g‐protein coupled receptor mediated …...5.3 pac1 and d1 receptor mediated effects on synaptic...

111
G‐PROTEIN COUPLED RECEPTOR MEDIATED METAPLASTICITY AT THE HIPPOCAMPAL CA1 SYNAPSE BY BIKRAMPAL SINGH SIDHU A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Physiology University of Toronto ©Copyright by Bikrampal Singh Sidhu (2009)

Upload: others

Post on 29-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

 

 

G‐PROTEIN COUPLED RECEPTOR MEDIATED METAPLASTICITY 

AT THE HIPPOCAMPAL CA1 SYNAPSE 

 

 

BY 

 

 

 

BIKRAMPAL SINGH SIDHU 

 

 

 

 

 

 

A thesis submitted in conformity with the requirements  

for the degree of Master of Science 

Graduate Department of Physiology 

University of Toronto 

©Copyright by Bikrampal Singh Sidhu (2009)   

Page 2: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

ii  

G‐PROTEIN COUPLED RECEPTOR MEDIATED METAPLASTICITY AT THE HIPPOCAMPAL CA1 SYNAPSE 

By 

Bikrampal Singh Sidhu 

Master of Science 

Department of Physiology 

University of Toronto 

2009 

 

 

 

 

 

Activity of the NMDA receptor is crucial for CA1 plasticity. Functional modification of the receptor is one way to modulate synaptic plasticity and affect hippocampus dependent behaviours. Two GPCRs, the dopamine receptor D1 and the PACAP38 receptor PAC1, have been shown to enhance NMDA activity via Gq and Gs signaling pathways respectively. Enhancement of NMDAR activity by the D1/Gs pathway depends on phosphorylation of the NR2B subunit by Fyn kinase. Conversely, enhancement by the PAC1/Gq pathway depends on phosphorylation of the NR2A subunit by Src kinase. SKF81297, a D1 agonist, was shown to enhance LTD whereas PACAP38, through the PAC1 pathway, was shown to lower the threshold for LTP. Both effects were blocked by specific antagonists and shown to be dependent on NR2 subunit phosphorylation. Ultimately, physiological metaplasticity at the CA1 synapse may be mediated by the relative activation of many GPCR signaling pathways via modification of the NR2 subunit.   

Page 3: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

iii  

Acknowledgements Writing acknowledgements seems like a lose‐lose situation. On the one hand, there are tens if not hundreds of people who have helped me get to where I am today and I will undoubtedly not have space to thank them all; on the other hand, there is no way I could complete this work without thanking them. And so in advance, to everyone who thinks there name ought to appear here, and it doesn’t, rest assured that I am grateful for all of your contributions, physical, mental, emotional, intellectual or even financial. Without them, this work wouldn’t have been possible.  

The first person I would specifically like to thank is John MacDonald. I appreciate the opportunities you have given me, from having faith in me the first time around in the lab and then seeing something (who knows what?) and bringing me back again and again. Thank you for fostering and perhaps even instilling a love for research and teaching that I hope I can carry through to my career. 

To all the people who helped me out, Mike J, Mike B, Hongbin, Waldy: for holding my hand through various periods of cluelessness. To them and everyone else in the lab, Lidia, Ella, Cat, Rohit, Oies, Nat, Kai: for keeping me sane (because we know I’m at least slightly off my rocker) and making the lab a place I wanted to be.  

And of course, my experience wouldn’t have been complete without my roommate Michelle. I strain to understand how on earth you put up with my crazies. How on earth I put up with yours is unfathomable. (Go Team!) 

To my committee, Drs. Charlton, Josselyn, Wojtowicz, I have to thank you for all the positive feedback and help in facilitating this thesis.  

Lastly, but never leastly, I have to thank my family for supporting my academic aims always. I appreciate your pushing me to finish what I set my mind to, and doing everything you can to help me get there.  

Two degrees. Maybe only two more to go. One day I’ll finish with school and all of you will have had a tremendous part to play. Thank you. 

