.9655.100800.1210.2830.20650.759

    10025951.65410.00147938.9538701.8108.6001000.1370.3190.23361.675

    12025851.65970.00148945.0009102.89514.0101200.1430.3310.24370.942

    sum=sum(DP*WED)x=sum(DP*WED)/(Eo+mEg)

    RED=12RED=15RED=20

    TimesumxsumxsumxF/(Eo+mEg)

    202.22E+032.79E+042.31E+032.90E+042.34E+032.94E+04114.325

    304.67E+034.21E+044.93E+034.44E+045.05E+034.54E+04142.071

    407.45E+034.63E+048.03E+034.99E+048.32E+035.17E+04151.477

    601.28E+046.35E+041.46E+047.23E+041.57E+047.77E+04198.567

    801.67E+048.12E+042.02E+049.80E+042.27E+041.10E+05246.536

    1001.94E+048.31E+042.47E+041.06E+052.92E+041.25E+05264.487

    1202.13E+048.79E+042.83E+041.17E+053.51E+041.45E+05292.532

    Sheet2

    Sheet2

    114.325114.325114.325

    142.071142.071142.071

    151.477151.477151.477

    198.567198.567198.567

    246.536246.536246.536

    264.487264.487264.487

    292.532292.532292.532

    ReD=12

    ReD=15

    ReD=20

    (p*WeD)/(Eo+mEg)

    F/(Eo+mEg)

    y = 0.002 x + 53.444

    Sheet3

    00

    204.64

    309.91

    4016.1

    6029.3

    8040.5

    10049.6

    12056.9

    15064.4

    20070.8

    25073.4

    30074.6

    35075

    40075.2

    45075.3

    50075.3

    04.65927

    24.76829

    45.04864

    65.51588

    86.17001

    107.01111

    128.03881

    149.25451

    1610.653

    1812.2309

    2013.6453

    2114.8225

    2215.6714

    2316.453

    2417.1617

    2517.8081

    2618.3921

    2718.9042

    2819.3823

    2919.6845

    3019.8284

    3119.9312

    3220.1099

    3320.3821

    3420.6058

    3520.8195

    3621.0119

    3721.1892

    3821.3383

    3921.5068

    4021.7576

    4221.985

    4422.162

    4622.1969

    4822.1944

    5022.1186

    5221.9786

    5421.7741

    5621.4969

    5821.1803

    6020.8339

    6220.4567

    6420.048

    6619.617

    6819.1973

    7018.7801

    7218.3677

    7417.9594

    7617.5555

    7817.1559

    8016.7624

    8216.379

    8416.0093

    8615.6554

    8815.3172

    9014.9948

    9214.688

    9414.397

    9614.1216

    9813.862

    10013.6136

    10213.3672

    10413.1139

    10612.8489

    10812.5724

    11012.2843

    11211.9849

    11411.6728

    11611.3534

    11811.0023

    12010.5634

    12310.0798

    1269.57399

    1299.11968

    1328.68009

    1358.2688

    1387.88419

    1417.51931

    1447.20352

    1476.82436

    1506.27002

    1555.70943

    1605.18744

    1654.8407

    1704.46622

    1754.13017

    1803.81575

    1853.52406

    1903.2675

    1952.99523

    2002.70857

    2052.43975

    2102.22098

    2152.05357

    2201.88638

    2251.73315

    2301.59018

    2351.45846

    2401.3377

    2451.22799

    2501.12839

    2551.03713

    2600.952335

    2650.87311

    2700.79944

    2750.731316

    2800.66879

    2850.611817

    2900.560424

    2950.514596

    3000.473726

    3050.436687

    3100.402298

    3150.36996

    3200.339676

    3250.311443

    3300.285273

    3350.261171

    3400.239109

    3450.219139

    3500.201028

    3550.184428

    3600.169046

    3650.154639

    3700.141251

    3750.128838

    3800.117423

    3850.107016

    3900.097607

    3950.089223

    4000.081714

    4050.074854

    4100.06847

    4150.062413

    4200.056706

    4250.05135

    4300.04632

    4350.041661

    4400.037327

    4450.033349

    4500.029704

    4550.026395

    4600.023434

    4650.020828

    4700.018586

    4750.016669

    4800.015111

    4850.013875

    4900.013015

    4950.012518

    5000.012324

    Sheet3

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Time (months)

