group d nuclear reactions - theory · group d nuclear reactions - theory kaloyan genkov1 mikail...

24
Introduction Theoretical Models Data Analysis with Fresco Nuclear interactions Cross-Sections Group D Nuclear Reactions - Theory Kaloyan GENKOV 1 Mikail DIREKCI 2 1 Sofia University 2 Bozok University, Akdeniz University International Workshop on Acceleration and Applications of Heavy Ions Genkov, Direkci Group D Nuclear Reactions - Theory

Upload: others

Post on 01-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Nuclear interactionsCross-Sections

Group D Nuclear Reactions - Theory

Kaloyan GENKOV1 Mikail DIREKCI2

1Sofia University

2Bozok University, Akdeniz University

International Workshop on Acceleration and Applications of Heavy Ions

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 2: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Nuclear interactionsCross-Sections

Plan of the talk

1 IntroductionInteractions of Nuclei: Scattering and ReactionCross-Sections

2 Theoretical ModelsElastic ScatteringOptical ModelCoupled Channels Modelα cluster Model for Transfer

3 Data Analysis with FrescoFresco and SfrescoData Analysis

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 3: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Nuclear interactionsCross-Sections

Interactions of Nuclei

Scattering

Elastic: Nuclei and energy remain the same

a + A⇒ a + A, Q = 0

(Q = (minitial −mfinal)c2)

Inelastica + A⇒ a∗ + A∗, Q < 0

Inelastic Reactiona + A⇒ b + B

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 4: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Nuclear interactionsCross-Sections

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 5: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Nuclear interactionsCross-Sections

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 6: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Nuclear interactionsCross-Sections

Observable: Cross-section

σ =detected particles per unit time

projectiles current × count of target nuclei

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 7: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Nuclear interactionsCross-Sections

Differential Cross-Section

dσdΩ - differential cross section - the cross section per unit of a solidangle.

π∫0

2π∫0

dΩsin θdϕdθ = σ

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 8: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Elastic ScatteringOptical ModelCoupled Channels Modelα cluster Model for Transfer

Theoretical Models

1 Introduction

2 Theoretical ModelsElastic ScatteringOptical ModelCoupled Channels Modelα cluster Model for Transfer

3 Data Analysis with Fresco

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 9: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Elastic ScatteringOptical ModelCoupled Channels Modelα cluster Model for Transfer

Elastic Scattering

Shroedinger’s equation:[− ~2

2m1∇2

1 −~2

2m2∇2

2 + V (~r1, r2)

]ψ = Eψ

In the CM reference frame:

− ~2

2M∇2

RCMψ︸ ︷︷ ︸

=ε0ψ

−(− ~2

2µ∇2

r + V (r)

)ψ︸ ︷︷ ︸

=εψ

= Eψ

µ =m1m2

m1 + m2

M = m1 + m2

∇2 =∂2

∂x2i

+∂2

∂y2i

+∂2

∂z2i

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 10: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Elastic ScatteringOptical ModelCoupled Channels Modelα cluster Model for Transfer

Elastic Scattering - Reduction to One-Body Problem

Center of mass motion:

− ~2

2M∇2

RCMψ = ε0ψ

Relative motion: (− ~2

2µ∇2

r + V (r)

)ψ = εψ

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 11: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Elastic ScatteringOptical ModelCoupled Channels Modelα cluster Model for Transfer

Potential of the Interaction

Veff = VC (r) + VI (r) + VN(r) + VS

Coulomb Potential (RC is the Coulomb radius)

VC (r) =Z1Z2e

2

r, r > RC

VC (r) =Z1Z2e

2

2RC

(3− r2

R2C

), r < RC

Centrifugal Potential

VI (r) =l(l + 1)~2

2µr2

Nuclear Potential → ??Genkov, Direkci Group D Nuclear Reactions - Theory

Page 12: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Elastic ScatteringOptical ModelCoupled Channels Modelα cluster Model for Transfer

Optical ModelElastic scattering. Imaginary potential → absorbtion.

