hw 2, cee 744, structural dynamics, spring...

14
HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February 17, 2013 Different shape functions were used for estimating the wind tower natural frequency using the method of generalized single degree of freedom. The following table summarizes the results obtained. For each shape function the following items are calculated: The calculated effective mass M e , effective stiffness K e = K fe + K ge ,effective flexural stiffness K fe , effective geometric stiffness K ge , The ratio M Me and the natural frequency f in Hz. The rows are listed from the lowest to the largest natural frequency. The shape function that produces the lowest natural frequency will be the one to select as the closest approximation to the real solution. The actual mass is 404171 Kg. An Excel worksheet is also available on my web page for this HW for the lowest natural frequency case. shape function Ξ¦ (x) M e kg) K e Flexural K e (N/m) Geometric K ge (N/m) Me M f (Hz) x 2 L 2 159, 636 383, 031 393, 520 -10489 39.49% 0.2465 1 - cos ( Ο€x 2L ) 164, 157 431, 388 441, 587 -10198 40.62 0.2580 2Lx 2 -x 3 2L 3 165, 830 472, 453 482, 548 -10095 41.03 0.2686 first mode 168, 445 543, 282 553, 333 -10051 41.68 0.2858 6L 2 x 2 -4Lx 3 +x 4 3L 4 169, 764 595, 562 605, 586 -10024 42 0.2981 2nd mode 185, 852 14, 443, 032 14, 509, 551 -66519 45.98 1.403 3rd mode 192, 575 100, 304, 976 100, 475, 002 -170026 47.65 3.6323 4th mode 195, 562 371, 956, 138 372, 284, 973 -328835 48.386 6.941 The shape functions above are those for the beam for the fixed-free boundary conditions obtained from table 8.1 from reference [1]. The following diagram describes the computation done at each element of the wind tower 1

Upload: others

Post on 12-Mar-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

HW 2, CEE 744, Structural dynamics, Spring 2013

Nasser M. Abbasi

February 17, 2013

Different shape functions were used for estimating the wind tower natural frequency using the method of generalizedsingle degree of freedom.

The following table summarizes the results obtained. For each shape function the following items are calculated: Thecalculated effective mass Me, effective stiffness Ke = Kfe+Kge,effective flexural stiffness Kfe, effective geometric stiffnessKge, The ratio M

Meand the natural frequency f in Hz. The rows are listed from the lowest to the largest natural frequency.

The shape function that produces the lowest natural frequency will be the one to select as the closest approximation tothe real solution. The actual mass is 404171 Kg.

An Excel worksheet is also available on my web page for this HW for the lowest natural frequency case.

shape function Ξ¦ (x) Me kg) Ke Flexural Ke (N/m) Geometric Kge (N/m) Me

M f (Hz)x2

L2 159, 636 383, 031 393, 520 βˆ’10489 39.49% 0.2465

1 βˆ’ cos(Ο€x2L

)164, 157 431, 388 441, 587 βˆ’10198 40.62 0.2580

2Lx2βˆ’x3

2L3 165, 830 472, 453 482, 548 βˆ’10095 41.03 0.2686first mode 168, 445 543, 282 553, 333 βˆ’10051 41.68 0.28586L2x2βˆ’4Lx3+x4

3L4 169, 764 595, 562 605, 586 βˆ’10024 42 0.29812nd mode 185, 852 14, 443, 032 14, 509, 551 βˆ’66519 45.98 1.4033rd mode 192, 575 100, 304, 976 100, 475, 002 βˆ’170026 47.65 3.63234th mode 195, 562 371, 956, 138 372, 284, 973 βˆ’328835 48.386 6.941

The shape functions above are those for the beam for the fixed-free boundary conditions obtained from table 8.1 fromreference [1].

The following diagram describes the computation done at each element of the wind tower

1

Page 2: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

2

Page 3: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

1 Conclusions

The lowest approximate natural frequency found is 0.2465 Hz for the shape function x2

L2 . The effective mass to actualmass ratio for this case was 39.49%

The higher the natural frequency became as the shape function is changed, this ratio also increased. At f = 6.941 Hz,this ratio became almost 50%.