   

Page 4: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

iv  

I. Abstract…ii II. Acknowledgements…iii III. Table of Contents…iv IV. List of Figures…vi V. Abbreviations Used…vii VI. Section One – Introduction…1 

1.1 Synaptic Transmission…2   1.1.1 Excitatory Neurotransmission…4   1.1.2 Glutamate Receptors…4   1.1.3 AMPA Receptors…5   1.1.4 NMDA Receptors…5   1.1.5 NMDA Receptor Subunits…7 1.2 G‐protein Coupled Receptors…10   1.2.1 Pituitary Adenylate Cyclase Activating Polypeptide…13   1.2.2PAC1 Receptor…15   1.2.3 PAC1 Receptor Signal Transduction…16   1.2.4 Dopamine…17   1.2.5 D1 Receptor…19   1.2.6 D1 Receptor Signal Transduction…19 1.3 Hippocampus…21 1.4 Synaptic Plasticity…22   1.4.1NMDA Receptor Dependent Synaptic Plasticity…23   1.4.2 Src Family Kinases, NMDARs and Synaptic Plasticity…26   1.4.3 Metaplasticity…28 

VII. Section Two – Rationale and Hypothesis…31 2.1 GPCRs Modulate NMDA Receptor Function…32   2.1.1 GPCR Mediated Effects are Subunit Specific…32 2.2 NR2 Subunit Contributions to Metaplasticity…36 2.3 Hypothesis…36 

VIII. Section Three – Methods…38 3.1 Hippocampal Slice Recordings…39 3.2 Animals…41 3.3 Drugs and Peptides…41 3.4 Statistical Analysis…41 

IX. Section Four – Results…43 4.1 PACAP38  has no effect on baseline synaptic transmission…44 4.2 PACAP38 alters synaptic plasticity induction…46 4.3 PACAP38 mediated reversal of LTD at 10Hz is PAC1R dependent…53 4.4 D1 agonist SKF81297 alters synaptic plasticity induction…55 4.5 SCH23390 blocks the effect of SKF81297 at 10Hz…62 4.6 Neither PACAP38, nor SKF81297 alters presynaptic release…64 4.7 PAC1 antagonist M65 attenuates LTP induction at 100Hz…67 4.8 PACAP38 preferentially increases NR2A phosphorylation…69 4.9 SKF81297 preferentially increases NR2B phosphorylation…71 

Page 5: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

v  

X. Section Five – Discussion…74 5.1 Summary of Key Findings…75 5.2 PAC1R and D1R Modulation of NMDARs…75 5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity of PAC1 and D1 Activation…82 5.6 Extensions and Future Directions…83 5.7 Overall Conclusions…85 

XI. Section Six – References…87 

 

Page 6: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

vi  

List of Figures Figure 1.1 The Hippocampus, Synapse and Excitatory Neurotransmission…3 