    We (MM bbl)

    Water Influx Rate (M bb/D)

    Sheet1

    PETE 301 - Example showing the determination of initial oil in place and water influx parameters

    Time constm

    48000.3

    TimePressureTimeEoEgEo+mEgF

    (months)(psia)(bbl/STB)(bbl/SCF)(MM STB)(SCF/STB)(MM bbl)(MM bbl)(months)(bbl/STB)(bbl/STB)(bbl/STB)(MM bbl)

    029201.51660.0012220.00000.0000.00000.0000.0000.0000.000

    2027901.56230.0013135.5008700.0000.000200.0460.1130.0809.098

    3027451.58080.0013489.5008600.0000.000300.0640.1560.11115.786

    4026801.61070.00140215.0008100.0350.000400.0940.2230.16124.406

    6026301.63550.00144425.1508300.4002.600600.1190.2760.20240.022

    8026151.63760.0014532.1008500.9655.100800.1210.2830.20650.759

    10025951.65410.00147938.9538701.8108.6001000.1370.3190.23361.675

    12025851.65970.00148945.0009102.89514.0101200.1430.3310.24370.942

    sum=sum(DP*WED)x=sum(DP*WED)/(Eo+mEg)

    RED=12RED=15RED=20

    TimesumxsumxsumxF/(Eo+mEg)

    202.22E+032.79E+042.31E+032.90E+042.34E+032.94E+04114.325

    304.67E+034.21E+044.93E+034.44E+045.05E+034.54E+04142.071

    407.45E+034.63E+048.03E+034.99E+048.32E+035.17E+04151.477

    601.28E+046.35E+041.46E+047.23E+041.57E+047.77E+04198.567

    801.67E+048.12E+042.02E+049.80E+042.27E+041.10E+05246.536

    1001.94E+048.31E+042.47E+041.06E+052.92E+041.25E+05264.487

    1202.13E+048.79E+042.83E+041.17E+053.51E+041.45E+05292.532

    Sheet2

    Sheet2

    114.325114.325114.325

    142.071142.071142.071

    151.477151.477151.477

    198.567198.567198.567

    246.536246.536246.536

    264.487264.487264.487

    292.532292.532292.532

    ReD=12

    ReD=15

    ReD=20

    (p*WeD)/(Eo+mEg)

    F/(Eo+mEg)