An applet was written to simulate the result allowing one to select different shape functions and observe the result.

This table shows the final computation result for the case that gave the lowest natural frequency

3

Page 4: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

2 References

1. Formulas for Natural Frequency and Mode Shape, Robert D. Blevins

2. Dynamics of structures by Ray W. Clough and Joseph Penzien.

3. Structural Dynamics, 5th edition by Mario Paz and William Leigh.

4. Professor Oliva class lecture notes, CEE 744, structural dynamics, spring 2013, University of Wisconsin, Madison.

5. Wikipedia http://en.wikipedia.org/wiki/List_of_moment_of_areas

4

Page 5: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

Appendix, Listing of HW2, CEE 744

computation and applet

Nasser M. Abbasi

ManipulateAgTick;

Module@8finalResult, g, m = 10<,

If@setIC οΏ½ True,

setIC = False;

nSteps = βˆ’1;

currentTime = 0;

8effectiveLengthOfTower, totalMass, effectiveMass,

effectiveFlexuralStiffness, effectiveGeometricStiffness, omega, result< =

updateResult@data, shapeFunction, x, L, geometricStiffnessD;

Hβˆ—outputTable@resultD;βˆ—LD;

currentTime = currentTime + delT;

nSteps = nSteps + 1;

g = getPosition@omega, currentTime, plotType, 2, resultD;

finalResult = Grid@88

Style@Grid@88"SDOF natural frequency", " = ", padIt2@omega Γͺ H2 PiL, 85, 4<D, " Hz"<,

8"Effect flexural stiffness",

" = ", padIt2@effectiveFlexuralStiffness, 811, 1<D, " NΓͺm"<,

8"Effect geometric stiffness", " = ", padIt2@effectiveGeometricStiffness, 86, 1<D, " NΓͺm"<,

8"Combined effect stiffness", " = ", padIt2@effectiveFlexuralStiffness βˆ’

effectiveGeometricStiffness, 811, 1<D, " NΓͺm"<,

8"Effective mass", " = ", effectiveMass, " kg"<,

8"Actual mass", " = ", totalMass, " kg"<,

8"Mass ratio", " = ", HeffectiveMass Γͺ totalMassL βˆ— 100, " %"<,

8"Tower height", " = ", effectiveLengthOfTower , " meter"<<, Alignment β†’ LeftD, 11

D,

If@plotType οΏ½ "2D",

Graphics@g,

PlotRange β†’ 88βˆ’m, m<, 80, 1.05 βˆ— effectiveLengthOfTower<<, ImageSize β†’ imsizeD,

Printed by Wolfram Mathematica Student Edition

Page 6: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

,

Graphics3D@8Opacity@1D, EdgeForm@[email protected], g<,

ImageSize β†’ imsize,

Boxed β†’ False,

AxesOrigin β†’ 80, 0, 0<,

PlotRange β†’ 88βˆ’m Γͺ 2, m Γͺ 2<, 8βˆ’m, m<, All<,

Axes β†’ False,

AxesLabel β†’ None,

PreserveImageOptions β†’ False,

Ticks β†’ False,

TicksStyle β†’ Directive@Black, 8D,

ImagePadding β†’ 0,

ImageMargins β†’ 0,

BoxRatios β†’ 81, 1, 7<D

D, SpanFromLeft<<D;

Which@runningState == "RUNNING" »» runningState == "STEP",

If@runningState == "RUNNING", gTick += delDD;

finalResult

D,

GridA98

Row@8Button@Style@"run", 11D,

8runningState = "RUNNING"; gTick += del<, ImageSize βˆ’> 835, 35<D,

Button@Style@"stop", 11D, 8runningState = "STOP"; gTick += del<,

ImageSize βˆ’> 835, 35<D,

Button@Style@"step", 11D, 8runningState = "STEP"; gTick += del<,

ImageSize βˆ’> 835, 35<D,

Button@Style@"reset", 11D, 8setIC = True; runningState = "STOP"; gTick += del<,

ImageSize βˆ’> 835, 35<D<D,

Grid@88

Style@"geometric stiffness ", 11D,

Checkbox@Dynamic@geometricStiffness, 8geometricStiffness = Γ°; gTick += del; setIC = True