Figure 1.2 The NMDA Receptor…9 

Figure 1.3 The Gq‐signaling Pathway…11 

Figure 1.4 The Gs‐signaling Pathway…12 

Figure 1.5 NMDA Receptor Dependent Long‐term Potentiation…25 

Figure 1.6 The Bienenstock‐Cooper‐Munro Model of Metaplasticity…30 

Figure 2.1 PACAP38 Mediated Modulation of NMDA Receptors…34 

Figure 2.2 D1 Mediated Modulation of NMDA Receptors…35 

Figure 3.1 Acutely Prepared Hippocampal Slice Recordings…42 

Figure 4.1 Effect of PACAP38 on Baseline Evoked fEPSPs…45 

Figure 4.2 Effects of PACAP38 on Induction of Synaptic Plasticity…47 

Figure 4.3 M65 Blocks Effects of PACAP38 at 10Hz…54 

Figure 4.4 Effects of SKF‐81297 on Induction of Synaptic Plasticity…56 

Figure 4.5 SCH23390 Blocks Effects of SKF81297 at 10Hz…63 

Figure 4.6 Effects of PACAP38, SKF81297, and SCH23390 on Presynaptic Release…66 

Figure 4.7 M65 Mediated Attenuation of LTP Induction…68 

Figure 4.8 PACAP38 Induces NR2A Phosphorylation…70 

Figure 4.9 SKF81297 Induces NR2B Phosphorylation…72 

Figure 4.10 NR2B Phosphorylation by SKF81297 is Fyn mediated…73 

Page 7: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

vii  

Abbreviations Used  AC – adenylyl cyclase AMPA(R) – ‐amino‐3‐hydroxyl‐5‐methyl‐4‐isoxazolepropionic acid (receptor) ATP – adenosine triphosphate BCM – Bienenstock‐Cooper‐Munro CAK/Pyk2 – cell adhesion kinase /proline rich tyrosine kinase 2 CaMKII – calcium/calmodulin‐dependent protein kinase II cAMP – 3’,5’‐cyclic adenosine monophosphate Csk – C‐terminal Src kinase DAG ‐ diacylglycerol DG – dentate gyrus EC – entorhinal cortex EPSP/EPSC – excitatory postsynaptic potential/current ER – endoplasmic reticulum GPCR – G‐protein coupled receptor IP3(R) – inositol triphosphate (receptor) LTD/LTP – long‐term depression/potentiation mGluR – metabotropic glutamate receptor NMDA(R) – N‐methyl‐D‐aspartate (receptor) PACAP38/PACAP27 – pituitary adenylyl cyclase activating polypeptide with 38/27 residues PIP2 – phosphatidylinositol‐4,5‐bisphosphate PKA – cAMP dependent protein kinase A PKC – protein kinase C PLC – phospholipase C PP1/PP2B – protein phosphatase 1/protein phosphatase 2B (calcineurin) PPi ‐ pyrophasphate PTP – protein tyrosine phosphatase  RACK1 – receptor for activated c‐kinase 1 SCH‐23390 – R(+)‐7‐chloro‐8‐hydroxy‐3‐methyl‐1‐phenyl‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine SFK – Src family kinase SKF‐81297 – 6‐chloro‐2,3,4,5‐tetrahydro‐1‐phenyl‐1H‐3‐benzazepine STEP/PTPN5 – striatal enriched phosphatase VDCC – voltage dependent calcium channel VIP – vasoactive intestinal peptide 

   

Page 8: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

1  

 

 

 

SECTION ONE 

 

INTRODUCTION 

Page 9: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

2  

The mammalian hippocampus is a requisite structure for the formation and 

consolidation but not storage of long‐term memories. The prevalent theories state that 

at the cellular level this is achieved by long‐lasting changes in synaptic strength, termed 

synaptic plasticity. In the CA1 region of the hippocampus, synaptic plasticity has been 

determined to be dependent on the N‐methyl‐D‐aspartate (NMDA) receptor and is 

modifiable by upstream signaling pathways. Altered signaling of the NMDA receptor has 

therefore been studied with respect to the ability to learn and remember as well as 

being implicated in pathological signaling states, particularly schizophrenia. 

1.1      Synaptic Transmission 

The transmission of signals between neurons is achieved at specialized locations termed 

synapses. Synapses themselves are made up of a presynaptic neuron terminal, or 

bouton, a postsynaptic membrane, and the intervening space called the synaptic cleft. 

Transmission is begun by the firing of an action potential in the presynaptic cell, and the 

propagation of this action potential to the presynaptic terminal. There, voltage‐

dependent calcium channels (VDCCs) rapidly increase intracellular calcium (Ca2+) 

concentrations and cause the fusion of docked synaptic vesicles immediately inside the 

presynaptic membrane (Rizo and Rosenmund, 2008). The fusion of these vesicles results 

in the exocytosis and diffusion of the contained neurotransmitter across the synaptic 

cleft. The transmitter binds its postsynaptic receptors, where the effects are dependent 

on the receptor and cell type (Figure 1.1D; Rizo and Rosenmund, 2008). 

   

Page 10: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

3  

 

Figure 1.1 The Hippocampus, Synapse, and Excitatory Neurotransmission A. Position of the hippocampus in the human brain. The hippocampus is positioned underneath the medial temporal cortex of the mammalian brain (Gray, 1918). B. A schematic of the circuitry of the hippocampus showing the CA regions, entorhinal cortex, subiculum, and dentate gyrus (Ramon y Cajal, 1952). C. A scanning electron micrograph clearly showing a synaptic regions (s1,s2). Transmitter vesicles are clearly shown in the axon termini (At1,At2) and the postsynaptic density is shown in the dendrite (Den) (Peters et al., 1991). D. A simplified schematic of basal excitatory neurotransmission. Glutamate release from the presynaptic bouton activates AMPA and NMDA receptors. The NMDA receptor is blocked by magnesium and the AMPA receptor allows the influx of sodium. A postsynaptic depolarization is shown (inset). 

   

Page 11: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

4  

1.1.1 Excitatory Neurotransmission 

By far the most common type of postsynaptic effect is one in which the postsynaptic 

neuron becomes more likely to fire an action potential of its own, or is excited 

(Kennedy, 2000). The effect on the postsynaptic cell is most commonly cation influx 

through ligand‐gated ion channels and a resultant depolarization, an excitatory 

postsynaptic potential (EPSP). In the case of glutamatergic synapses, the most common 

excitatory synapse, the basal EPSP is mediated by postsynaptic glutamate receptors 

(Kennedy, 2000). 