Optical Potential:

VN(r) = V (r) + iW (r)

Phenomenological Potentials

Woods-Saxon: V (r) =V

1 + e(r−R0)/a

R0 = r0(A1/3projectile + A

1/3target)

Woods-Saxon Squared: V (|r |) =V

(1 + e(r−R0)/a)2

Folding Potential

V (r) =

∫ ∫ρ1(~r1) V ρ2(~r2) d3~r1d3~r1

Here we can use different functions for ρ and VGenkov, Direkci Group D Nuclear Reactions - Theory

Page 13: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Elastic ScatteringOptical ModelCoupled Channels Modelα cluster Model for Transfer

Folding potentials

Double-folding

VDF =

∫ ∫ρproj(~rproj) V (~r12) ρtarg(~rtarg) d3~rprojd

3~rtarg

Single-folding

VSF =

∫ρtarg(~rtarg) V (~r12)d3~rtarg

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 14: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Elastic ScatteringOptical ModelCoupled Channels Modelα cluster Model for Transfer

Coupled Channels

[− ~2

2µ∇2 + Vopt +

l(l + 1)

~2− E

]ψ0 =

0⇒ Optical modelU(r)ψ1 ⇒ Inelastic channel

In the Coupled Channels Model, we deform the potential bymodifying the radius:

R → r0A1/3[1 + βY20(θ, ϕ)]

So the potentials are no more spherically symmetrical.

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 15: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Elastic ScatteringOptical ModelCoupled Channels Modelα cluster Model for Transfer

α Cluster Transfer

It is known that Ne and C have α cluster structure (Nα)

VN = Vα−O + Vα−C + VO-C

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 16: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Fresco and SfrescoData Analysis

Data Analysis with Fresco

1 Introduction

2 Theoretical Models

3 Data Analysis with FrescoFresco and SfrescoData Analysis

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 17: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Fresco and SfrescoData Analysis

Fresco and Searching Fresco (sfresco)

We used the program fresco to do the calculations.

sfresco is the searching version of fresco. It tries tooptimize the parameters for best fitting.

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 18: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Fresco and SfrescoData Analysis

Analyzing Experimental DataWe try to describe the data obtained by Group C

Optical Model

Coupled Channels Model

Alpha Clusters Model

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 19: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Fresco and SfrescoData Analysis

Optical Model - Woods-Saxon PotentialWoods-Saxon Squared for the imaginary part

V (r)= V1+e(r−R0)/a0

W (r) = W(1+e(r−Ri )/ai )2

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 20: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Fresco and SfrescoData Analysis

Optical Model - Double-Folding Potential

M3Y double folding potential, Gaussian densities

NR = 0.283, Ni = 0.321

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 21: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Fresco and SfrescoData Analysis

Double-Folding Potential: Optical vs. Coupled ChannelsModels

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 22: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Fresco and SfrescoData Analysis

α Cluster Transfer

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 23: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Fresco and SfrescoData Analysis

Conclusion

Optical model with pheneomenological and double foldingpotentials are successful to describe the experimental data.

We need a deep real potential (V ≈ 150 MeV) and a shallowimaginary potential (W ≈ 5 MeV).

These potential values prove that the interaction of projectileand target nuclei take place at the surface.

α-transfer should be studied further in the future tounderstand the following difference in the total cross-sections:

σtotal σCC σOM σαtrans

1142.20 mb 1060.93 mb 1130.82 mb 1583.13 mb

Genkov, Direkci Group D Nuclear Reactions - Theory

Page 24: Group D Nuclear Reactions - Theory · Group D Nuclear Reactions - Theory Kaloyan GENKOV1 Mikail DIREKCI2 1So a University 2Bozok University, Akdeniz University International Workshop

IntroductionTheoretical Models

Data Analysis with Fresco

Fresco and SfrescoData Analysis

ThanksPeople who helped us

Our hosts

Our supervisors:Prof. Ismail BOZTOSUNProf. Nick KEELY

Group C and their supervisors

ALL OF YOU!

Genkov, Direkci Group D Nuclear Reactions - Theory