< &DD<

<D, SpanFromLeft

<,

8Framed@Grid@8

8Text@Style@"time HsecL", 11D, Spacer@5D, Text@Style@"steps", 11D<,

8Text@Style@Dynamic@padIt2@currentTime, 87, 4<D, 11D,

Spacer@5D, Text@Style@Dynamic@padIt2@nSteps, 7D, 11D<<, Spacings β†’ 80, 0<, Alignment β†’ LeftD

D,

2 applet_V5.nb

Printed by Wolfram Mathematica Student Edition

Page 7: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

D,

Framed@Grid@88

RadioButtonBar@Dynamic@plotType, 8plotType = Γ°; gTick += del< &D,

8"2D" β†’ Style@"2D", 10D, "3D" β†’ Style@"3D", 10D<, Appearance β†’ "Vertical"D

<<, Spacings β†’ 80, 0<

D,

Framed@Grid@88"", Text@Style@"simulation speed", 11D, ""<,

8"HslowL", Manipulator@Dynamic@delT, 8delT = Γ°< &D,

80.01, 0.1, 0.01<, ImageSize β†’ Tiny, ContinuousAction βˆ’> FalseD, "HfastL"<<D, SpanFromLeft

<,

9WithA8lambda = 81.87510407, 4.6940913, 7.85475744, 10.99554073, 14.13716839<,

gama = 80.734095514, 1.018467319, 0.999224497, 1.00003355, 0.999998550<<,

GridA99Text@Style@Column@8"shape", "function"<D, 11D,

PopupMenuADynamic@shapeFunction, 8shapeFunction = Γ°; gTick += del; setIC = True

< &D,

9

1 Γͺ 2 CoshA lambda@@1DD x

L

E βˆ’ CosA lambda@@1DD x

L

E βˆ’

gama@@1DD SinhA lambda@@1DD x

L

E βˆ’ SinA lambda@@1DD x

L

E β†’

TraditionalFormA1 Γͺ 2 CoshA Ξ»1 x

L

E βˆ’ CosA Ξ»1 x

L

E βˆ’ Οƒ1 SinhA Ξ»1 x

L

E βˆ’ SinA Ξ»1 x

L

E E,

1 Γͺ 2 CoshA lambda@@2DD x

L

E βˆ’ CosA lambda@@2DD x

L

E βˆ’

gama@@2DD SinhA lambda@@2DD x

L

E βˆ’ SinA lambda@@2DD x

L

E βˆ’>

TraditionalFormA1 Γͺ 2 CoshA Ξ»2 x

L

E βˆ’ CosA Ξ»2 x

L

E βˆ’ Οƒ2 SinhA Ξ»2 x

L

E βˆ’ SinA Ξ»2 x

L

E E,

1 Γͺ 2 CoshA lambda@@3DD x

L

E βˆ’ CosA lambda@@3DD x

L

E βˆ’

gama@@3DD SinhA lambda@@3DD x

L

E βˆ’ SinA lambda@@3DD x

L

E βˆ’>

TraditionalFormA1 Γͺ 2 CoshA Ξ»3 x

L

E βˆ’ CosA Ξ»3 x

L

E βˆ’ Οƒ3 SinhA Ξ»3 x

L

E βˆ’ SinA Ξ»3 x

L

E E,

applet_V5.nb 3

Printed by Wolfram Mathematica Student Edition

Page 8: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

1 Γͺ 2 CoshA lambda@@4DD x

L

E βˆ’ CosA lambda@@4DD x

L

E βˆ’