 

1.1.2 Glutamate Receptors 

Glutamate as a neurotransmitter can act on target cells via a number of different 

signaling pathways initiated by different receptors. The receptors can be broadly 

classified in terms of their method of action and further classified based on their specific 

agonists. Broadly, glutamate mediated signal transduction can be metabotropic or 

ionotropic. The metabotropic glutamate receptors (mGluRs) make up a class of 8 G‐

protein coupled receptors (GPCRs, mGluR1‐mGluR8) (Nakanishi, 1994; Conn and Pin, 

1997). The ionotropic glutamate receptors, on the other hand, are all ligand gated ion 

channels; these can be subdivided based on their specific agonists as the ‐amino‐3‐

hydroxy‐5‐methyl‐isoxazolepropionic acid (AMPA), NMDA, and kainate receptors 

(Dingledine et al., 1999). The work of this thesis centers on the AMPA and NMDA 

receptors and they are discussed in more detail.   

Page 12: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

5  

1.1.3 AMPA Receptors 

The AMPA receptor is the predominant receptor at active glutamatergic synapses. As 

above, it is a ligand‐gated ion channel that opens in response to the binding of 

extracellular glutamate. In baseline conditions, the AMPA receptor is non‐selective for 

monovalent cations and allows the passive influx of sodium and efflux of potassium 

(Dingledine et al., 1999). The measured EPSP is dominated by this AMPA receptor 

mediated depolarization, but may have some contribution from the NMDA receptor. 

Depending on the intracellular conditions and in particular its phosphorylation state, the 

AMPA receptor can be internalized from or inserted into the postsynaptic membrane 

and, furthermore, conductances through the pore can be enhanced or depressed (Man 

et al., 2007; Derkach et al., 1999). 

1.1.4 NMDA Receptors 

The other major ionotropic glutamate receptor, the NMDA receptor, is a ubiquitous 

receptor in the central nervous system with essential roles in neurotransmission. 

Although originally thought to be a pentameric receptor, crystal structures have 

revealed it to be heterotetrameric receptor ion channel comprised of two obligatory 

NR1 subunits and two variable NR2 or NR3 subunits (Clements and Westbrook, 1991; 

Laube et al., 1998; Furukawa et al., 2005). There are four possible NR2 subunits (NR2A‐

D) and two possible NR3 subunits (NR3A‐B) and therefore 18 theoretically possible 

channel configurations. However, only two appear to be prevalent in the context of the 

hippocampus, the NR1/NR2A/NR2A and NR1/NR2B/NR2B receptors (Paoletti and 

Neyton, 2007; Groc et al., 2006; Neyton and Paoletti, 2006).  

Page 13: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

6  

Functionally, the NMDA receptor pore is opened in response to the binding of 

glutamate. However, the pore is quickly blocked by extracellular magnesium (Mg2+). This 

block is relieved by sufficient depolarization of the postsynaptic membrane, causing an 

ejection of Mg2+ (MacDonald et al., 1982; Nowak et al., 1984; Mayer et al., 1984). For 

these reasons, the NMDA receptor is often called a coincidence receptor, activated only 

if glutamate is present during a state of sufficient depolarization. It is possible that 

sufficient depolarization is not achieved by the AMPA receptors at a single synapse and 

therefore there must be spatially or temporally summated excitation in order to activate 

the receptor. Also, for gating of the channel, a co‐agonist, either glycine or D‐serine (in 

vivo) must bind the NR1 subunit (Schell et al., 1995; Hirai et al., 1996; Schell et al., 

1997). 

Upon activation, the NMDA receptor functions as a cation channel allowing the efflux of 

potassium and influx of sodium as well as, in contrast to the AMPA receptor, calcium 

(Rogers and Dani, 1995) (Figure 1.2). This influx of calcium is crucial to the downstream 

signaling pathways that are initiated secondary to NMDA receptor activation, such as 

synaptic plasticity (Zhang et al., 1998). Kinetically, the NMDA receptors are considered 

to be slow when compared to the AMPA and kainate receptors, with mean open times 

of several hundred milliseconds (Jahr, 1992; Wyllie et al., 1998; Lester et al., 1999). 

