interpreting geophysical data for mantle dynamics wendy panero university of michigan

32
Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Post on 20-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Interpreting Geophysical Data for Mantle Dynamics

Wendy Panero

University of Michigan

Page 2: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Chemical Constraints on Density Distribution

1.0

0.8

0.6

0.4

0.2

0.0

Ato

mic

Fra

ctio

n

30252015105

Pressure (GPa)

olivine wadsleyite ringwoodite

opx

cpx

garnet

Mg-perovskite

Ca-pv

(Mg,Fe)O

il

C2/c

PyroliteStacey Geotherm

SiO2 45.4 wt%MgO 37.1 wt%FeO 8.3 wt%

Al2O3 4.3 wt%CaO 3.3 wt%

Stixrude, unpublished

Page 3: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

12

10

8

6

4

2

Compressional wave speed (km/s)

140012001000800600400200

Depth (km)

Chemical Constraints on Density Distribution

olivine wadsleyite ringwoodite

cpx

garnet

Mg-perovskite

Ca-pv

(Mg,Fe)O

il

Stacy Geotherm

Page 4: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Cold Slabs, Clapeyron Slopes and Whole Mantle Convection

exothermic reaction

440 kmolivine

-MgSiO4

200

400

600

800

1000

1700

1600

1400

1000

endothermic reaction

pv+mw

-MgSiO4660 km

Fb = −g vi Δρi( )∑ ∂z /∂P( ) ∂P /∂T( )i ΔT

Page 5: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Clapeyron Slope

Equilibrium: G1=G2

dG =VdP − SdT

V1dP − S1dT =V2dP − S2dT

dP(V1 −V2 ) = dT (S1 − S2 )

dPdT

=ΔVrxn

ΔSrxn

Page 6: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Cold Slabs, Clapeyron Slopes and Whole Mantle Convection

endothermic reaction

pv+mw

-MgSiO4660 km

Fb = −g vi Δρi( )∑ ∂z /∂P( ) ∂P /∂T( )i ΔT

Clapeyron slope must be greater than… ask a geodynamicist

Page 7: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Determination of Clapeyron Slopes

Phase Equilibriaex-situin-situ

Thermodynamic

dPdT

=ΔVrxn

ΔSrxn

Page 8: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Determination of Clapeyron Slopes

Phase Equilibriaex-situin-situ

Thermodynamic

Ringwoodite(Smyth)

dPdT

=ΔVrxn

ΔSrxn

Page 9: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Multi-Anvil Press

Page 10: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Determination of Clapeyron Slopes

Phase Equilibriaex-situin-situ

Thermodynamic

25.5

25.0

24.5

24.0

23.5

23.0

22.5

22.0

Pressure (GPa)

20001800160014001200

Temperature (K)

Ringwoodite Only Perovskite + MW Only

All present

Ito and Takahashi 1989

dPdT

=ΔVrxn

ΔSrxn

Clapeyron slope = -2.8 MPa/K

Page 11: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Determination of Clapeyron Slopes

Phase Equilibriaex-situin-situ

Thermodynamic

dPdT

=ΔVrxn

ΔSrxn

Ringwoodite(Smyth)

Page 12: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

The Laser-Heated Diamond Anvil CellX-ray

Heating laser

X-ray diffraction(pressure, structure, density)

Spectroradiometry(temperature)

2 cm

0.1 mm

Pressure = Force/Area

Page 13: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

TechniquesX-ray Diffraction

Diffraction condition:

2

d

=2dsin(2)incoming x-rays,

2

reflected x-rays,

e.g. Cullity

Page 14: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

TechniquesX-ray Diffraction

150

100

50

0

Relative Intensity

4.03.53.02.52.01.51.0

d-spacing (Å)

Ringwoodite

Perovskite + periclase

Page 15: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

hotspot

O2

ruby

gasket

(Benedetti et al, unpublished)

Temperature Measurements

top viewside view

Intensity

800700600wavelength (nm)

I =2επhc2

λ5 exphc

λkT

⎛ ⎝ ⎜

⎞ ⎠ ⎟−1

⎝ ⎜

⎠ ⎟

Intensity

800700600wavelength (nm)

T=1700±75 K

Kavner and Panero, PEPI 2004

Page 16: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Pressure Measurements:Equations of State

1.00

0.95

0.90

0.85

0.80

V/V0

120100806040200Pressure (GPa)

Orthorhombic Perovskite(Mg0.88Fe

2+0.05Fe

3+0.01Al0.12Si0.94)O3

Lee et al., 2004

Page 17: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Constant Temperature Equations of State

f =[(v /v0 )−2 /3 −1]/2

P = 3 f (1+ 2 f )5 /2 K0T [1+1.5(K0T' − 4) f +...]