gama@@4DD SinhA lambda@@4DD x

L

E βˆ’ SinA lambda@@4DD x

L

E βˆ’>

TraditionalFormA1 Γͺ 2 CoshA Ξ»4 x

L

E βˆ’ CosA Ξ»4 x

L

E βˆ’ Οƒ4 SinhA Ξ»4 x

L

E βˆ’ SinA Ξ»4 x

L

E E,

1 βˆ’ CosA Pi x

2 L

E,

3 L x^2 βˆ’ x^3

2 L^3

,

x^4 βˆ’ 4 L x^3 + 6 L^2 x^2

3 L^4

,

x^2 Γͺ L^2

=, ImageSize βˆ’> AllE=

=E

E, SpanFromLeft

=

=, Alignment β†’ Left

E,

88geometricStiffness, False<, None<,

88imsize, 8100, 400<<, None<,

88delT, 0.05<, None<,

88gTick, 0<, None<,

88del, $MachineEpsilon<, None<,

88currentTime, 0<, None<,

88nSteps, βˆ’1<, None<,

99shapeFunction, 1 βˆ’ CosA Pi x

2 L

E=, None=,

88setIC, True<, None<,

88runningState, "RUNNING"<, None<,

88plotType, "3D"<, None<,

88effectiveLengthOfTower, 0<, None<,

88totalMass, 0<, None<,

88effectiveMass, 0<, None<,

88effectiveFlexuralStiffness, 0<, None<,

88effectiveGeometricStiffness, 0<, None<,

88omega, 0<, None<,

88result, 0<, None<,

LocalizeVariables β†’ True,

TrackedSymbols Β¦ 8gTick<,

4 applet_V5.nb

Printed by Wolfram Mathematica Student Edition

Page 9: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

TrackedSymbols Β¦ 8gTick<,

Initialization Β¦

9Hβˆ—definitions used for parameter checkingβˆ—LintegerStrictPositive = HIntegerQ@Γ°D && Γ° > 0 &L;

integerPositive = HIntegerQ@Γ°D && Γ° β‰₯ 0 &L;

numericStrictPositive = HElement@Γ°, RealsD && Γ° > 0 &L;

numericPositive = HElement@Γ°, RealsD && Γ° β‰₯ 0 &L;

numericStrictNegative = HElement@Γ°, RealsD && Γ° < 0 &L;

numericNegative = HElement@Γ°, RealsD && Γ° ≀ 0 &L;

bool = HElement@Γ°, BooleansD &L;

numeric = HElement@Γ°, RealsD &L;

integer = HElement@Γ°, IntegersD &L;

Hβˆ—βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ—LHβˆ— helper function for formatting βˆ—LHβˆ—βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ—LpadIt1@v_ ?numeric, f_ListD := AccountingForm@Chop@vD , f,

NumberSigns β†’ 8"βˆ’", "+"<, NumberPadding β†’ 8"0", "0"<, SignPadding β†’ TrueD;

Hβˆ—βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ—LHβˆ— helper function for formatting βˆ—LHβˆ—βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ—LpadIt2@v_ ?numeric, f_ListD := AccountingForm@v , f,

NumberSigns β†’ 8"", ""<, NumberPadding β†’ 8"0", "0"<, SignPadding β†’ TrueD;

padIt2@v_ ?numeric, f_IntegerD := AccountingForm@Chop@vD , f,

NumberSigns β†’ 8"", ""<, NumberPadding β†’ 8"0", "0"<, SignPadding β†’ TrueD;

Hβˆ—βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ—LoutputTable@result_D := ModuleA8tbl<,

tbl = TableFormAresult,

TableHeadings β†’ 9None, 9"Γ°", "height", "T HmL", "D HmL", "mass HkgL", "E HGPaL",

Column@8"geometric", "Stiffness", "HNΓͺmL"<D, Column@8"flexural",

"Stiffness", "HNΓͺmL"<D, Column@8"effective", "stiffness", "HNΓͺmL"<D,

Column@8"current", "height", "HmL"<D, Column@8"shape", "Function"<D,

"curveture", "angle", "I Hm4L", Column@8"effective", "mass", "HkgL"<D==E;

Print@tblDE;

Hβˆ—βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ—LupdateResult@data_, shapeFunction_, x_, L_, geometricStiffness_ ?boolD :=