Relief of the Mg2+ block and “slow” calcium influx adds to the depolarization and 

further relieves Mg2+ block. This positive feedback loop creates a high concentration 

calcium microdomain in the postsynaptic area which can and does activate a variety of 

Page 14: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

7  

calcium dependent intracellular signal pathways (Guthrie et al., 1991; Muller and 

Connor, 1991; Yuste and Denk, 1995).   

1.1.5 NMDA Receptor Subunits 

The signaling pathways upstream and downstream of the NMDA receptor are highly 

dependent on the subunit composition of the receptor (Hardingham et al., 2002; Cui et 

al., 2007; Beazely et al., 2009; Xiong et al., 1998). Structurally, each subunit is comprised 

of an extracellular N‐terminus, four transmembrane domains (TMI‐IV) including a re‐

entrant pore forming loop (TMII) and an intracellular C‐terminal tail. The ligand binding 

site is formed by the N‐terminus in conjunction with an extracellular loop between TMIII 

and TMIV (Figure 1.2) (Wood et al., 1995; Kuner et al., 1996). The NR1 binding pocket is 

selective for glycine or D‐serine, whereas the NR2 subunit binds glutamate (Oh et al., 

1994; Sun YJ et al., 1998). 

The NR1 subunit can exist in eight configurations by way of three distinct splice sites, 

one in the N‐terminus and two in the C‐terminus. Alternately, the NR2 subunits are 

distinct gene products; the NR3 subunits exist in two configurations, long and short, 

based on the presence or absence of a 20 amino acid (aa) insert (Sun L et al., 1998).  

The differences between the NR2A and NR2B containing receptors are both slight and 

stark, structurally and functionally. Both receptors have all the functional qualities of 

NMDA receptors described above; both receptors have all of the physical qualities 

described above; lastly, both receptors are modifiable in the same ways. In particular, 

both NR2A and NR2B subunits have long intracellular C‐termini with multiple potential 

Page 15: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

8  

serine, threonine and tyrosine phosphorylation sites. However, developmentally, the 

NR2A containing receptor predominates in synaptic sites at mature synapses whereas 

the NR2B containing receptor predominates in synaptic sites at juvenile synapses and 

extrasynaptic sites in the mature animal (Sans et al., 2000). Furthermore, activation of 

the NR2A containing receptor is implicated in neuroprotection whereas the NR2B 

containing receptor has been implicated in neurotoxicity (Liu et al., 2007). Lastly, 

channel kinetics and calcium signaling are highly dependent on NR2 subunit 

composition, with NR2A containing receptors showing higher open probabilities, higher 

total charge transfer during high frequency stimulation, and lower total charge transfer 

during low frequency stimulation protocols (Erreger et al., 2005) Therefore, the two 

receptors appear to have different downstream signaling pathways, either via location 

(Sans et al., 2000), physical coupling (Cui et al., 2007), or differences in calcium signaling 

(Erreger et al., 2005; Liu et al., 2007). Both the NR2A and NR2B containing receptors 

have highly modifiable intracellular C‐termini with multiple phosphorylation sites 

(Leonard and Hell, 1997; Tingley et al., 1997). However, these phosphorylation sites, 

particularly those affected by tyrosine kinases, are different in the two receptors. For 

instance, two Src family kinases (SFKs), Src and Fyn kinases, each have three unique 

phosphorylation target sites on the NR2A and NR2B C‐terminal tails respectively (Salter 

and Kalia, 2004). Therefore, it appears that the two receptors also have different 

upstream signaling pathways. The conjunction of these differences suggests that the 

NMDA receptor has different physiological functions depending on the NR2 subunit 

present.   

Page 16: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

9  

 

Figure 1.2. The NMDA Receptor A. The NMDA receptor is a membrane ion channel heterotetramer with two NR1 subunits and two NR2 subunits. Each NR1 subuit binds serine and each NR2 subunit binds glutamate. B. The NMDA receptor shown in cross‐section. The pore allows the influx of extracellular sodium and calcium, but is blocked by magnesium. The block can be relieved by sufficient depolarization. C. A schematic of NMDA receptor subunits shows the three transmembrane domains and pore forming reentrant loop (TMII). The black circles indicate splice sites for the NR1 subunit and the grey circle indicates the ligand binding domain.  