    y = 0.002 x + 53.444

    Sheet3

    00

    204.64

    309.91

    4016.1

    6029.3

    8040.5

    10049.6

    12056.9

    15064.4

    20070.8

    25073.4

    30074.6

    35075

    40075.2

    45075.3

    50075.3

    04.65927

    24.76829

    45.04864

    65.51588

    86.17001

    107.01111

    128.03881

    149.25451

    1610.653

    1812.2309

    2013.6453

    2114.8225

    2215.6714

    2316.453

    2417.1617

    2517.8081

    2618.3921

    2718.9042

    2819.3823

    2919.6845

    3019.8284

    3119.9312

    3220.1099

    3320.3821

    3420.6058

    3520.8195

    3621.0119

    3721.1892

    3821.3383

    3921.5068

    4021.7576

    4221.985

    4422.162

    4622.1969

    4822.1944

    5022.1186

    5221.9786

    5421.7741

    5621.4969

    5821.1803

    6020.8339

    6220.4567

    6420.048

    6619.617

    6819.1973

    7018.7801

    7218.3677

    7417.9594

    7617.5555

    7817.1559

    8016.7624

    8216.379

    8416.0093

    8615.6554

    8815.3172

    9014.9948

    9214.688

    9414.397

    9614.1216

    9813.862

    10013.6136

    10213.3672

    10413.1139

    10612.8489

    10812.5724

    11012.2843

    11211.9849

    11411.6728

    11611.3534

    11811.0023

    12010.5634

    12310.0798

    1269.57399

    1299.11968

    1328.68009

    1358.2688

    1387.88419

    1417.51931

    1447.20352

    1476.82436

    1506.27002

    1555.70943

    1605.18744

    1654.8407

    1704.46622

    1754.13017

    1803.81575

    1853.52406

    1903.2675

    1952.99523

    2002.70857

    2052.43975

    2102.22098

    2152.05357

    2201.88638

    2251.73315

    2301.59018

    2351.45846

    2401.3377

    2451.22799

    2501.12839

    2551.03713

    2600.952335

    2650.87311

    2700.79944

    2750.731316

    2800.66879

    2850.611817

    2900.560424

    2950.514596

    3000.473726

    3050.436687

    3100.402298

    3150.36996

    3200.339676

    3250.311443

    3300.285273

    3350.261171

    3400.239109

    3450.219139

    3500.201028

    3550.184428

    3600.169046

    3650.154639

    3700.141251

    3750.128838

    3800.117423

    3850.107016

    3900.097607

    3950.089223

    4000.081714

    4050.074854

    4100.06847

    4150.062413

    4200.056706

    4250.05135

    4300.04632

    4350.041661

    4400.037327

    4450.033349

    4500.029704

    4550.026395

    4600.023434

    4650.020828

    4700.018586

    4750.016669

    4800.015111

    4850.013875

    4900.013015

    4950.012518

    5000.012324

    Sheet3

    Time (months)

    We (MM bbl)

    Water Influx Rate (M bb/D)

  • MATERIAL BALANCE EXAMPLE

    Sheet1

    PETE 301 - Example showing the determination of initial oil in place and water influx parameters

    Time constRsim

    48000.3

    TimePressureBtBgNpRpWpWiTimeEoEgEo+m EgFF/(Eo+mEg)

    (months)(psia)(bbl/STB)(bbl/SCF)(MM STB)(SCF/STB)(MM bbl)(MM bbl)(months)(bbl/STB)(bbl/STB)(bbl/STB)(MM bbl)(MM STB)

    029201.51660.0012220.00000.0000.00000.0000.0000.0000.000

    2027901.56230.0013135.5008700.0000.000200.0460.1130.0809.098114.325

    3027451.58080.0013489.5008600.0000.000300.0640.1560.11115.786142.071

    4026801.61070.00140215.0008100.0350.000400.0940.2230.16124.406151.477

    6026301.63550.00144425.1508300.4002.600600.1190.2760.20240.022198.567

    8026151.63760.0014532.1008500.9655.100800.1210.2830.20650.759246.536

    10025951.65410.00147938.9538701.8108.6001000.1370.3190.23361.675264.487

    12025851.65970.00148945.0009102.89514.0101200.1430.3310.24370.942292.532

    sum=sum(DP*WED)x=sum(DP*WED)/(Eo+mEg)

    RED=12RED=15RED=20

    TimesumxsumxsumxF/(Eo+mEg)

    202.22E+032.79E+042.31E+032.90E+042.34E+032.94E+04114.325

    304.67E+034.21E+044.93E+034.44E+045.05E+034.54E+04142.071

    407.45E+034.63E+048.03E+034.99E+048.32E+035.17E+04151.477

    601.28E+046.35E+041.46E+047.23E+041.57E+047.77E+04198.567

    801.67E+048.12E+042.02E+049.80E+042.27E+041.10E+05246.536

    1001.94E+048.31E+042.47E+041.06E+052.92E+041.25E+05264.487

    1202.13E+048.79E+042.83E+041.17E+053.51E+041.45E+05292.532

    Sheet2

    Sheet2

    114.325114.325114.325

    142.071142.071142.071

    151.477151.477151.477

    198.567198.567198.567

    246.536246.536246.536

    264.487264.487264.487

    292.532292.532292.532

    ReD=12

    ReD=15

    ReD=20

    (p*WeD)/(Eo+mEg)

    F/(Eo+mEg)