Module@8i, nRows, numberOfColumns = 15, kID = 1, kH = 2, kT = 3,

kD = 4, kMASS = 5, kE = 6, kGS = 7, kFLEXEFFECTIVE = 8, kEFFECTIVE = 9,

kCURRENTH = 10, kPHI = 11, kCURVETURE = 12, kANGLE = 13, kI = 14, kMEFFECTIVE = 15,

result, lengthOfTower, totalMass, effectiveMass, effectiveFlexuralStiffness,

effectiveGeometricStiffness, effectiveStiffness, omega<,

nRows = Length@dataD;

result = Table@0, 8nRows<, 8numberOfColumns<D;

result@@All, 2 ;; 6DD = data;

result@@All, 2 ;; 4DD = result@@All, 2 ;; 4DD Γͺ 1000;

result@@All, kEDD = result@@All, kEDD βˆ— 10^6;

;

applet_V5.nb 5

Printed by Wolfram Mathematica Student Edition

Page 10: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

result@@All, kEDD = result@@All, kEDD βˆ— 10^6;

lengthOfTower = Total@result@@All, kHDDD;

totalMass = Total@result@@All, kMASSDDD;

Do@result@@i, kIDDD = i;

If@i οΏ½ nRows, result@@i, kCURRENTHDD = result@@i, kHDD,

result@@i, kCURRENTHDD = result@@i + 1, kCURRENTHDD + result@@i, kHDDD;

If@i > 1, Hβˆ—top mass not part of the following computationβˆ—Lresult@@i, kPHIDD =

shapeFunction Γͺ. 8x βˆ’> result@@i, kCURRENTHDD, L β†’ lengthOfTower<;

result@@1, kMEFFECTIVEDD = result@@1, kMASSDD βˆ— result@@i, kPHIDD^2;

result@@i, kCURVETUREDD =

D@shapeFunction, 8x, 2<D Γͺ. 8x β†’ result@@i, kCURRENTHDD, L β†’ lengthOfTower<;

result@@i, kANGLEDD = result@@i, kCURVETUREDD βˆ— result@@i, kHDD;

result@@i, kMEFFECTIVEDD = result@@i, kMASSDD βˆ— result@@i, kPHIDD^2;

result@@i, kIDD =

momentOfInertia@result@@i, kTDD, result@@i, kDDD, result@@i, kMASSDDD;

result@@i, kFLEXEFFECTIVEDD = result@@i, kIDD βˆ— result@@i, kEDD βˆ—

result@@i, kCURVETUREDD βˆ— result@@i, kANGLEDD;

If@geometricStiffness,

result@@i, kGSDD =

H HD@shapeFunction, 8x, 1<D Γͺ. 8x β†’ result@@i, kCURRENTHDD, L β†’ lengthOfTower<L^2 βˆ—

Total@result@@1 ;; i, kMASSDD βˆ— 9.81 Γͺ 2 βˆ— result@@i, kHDDDL;

result@@i, kEFFECTIVEDD = result@@i, kFLEXEFFECTIVEDD βˆ’ result@@i, kGSDD,

result@@i, kEFFECTIVEDD = result@@i, kFLEXEFFECTIVEDDD, Hβˆ—below for top massβˆ—Lresult@@1, kMEFFECTIVEDD = result@@1, kMASSDD;

result@@1, kPHIDD =

shapeFunction Γͺ. 8x βˆ’> result@@1, kCURRENTHDD, L β†’ lengthOfTower<;

D,

8i, nRows, 1, βˆ’1<D;

effectiveMass = Total@result@@All, kMEFFECTIVEDDD;

effectiveFlexuralStiffness = Total@result@@All, kFLEXEFFECTIVEDDD;

effectiveGeometricStiffness = Total@result@@All, kGSDDD;

effectiveStiffness = Total@result@@All, kEFFECTIVEDDD;

omega = Sqrt@effectiveStiffness Γͺ effectiveMassD;

8lengthOfTower, totalMass, effectiveMass,

effectiveFlexuralStiffness, effectiveGeometricStiffness, omega, result<D;

Hβˆ—βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ—LgetPosition@omega_, t_, plotType_String, scale_, result_D :=