   

Page 17: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

10  

1.2 G­protein Coupled Receptors 

In contrast to the ionotropic glutamate receptors discussed above, a number of 

neurotransmitters and neuromodulators can act via intracellular signaling cascades 

initiated by GPCRs. Simply, a GPCR is a seven transmembrane domain containing 

receptor coupled to a triheteromeric G‐protein consisting of , , and  subunits. Upon 

ligand binding, GTP hydrolysis by the G subunit causes a release of the G subunits and 

initiation of the second messenger cascade (Neves et al., 2002). The GPCRs can be 

classified by the downstream effects of the G subunits as Gi/o, Gq, or Gs. Gq and Gs type 

G‐proteins are discussed further.  

Gq‐type G subunits stimulate membrane docked phospholipase C (PLC), an enzyme that 

cleaves the phospholipid phosphatidylinositol (PIP2) to diacyl glycerol (DAG) and 

inositol‐1,4,5‐triphosphate (IP3). Membrane bound DAG activates protein kinase C (PKC), 

and IP3 is stimulates its receptors (IP3Rs) on the endoplasmic reticulum (ER) releasing 

intracellular calcium (Figure 1.3) (Neves et al., 2002).  

Gs‐type G subunits, on the other hand, stimulate the transmembrane protein adenylyl 

cyclase (AC), an enzyme that catalyzes the conversion of adenosine triphosphate (ATP) 

to 3’,5’‐cyclic‐adenosine monophosphate (cAMP) and pyrophosphate (PPi). Intracellular 

cAMP activates cAMP‐dependent protein kinase (PKA) (Figure 1.4) (Neves et al., 2002). 

Both Gq and Gs type G proteins’ further downstream effects are dependent on the PKA, 

PKC and calcium dependent pathways of the cell.   

Page 18: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

11  

 

Figure 1.3 The Gq‐signaling Pathway. The Gq alpha subunit activates PLC which cleaves PIP2, a membrane phospholipid into diacylglycerol (DAG) and inositol triphosphate (IP3). IP3 mobilizes intracellular calcium stores from the ER and along with DAG, this activates protein kinase C (PKC).    

Page 19: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

12  

 

Figure 1.4 The Gs‐signaling Pathway. The Gs alpha subunit activates adenylyl cyclase (AC) which catalyzes 

the breakdown of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) and 

pyrophosphate (PPi). cAMP is then able to activate protein kinase A (PKA).

Page 20: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

13  

The major GPCR pathways investigated by this work are pituitary adenylyl cyclase 

activating polypeptide (PACAP) and dopamine mediated and these are further 

discussed. 

1.2.1 Pituitary Adenylyl Cyclase Activating Polypeptide 

In attempting to identify a novel hypophysiotropic hormone from hypothalamic tissue, 

Miyamata et al. screened fractions for AC stimulating activity. From this approach, a 

highly basic, 38 residue ‐amidated peptide that strongly stimulates cAMP production 

was isolated and named pituitary adenylyl cyclase activating polypeptide (PACAP38) 

(Miyata et al., 1989). Subsequently, a less basic and less active ‐amidated polypeptide 

of the 27 N‐terminal residues was isolated and referred to as PACAP27. Homology 

studies show 68% sequence similarity between VIP and PACAP27 suggesting that PACAP 

is a member of the secretin/glucagon/VIP superfamily of peptides (Miyata et al., 1990). 

Functionally, PACAP38 and PACAP27 have both been shown to be about 1000 fold more 

potent AC activators than VIP and it is suggested that the physiological function of 

PACAP is vital, as the sequence is highly conserved across species and murine, ovine and 

human PACAP38 show sequence identity (Kimura et al., 1990). 

Across species, PACAP is processed from a pre‐proprotein of 175 (rat, murine) or 176 

(ovine, human) amino acids. In the pre‐proprotein, PACAP38 is preceded by a putative 

signal peptide and a “pro‐region” and followed by a proteolytic processing and 

amidation sequence, Gly‐Arg‐Arg. It is possible that PACAP38 is further processed into 

PACAP27 via ‘re‐processing’ and amidation at a Gly‐Lys‐Arg site although it is more likely 

that the pro‐protein is directly cleaved and amidated at the upstream site to create 

Page 21: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

14  

PACAP27. In the human, PACAP is the product of the ADCYAP1 gene with 5 exons and 4 

introns. Exon 1 is untranslated and exon 5 encodes the full length PACAP38 (Hosoya et 

al., 1992).  