    y = 0.002 x + 53.444

    Sheet3

    00

    204.64

    309.91

    4016.1

    6029.3

    8040.5

    10049.6

    12056.9

    15064.4

    20070.8

    25073.4

    30074.6

    35075

    40075.2

    45075.3

    50075.3

    04.65927

    24.76829

    45.04864

    65.51588

    86.17001

    107.01111

    128.03881

    149.25451

    1610.653

    1812.2309

    2013.6453

    2114.8225

    2215.6714

    2316.453

    2417.1617

    2517.8081

    2618.3921

    2718.9042

    2819.3823

    2919.6845

    3019.8284

    3119.9312

    3220.1099

    3320.3821

    3420.6058

    3520.8195

    3621.0119

    3721.1892

    3821.3383

    3921.5068

    4021.7576

    4221.985

    4422.162

    4622.1969

    4822.1944

    5022.1186

    5221.9786

    5421.7741

    5621.4969

    5821.1803

    6020.8339

    6220.4567

    6420.048

    6619.617

    6819.1973

    7018.7801

    7218.3677

    7417.9594

    7617.5555

    7817.1559

    8016.7624

    8216.379

    8416.0093

    8615.6554

    8815.3172

    9014.9948

    9214.688

    9414.397

    9614.1216

    9813.862

    10013.6136

    10213.3672

    10413.1139

    10612.8489

    10812.5724

    11012.2843

    11211.9849

    11411.6728

    11611.3534

    11811.0023

    12010.5634

    12310.0798

    1269.57399

    1299.11968

    1328.68009

    1358.2688

    1387.88419

    1417.51931

    1447.20352

    1476.82436

    1506.27002

    1555.70943

    1605.18744

    1654.8407

    1704.46622

    1754.13017

    1803.81575

    1853.52406

    1903.2675

    1952.99523

    2002.70857

    2052.43975

    2102.22098

    2152.05357

    2201.88638

    2251.73315

    2301.59018

    2351.45846

    2401.3377

    2451.22799

    2501.12839

    2551.03713

    2600.952335

    2650.87311

    2700.79944

    2750.731316

    2800.66879

    2850.611817

    2900.560424

    2950.514596

    3000.473726

    3050.436687

    3100.402298

    3150.36996

    3200.339676

    3250.311443

    3300.285273

    3350.261171

    3400.239109

    3450.219139

    3500.201028

    3550.184428

    3600.169046

    3650.154639

    3700.141251

    3750.128838

    3800.117423

    3850.107016

    3900.097607

    3950.089223

    4000.081714

    4050.074854

    4100.06847

    4150.062413

    4200.056706

    4250.05135

    4300.04632

    4350.041661

    4400.037327

    4450.033349

    4500.029704

    4550.026395

    4600.023434

    4650.020828

    4700.018586

    4750.016669

    4800.015111

    4850.013875

    4900.013015

    4950.012518

    5000.012324

    Sheet3

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Time (months)

    We (MM bbl)

    Water Influx Rate (M bb/D)

  • MATERIAL BALANCE EXAMPLE

    Sheet1

    PETE 301 - Example showing the determination of initial oil in place and water influx parameters

    Time constRsim

    48000.3

    TimePressureBtBgNpRpWpWiTimeEoEgEo+mEgFF/(Eo+mEg)

    (months)(psia)(bbl/STB)(bbl/SCF)(MM STB)(SCF/STB)(MM bbl)(MM bbl)(months)(bbl/STB)(bbl/STB)(bbl/STB)(MM bbl)(MM STB)

    029201.51660.0012220.00000.0000.00000.0000.0000.0000.000

    2027901.56230.0013135.5008700.0000.000200.0460.1130.0809.098114.325

    3027451.58080.0013489.5008600.0000.000300.0640.1560.11115.786142.071

    4026801.61070.00140215.0008100.0350.000400.0940.2230.16124.406151.477

    6026301.63550.00144425.1508300.4002.600600.1190.2760.20240.022198.567

    8026151.63760.0014532.1008500.9655.100800.1210.2830.20650.759246.536

    10025951.65410.00147938.9538701.8108.6001000.1370.3190.23361.675264.487

    12025851.65970.00148945.0009102.89514.0101200.1430.3310.24370.942292.532

    x=pWeD/(Eo+mEg)

    raqD = 12raqD = 15raqD = 20

    TimepWeDxpWeDxpWeDxF/(Eo+mEg)

    202.22E+032.79E+042.31E+032.90E+042.34E+032.94E+04114.325

    304.67E+034.21E+044.93E+034.44E+045.05E+034.54E+04142.071

    407.45E+034.63E+048.03E+034.99E+048.32E+035.17E+04151.477

    601.28E+046.35E+041.46E+047.23E+041.57E+047.77E+04198.567

    801.67E+048.12E+042.02E+049.80E+042.27E+041.10E+05246.536

    1001.94E+048.31E+042.47E+041.06E+052.92E+041.25E+05264.487

    1202.13E+048.79E+042.83E+041.17E+053.51E+041.45E+05292.532

    Sheet2

    Sheet2

    114.325114.325114.325

    142.071142.071142.071

    151.477151.477151.477

    198.567198.567198.567

    246.536246.536246.536

    264.487264.487264.487

    292.532292.532292.532

    ReD=12

    ReD=15

    ReD=20

    (p*WeD)/(Eo+mEg)