Module@8i, g, x, y, color = LightBlue, cx, cz, cy, leftLowerCorner,

rightLowerCorner, rightTopCorner, leftTopCorner, dia, , ,

6 applet_V5.nb

Printed by Wolfram Mathematica Student Edition

Page 11: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

Module@8i, g, x, y, color = LightBlue, cx, cz, cy, leftLowerCorner,

rightLowerCorner, rightTopCorner, leftTopCorner, dia, kH = 2, kT = 3,

kD = 4, kMASS = 5, kE = 6, kGS = 7, kFLEXEFFECTIVE = 8, kEFFECTIVE = 9,

kCURRENTH = 10, kPHI = 11, kCURVETURE = 12, kANGLE = 13,

kI = 14, kMEFFECTIVE = 15, nRows<,

nRows = Length@resultD;

g = Table@0, 8nRows<D;

If@plotType οΏ½ "2D",

Do@cx = result@@i, kPHIDD βˆ— scale βˆ— Cos@omega βˆ— tD;

cy = result@@i, kCURRENTHDD;

If@i οΏ½ 1,

dia = result@@2, kDDD βˆ— 4,

dia = result@@i, kDDDD;

leftLowerCorner = 8cx βˆ’ dia Γͺ 2, cy βˆ’ result@@i, kHDD<;

rightLowerCorner = 8cx + dia Γͺ 2, cy βˆ’ result@@i, kHDD<;

rightTopCorner = 8cx + dia Γͺ 2, cy<;

leftTopCorner = 8cx βˆ’ dia Γͺ 2, cy<;

If@i � nRows »» i � 1,

color = Red,

If@result@@i, kHDD < 1,

color = Red,

color = Black

DD;

g@@iDD = 8EdgeForm@8Thin, color<D, FaceForm@D,

Polygon@8 leftLowerCorner, rightLowerCorner, rightTopCorner, leftTopCorner<D<, 8i, 1, nRows<

D,

Do@cx = result@@i, kPHIDD βˆ— scale βˆ— Cos@omega βˆ— tD;

cz = result@@i, kCURRENTHDD;

If@i οΏ½ 1,

g@@1DD =

8Red, Cylinder@88cx, 0, cz βˆ’ result@@1, kHDD<, 8cx, 0, cz<<, result@@2, kDDDD<,

If@i οΏ½ nRows,

color = Red,

If@result@@i, kHDD < 1,

color = Black,

color = LightBlue

D

applet_V5.nb 7

Printed by Wolfram Mathematica Student Edition

Page 12: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

color = LightBlue

DD;

If@i οΏ½ nRows,

g@@iDD = 8color, [email protected],

Cylinder@880, 0, cz βˆ’ result@@i, kHDD<, 80, 0, cz<<, result@@i, kDDD Γͺ 2D<,

g@@iDD = 8color, [email protected], Cylinder@88cx, 0, cz βˆ’ result@@i, kHDD<,

8cx, 0, cz<<, result@@i, kDDD Γͺ 2D<D

D, 8i, 1, nRows<

DD;

g

D;

Hβˆ—βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ—LmomentOfInertia@t_, d_, m_D := Module@8r2 = d Γͺ 2, r1<,

r1 = r2 βˆ’ t;

Pi βˆ— Hr2^4 βˆ’ r1^4L Γͺ 4

D;

Hβˆ—βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ’βˆ—LHβˆ—SetDirectory@NotebookDirectory@DD;βˆ—LHβˆ—data=Import@"data.xlsx",8"Sheets",1<Dβˆ—Ldata = 881340.`, 0.`, 0.`, 130000.`, 210000.`<,

8295.`, 121.`, 2800.`, 2374.8262835560467`, 210000.`<,

82300.`, 15.`, 2800.`, 2386.1406618751685`, 210000.`<,

82940.`, 15.`, 2822.`, 3062.1786695954443`, 210000.`<,

82940.`, 15.`, 2844.`, 3086.2771505855408`, 210000.`<,

82935.`, 15.`, 2868.`, 3106.171133487974`, 210000.`<, 82935.`, 15.`, 2890.`,

3131.317891220979`, 210000.`<, 82935.`, 15.`, 2912.`, 3155.3713116611934`, 210000.`<,