Although discovered in the hypothalamus, PACAP and its receptors have since been 

localized in a wide variety of tissues with an equally wide variety of effects (Gottschall et 

al., 1990; Pisegna and Wank, 1993). One source for this variety is that PACAP can act on 

three distinct receptors, classified based on their differing affinities for PACAP and VIP. 

PAC1 receptors demonstrate a high affinity for PACAP38 and PACAP27 and a very low 

affinity for VIP, whereas the VPAC receptors, VPAC1 and VPAC2, have similar affinities 

for both PACAPs and VIP.  PAC1 receptors are therefore designated as PACAP specific. 

All three receptors are class‐II G‐protein coupled receptors, having: i) large N‐terminal 

extracellular domains conferring ligand specificity, ii) N‐terminal hydrophobic signal 

sequence, iii) six strictly conserved cysteine residues, iv) multiple N‐glycosylation sites, 

and v) a strictly conserved 83 amino acid sequence (Pisegna and Wank, 1993). The VPAC 

receptors are expressed in a variety of brain regions, but where they are co‐expressed 

they appear to be complementary; in general, VPAC1 and VPAC2 receptors do not 

appear in the same cells. In terms of the hippocampal formation, the VPAC1 receptor 

has been identified in both the hippocampus proper as well as the dentate gyrus with 

little if any VPAC2 expression (Usdin et al., 1994). Although classically all three PACAP 

receptor subtypes are Gs coupled, all three can also be Gq coupled and the VPAC 

receptors can also be Gi coupled. Therefore, signal transduction through all three PACAP 

Page 22: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

15  

receptors appears to be heavily dependent upon the specific cell type’s G‐protein and 

second messenger complement. 

1.2.2 PAC1 Receptor 

The PAC1 receptor, like PACAP and the VPAC receptors has been localized throughout 

the mammalian brain and peripheral tissues. In the hippocampus, PAC1R mRNA has 

been localized in the CA1‐CA4 pyramidal cells (Cauvin et al., 1991).  

The PAC1 receptor is considered one of the most heavily spliced GPCRs discovered with 

variations in intracellular loops, transmembrane domains and N‐terminal regions. Six 

common and important splice variants arise from the presence of absence of two 28aa 

cassettes (hip, hop) in the third intracellular loop. The six variants are: neither cassette 

(PAC1‐s), one cassette (PAC1‐hip, PAC1‐hop1, PAC1‐hop2), or two cassettes (PAC1‐

hiphop1, PAC1‐hiphop2) (Zhou et al., 2000). Hop1 and hop2 (27aa) are thought to arise 

via different splice acceptor sites in the hop cassette. All of these variants stimulate 

cAMP production through a Gs signaling mechanism, but only PAC1R‐hip appears to 

have no Gq related activity (Spengler et al., 1993). Another important splice variant is 

PAC1R‐TM4 with a sequence modification in transmembrane region IV. PAC1R‐TM4 is 

unique in that it does not appear to couple to G‐proteins at all but instead activates L‐

type calcium channels (Chatterjee et al., 1996). A third class of PAC1 variants with 

alternative splicing in the N‐terminal domain appears to attenuate or abolish Gs 

signaling while maintaining or enhancing PLC activity (Dautzenberg et al., 1999).  

Page 23: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

16  

Pharmacological investigations of the PAC1 receptor are limited by the relative scarcity 

of tools. Maxadilan, a very potent agonist of the PAC1 receptor with no sequence 

homology with PACAP, and subsequently no VPAC activity, was isolated from the 

leishmaniasis causing sand‐fly Lutzomia lingipalpis and modified to produce the potent 

PAC1 antagonist, M65 (Moro and Lerner, 1997; Uchida et al., 1998). In addition, N‐

terminal truncated PACAP, PACAP(6‐38), has been shown to be a potent antagonist of 

the PAC1 receptor (Robberecht et al., 1992). 

1.2.3 PAC1 Receptor Signal Transduction 

Although investigations into PACAP38’s effects on neurotransmission are relatively 

young, there have been a number of promising developments in the field. As above, the 

CA1 hippocampus contains both PACAP as well as the PAC1 receptor and the PAC1 

receptor can activate both PKA and PKC dependent intracellular pathways. Therefore, it 

follows that activation of the PAC1 receptor should directly affect the NMDA receptor 

and by extension have effects on synaptic plasticity. Indeed, it has been shown that low 

concentrations of PACAP can potentiate NMDA mediated responses and modulate LTP. 