    F/(Eo+mEg)

    y = 0.002 x + 53.444

    Sheet3

    00

    204.64

    309.91

    4016.1

    6029.3

    8040.5

    10049.6

    12056.9

    15064.4

    20070.8

    25073.4

    30074.6

    35075

    40075.2

    45075.3

    50075.3

    04.65927

    24.76829

    45.04864

    65.51588

    86.17001

    107.01111

    128.03881

    149.25451

    1610.653

    1812.2309

    2013.6453

    2114.8225

    2215.6714

    2316.453

    2417.1617

    2517.8081

    2618.3921

    2718.9042

    2819.3823

    2919.6845

    3019.8284

    3119.9312

    3220.1099

    3320.3821

    3420.6058

    3520.8195

    3621.0119

    3721.1892

    3821.3383

    3921.5068

    4021.7576

    4221.985

    4422.162

    4622.1969

    4822.1944

    5022.1186

    5221.9786

    5421.7741

    5621.4969

    5821.1803

    6020.8339

    6220.4567

    6420.048

    6619.617

    6819.1973

    7018.7801

    7218.3677

    7417.9594

    7617.5555

    7817.1559

    8016.7624

    8216.379

    8416.0093

    8615.6554

    8815.3172

    9014.9948

    9214.688

    9414.397

    9614.1216

    9813.862

    10013.6136

    10213.3672

    10413.1139

    10612.8489

    10812.5724

    11012.2843

    11211.9849

    11411.6728

    11611.3534

    11811.0023

    12010.5634

    12310.0798

    1269.57399

    1299.11968

    1328.68009

    1358.2688

    1387.88419

    1417.51931

    1447.20352

    1476.82436

    1506.27002

    1555.70943

    1605.18744

    1654.8407

    1704.46622

    1754.13017

    1803.81575

    1853.52406

    1903.2675

    1952.99523

    2002.70857

    2052.43975

    2102.22098

    2152.05357

    2201.88638

    2251.73315

    2301.59018

    2351.45846

    2401.3377

    2451.22799

    2501.12839

    2551.03713

    2600.952335

    2650.87311

    2700.79944

    2750.731316

    2800.66879

    2850.611817

    2900.560424

    2950.514596

    3000.473726

    3050.436687

    3100.402298

    3150.36996

    3200.339676

    3250.311443

    3300.285273

    3350.261171

    3400.239109

    3450.219139

    3500.201028

    3550.184428

    3600.169046

    3650.154639

    3700.141251

    3750.128838

    3800.117423

    3850.107016

    3900.097607

    3950.089223

    4000.081714

    4050.074854

    4100.06847

    4150.062413

    4200.056706

    4250.05135

    4300.04632

    4350.041661

    4400.037327

    4450.033349

    4500.029704

    4550.026395

    4600.023434

    4650.020828

    4700.018586

    4750.016669

    4800.015111

    4850.013875

    4900.013015

    4950.012518

    5000.012324

    Sheet3

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    Time (months)

    We (MM bbl)

    Water Influx Rate (M bb/D)

  • MATERIAL BALANCE EXAMPLE

  • DETERMINATION OF WATER INJECTION REQUIREMENTNp[Bo+Bg(Rp-Rs)] + WpBw WiBw = N[Eot+mEgt] +WeIf the pressure is maintained constant over a period of time,then the pressure dependent terms are constant[Bo-BgRs)dNp/dt+Bgd(NpRp)/dt+Bw[(dWp/dt)-(dWi/dt)]=dWe/dt[Bo-BgRs)dNp/dt+BgdGp/dt+Bw[(dWp/dt)-(dWi/dt)] = dWe/dtThe water injection rate required to maintain the pressureconstant can be obtained from:BwdWi/dt = [Bo-BgRs]dNp/dt + BgdGp/dt + BwdWp/dt dWe/dtdWi/dt = Qinj = Water injection rate (STB/D)dWp/dt = Qw = Water production rate (STB/D)dWe/dt = Water influx rate (bbl/D)dNp/dt = Qo = Oil production rate (STB/D)dGp/dt = Qg = Gas production rate (SCF/D)