F =P

3 f (1+ 2 f )5 /2

F = K0T 1+1.5(K0T' − 4) f +... [ ]

Bulk Modulus

K0T =∂P

∂ ln(V )

⎝ ⎜

⎠ ⎟T

Page 18: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Constant Temperature Equations of State

400

350

300

250

200

150

Normalized Pressure,

F

(GPa)

806040200

Eulerian strain, f (x 10-3

)

Lee et al., 2004€

F = K0T 1+1.5(K0T' − 4) f +... [ ]

Page 19: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

PVT Equations of State

80

60

40

20

0

Pressure (GPa)

160150140130

Unit-cell volume (Å3)

MgSiO3-perovskite

300 K 2000 K

Thermal Expansion

Thermal Pressure

Page 20: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

PVT Equations of State

P(V ,T ) = P300K (V )+ Pth(T )

Pth = −∂E th

∂V

⎛ ⎝ ⎜

⎞ ⎠ ⎟T

VE th

E th = 9nkBT(T /ΘD )3 x3

ex −1dx

0

ΘD /T∫

Model for internal energy:e.g. Debye

−∂E∂V

⎛ ⎝ ⎜

⎞ ⎠ ⎟T

= PThermodynamic definition

Page 21: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Determination of Clapeyron Slopes

Shim et al., 2001

Phase Equilibriaex-situin-situ

Thermodynamic

dPdT

=ΔVrxn

ΔSrxn

Clapeyron slope = -3 MPa/K (Irifune et al., 1998)

Clapeyron slope = no constraint (Shim et al., 2001; Chudinovskikh et al., 2001)

Page 22: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Sources of ErrorNon-hydrostatic stresses

Pressure standards

Temperature and pressure gradients

Incoming x-ray

Vhydrostatic<Vnon-hydrostaticdiamond diamond

Diffracted x-ray

Page 23: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Sources of ErrorNon-hydrostatic stresses

Pressure standards

Temperature and pressure gradients

Kavner and Duffy, 2003

Page 24: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Sources of ErrorNon-hydrostatic stresses

Pressure standards

Temperature and pressure gradients

Gold relative to Platinum

Shim et al., 2001

Page 25: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Sources of ErrorNon-hydrostatic stresses

Pressure standards

Temperature and pressure gradients

hotspot

O2

ruby

gasket

(Benedetti et al, unpublished)

top viewside view

25000

20000

15000

10000

5000

Raw Intensity (counts)

40353025201510Position (μ )m

Kavner and Panero, PEPI 2004

Page 26: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Determination of Clapeyron Slopes

Phase Equilibriaex-situin-situ

Thermodynamic

Ito et al., 1990

dPdT

=ΔVrxn

ΔSrxn

Clapeyron slope = -4±2 MPa/K

Page 27: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Interpretation of Tomography:Thermal Variations

80

60

40

20

0

Pressure (GPa)

160150140130

Unit-cell volume (Å3)

MgSiO3-perovskite

300 K 2000 K

Thermal Expansion

Thermal Pressure

Page 28: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

1.0

0.8

0.6

0.4

0.2

0.0

Ato

mic

Fra

ctio

n

30252015105

Pressure (GPa)

olivine wadsleyite ringwoodite

opx

cpx

garnet

Mg-perovskite

Ca-pv

(Mg,Fe)O

il

C2/c

PyroliteStacey Geotherm

SiO2 45.4 wt%MgO 37.1 wt%FeO 8.3 wt%

Al2O3 4.3 wt%CaO 3.3 wt%

Stixrude, unpublished

Interpretation of Tomography:Compositional Variations

Page 29: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Interpretation of Tomography:Compositional Variations

K0 ρPerovskite Composition K0 (GPa) (Mg/m3)

MgSiO3

MgSiO3~10% FeO

MgSiO3 ~3.25% Al2O3

MgSiO3 ~3.25% Al2O3+H2O

262262

261

256

4.12

4.254.123

4.088 7.913

7.956

7.8517.974

(km/s)

Page 30: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Theory

Quantum mechanical or classical–effects of a priori assumptions–size of calculation, time for calculation

General approach:G of each phasePT-space for lowest energy

Limitations:TemperatureMulti-component systems

Page 31: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

Theory

MgSiO3 perovskite

Wentzcovitch et al., 2004

Page 32: Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan

?

Zhao et al., 1992