82935.`, 16.`, 2934.`, 3390.2201462719627`, 210000.`<,

82930.`, 17.`, 2956.`, 3621.949609431842`, 210000.`<,

82930.`, 18.`, 2978.`, 3862.510622879164`, 210000.`<,

82925.`, 19.`, 3000.`, 4099.092018136769`, 210000.`<,

8280.`, 180.`, 3000.`, 3529.647958691686`, 210000.`<,

82885.`, 20.`, 3052.`, 4307.746324352069`, 210000.`<,

82885.`, 20.`, 3124.`, 4396.595429624945`, 210000.`<,

82880.`, 21.`, 3196.`, 4715.074344034012`, 210000.`<,

82880.`, 21.`, 3268.`, 4823.225197872331`, 210000.`<,

82880.`, 22.`, 3340.`, 5164.629736275286`, 210000.`<,

82875.`, 22.`, 3412.`, 5268.768980113425`, 210000.`<,

82875.`, 22.`, 3484.`, 5381.873202425646`, 210000.`<,

82870.`, 23.`, 3556.`, 5733.120246174896`, 210000.`<,

82870.`, 23.`, 3628.`, 5851.159957727482`, 210000.`<,

82860.`, 23.`, 3700.`, 5947.936112191075`, 210000.`<,

8330.`, 230.`, 3700.`, 6540.681440845615`, 210000.`<,

82710.`, 24.`, 3760.`, 5986.441195326227`, 210000.`<,

82710.`, 24.`, 3825.`, 6087.399843179338`, 210000.`<,

82710.`, 24.`, 3890.`, 6192.396836946592`, 210000.`<,

82705.`, 25.`, 3955.`, 6546.00438555125`, 210000.`<,

82705.`, 25.`, 4020.`, 6655.174489988609`, 210000.`<,

,

8 applet_V5.nb

Printed by Wolfram Mathematica Student Edition

Page 13: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

82705.`, 25.`, 4020.`, 6655.174489988609`, 210000.`<,

82705.`, 25.`, 4085.`, 6764.344594425926`, 210000.`<,

82685.`, 26.`, 4150.`, 7093.359001961084`, 210000.`<,

8360.`, 240.`, 4150.`, 8389.619160172944`, 210000.`<,

82410.`, 26.`, 4150.`, 6417.424886453375`, 210000.`<,

82410.`, 27.`, 4150.`, 6662.63295330221`, 210000.`<,

82410.`, 28.`, 4150.`, 6907.721318873599`, 210000.`<,

82410.`, 29.`, 4150.`, 7152.689983167541`, 210000.`<,

82405.`, 29.`, 4150.`, 7137.850377393334`, 210000.`<,

82405.`, 30.`, 4150.`, 7382.1913550093805`, 210000.`<,

8440.`, 390.`, 4150.`, 16023.481209298769`, 210000.`<,

82400.`, 31.`, 4150.`, 7610.557551458674`, 210000.`<,

82400.`, 32.`, 4150.`, 7854.152134490976`, 210000.`<,

82395.`, 34.`, 4150.`, 8323.606637433179`, 210000.`<,

82395.`, 60.`, 4150.`, 14595.93172144645`, 210000.`<,

82395.`, 60.`, 4150.`, 14595.93172144645`, 210000.`<,

8240.`, 400.`, 4150.`, 8940.344373585833`, 210000.`<,

8700.`, 55.`, 4150.`, 3915.312064107245`, 210000.`<<;

=

E

Version 2/17/13 at 2:00 AM

applet_V5.nb 9

Printed by Wolfram Mathematica Student Edition

Page 14: HW 2, CEE 744, Structural dynamics, Spring 201312000.org/my_courses/univ_wisconsin_madison/spring_2013/...HW 2, CEE 744, Structural dynamics, Spring 2013 Nasser M. Abbasi February

run stop step reset geometric stiffness

time HsecL steps

019.5500 0000390

2D

3D

simulation speed

HslowL HfastL

shape

function

x2

L2

SDOF natural frequency = 0.2465 Hz

Effect flexural stiffness = 0000393520.8 NΓͺm

Effect geometric stiffness = 10489.7 NΓͺm

Combined effect stiffness = 0000383031.1 NΓͺm

Effective mass = 159 636. kg

Actual mass = 404 171. kg

Mass ratio = 39.4971 %

Tower height = 106.815 meter

10 applet_V5.nb

Printed by Wolfram Mathematica Student Edition