  • DETERMINATION OF WATER INJECTION REQUIREMENTBwQinj = [Bo-BgRs]Qo + BgQg + BwQw dWe/dtGOR = R = Qg/Qo Qg = R QoWOR = Qw/Qo Qw = WOR Qo

    BwQinj = [Bo-BgRs]Qo + Bg R Qo + Bw WOR Qo dWe/dtBwQinj = [Bo-BgRs + Bg R + Bw WOR]Qo dWe/dtQinj = {[Bo + Bg (R-Rs ) + Bw WOR]Qo dWe/dt}/BwQinj = {[Bt + Bg (R-Rsi ) + Bw WOR]Qo dWe/dt}/BwR = Rs + (krg/kro) Boo/BggWOR = (krw/kro) Boo/BwwSw = Swi + [Bw(Wi-Wp)+We]/Vp(oz)So = Bo (N-Np) /Vp(oz)dWe/dt = B d[ pjWeDj]/dt

  • EXAMPLE OF WATER INJECTION REQUIREMENTOSp = 2585:Bt = 1.66 bbl/STBBg = 0.0015 bbl/SCFRsi = 800 SCF/STBBw = 1 bbl/STBParametros de Production s:Qo = 10,000 STB/DR = 1200 SCF/STBWOR = 0.5 Determinar el caudal water influx :dWe/dt = B d[ pjWeDj]/dtt =120 months:dWe/dt = B d[ pjWeDj]/dt = 10,067 bbl/D

  • EXAMPLE OF WATER INJECTION REQUIREMENTCalcular el caudal de injection del agua:Qinj = {[Bt+Bg (R-Rsi ) + Bw WOR]Qo dWe/dt}/BwQinj = [1.66+0.0015(1200-800)+0.5]x10,000 10,067 = 27,600 10,067 = 17,533 STB/D

    Los requerimentos del caudal de injection del agua se incrementaran con el tiempo debido al incremento del WOR por el incremento de la saturation promedio del agua.

    WINFLUX

    TimeWedWe/dtdWe/dtQinj

    204.625.80

    309.8714.23

    4016.0717.77

    6029.1317.63

    8040.3715.33

    10049.3612.37

    12056.6810.071006717533

    13059.658.97896718633

    15064.186.33633321267

    20070.492.65265324947

    30074.260.4545027150

    50075.050.00227598

    75075.040.00

    100075.030.01

    150075.040.00

    200075.040.00

    TimeWedWe/dt

    204.62E+061.74E+054.65.80002.90E+04114.325

    309.87E+064.27E+059.914.23334.44E+04142.071

    401.61E+075.33E+0516.117.76674.99E+04151.477

    602.91E+075.29E+0529.117.63337.23E+04198.567

    804.04E+074.60E+0540.415.33339.80E+04246.536

    1004.94E+073.71E+0549.412.36671.06E+05264.487

    1205.67E+073.02E+0556.710.06671.17E+05292.532

    1305.96E+072.69E+0559.68.9667

    1506.42E+071.90E+0564.26.3333

    2007.05E+077.96E+0470.52.6533

    3007.43E+071.35E+0474.30.4500

    5007.50E+074.63E+0175.00.0015

    7507.50E+079.15E+0175.00.0031

    10007.50E+071.98E+0275.00.0066

    15007.50E+078.98E+0175.00.0030

    20007.50E+072.18E+0175.00.0007

    TimedWe/dtQinj

    (months)(bbl/D)(STB/D)

    1201006717533

    130896718633

    150633321267

    200265324947

    30045027150

    WINFLUX

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    00

    0

    0

    0

    0

    0

    0

    0

  • DETERMINATION OF WATER INFLUX RATE

  • DETERMINATION OF WATER INFLUX RATE

  • DETERMINACION DEL CAUDAL DEL WATER INFLUX

    ********Understanding reservoir geology: identify communicating and noncommunicating pathways. Consult map to identify reservoir trap and impenetratable surfaces by water

    **********************************************************************