Furthermore, studies on PACAP and PAC1 knockout mice have demonstrated impaired 

memory retention and consolidation, two hippocampus dependent processes.  

Briefly, it has been hypothesized that PACAP can affect the NMDA receptor by a Fyn 

kinase dependent phosphorylation of NR2B subunits. In this situation, Gs pathways 

stimulate PKA dependent phosphorylation of the receptor for activated C‐kinase 

(RACK1), causing a disinhibition of Fyn. A separate set of experiments has demonstrated 

Page 24: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

17  

that very low concentrations of PACAP38 can induce a potentiation of CA1 field EPSPs 

that occludes the induction of LTP, whereas high concentrations depress the same. In 

our own investigations into the effects of PACAP on CA1 activity, we have not been able 

to elicit any effects on NMDA receptors with very low concentrations, but have been 

able to demonstrate the same high concentration inhibition. Moreover, although PAC1 

can be both Gs and Gq coupled, we have been able to show that it is the Gq‐PKC‐Src 

pathway that is responsible for the enhancement in NMDA activity.  

The results of the relatively few studies into PACAP38’s effects on CA1 transmission 

suggest that there is a concentration dependent effect of PACAP38 on NMDA receptors. 

Although not yet thoroughly investigated, it is possible that these effects are dependent 

on very different molecular mechanisms: directly at the NMDA receptor, via VPAC 

receptors, and via PAC1 receptors, both Gs and Gq coupled. 

1.2.4 Dopamine 

In contrast to PACAP, dopamine, or 4‐(2‐aminoethyl)benzene‐1,2‐diol, has a long 

history, being first synthesized in the early twentieth century. It was not, however, 

studied extensively until it was recognized as a physiologically important molecule in its 

discovery as a precursor in the formation of norepinephrine. Subsequently, the 

discovery of high concentrations of dopamine in the striatum, with little concurrent 

norepinephrine, sparked investigations into dedicated functions of dopamine (Raab and 

Gigee, 1951; Vogt, 1954; Bertler and Rosengren, 1959).  

Page 25: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

18  

The synthesis of dopamine is a two step process from the precursor amino acid tyrosine: 

in the first step, tyrosine hydroxylase converts tyrosine into L‐3,4‐

dihydroxyphenylalanine (L‐DOPA) and in the second step, L‐DOPA is decarboxylated into 

dopamine (Misu et al., 2003). The presence of dopaminergic neurons in the CNS is often 

determined, therefore, by the presence of tyrosine hydroxylase activity. 

The effects of dopamine in the central nervous system are mediated by its membrane 

receptors, which are G‐protein coupled. Based on signal transduction mechanisms, 

dopamine receptors have been divided into two broad categories: D1‐type and D2‐type 

receptors. The D2‐type receptors, D2, D3, and D4, are grouped based on their negative 

regulation of AC activity (Gi coupled). The D1‐type receptors, D1 and D5, are grouped 

based on their positive regulation of AC activity (Gs coupled). It is suggested that the 

differences in these classes is due to the differences in the third intracellular loop: D1‐

type receptors have a short loop, where D2‐type receptors have a long third 

intracellular loop (Kozell et al., 1994). The D1 receptors are discussed further. 

Physiologically, dopamine and its receptors have been implicated in a wide variety of 

functions in a wide variety of brain areas including control of hormone secretion, 

cognition, reward, and locomotion. In the hippocampus, dopamine has been implicated 

in synaptic plasticity, spatial navigation, passive avoidance, reinforcement learning and 

visual discrimination. Pathophysiologically, dopamine dysfunction has been implicated 

strongly in a number of neurological and psychiatric disorders including Parkinson’s 

disease, schizophrenia and drug abuse. Of particular relevance, pathological increases in 

Page 26: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

19  

dopaminergic activity and decreases in glutamatergic activity have both been implicated 

in the etiology of psychotic disorders.  

1.2.5 D1 Receptor  

The D1 dopamine receptor is most abundant dopamine receptor in the CNS. It has been 

located in a wide variety of locations including cortical and subcortical areas, pre‐ and 

post‐ synaptic membranes and in dendritic spines and axon terminals (Fremeau et al., 

1991; Huang et al., 1992). Unlike the D2 receptor, the human D1 receptor has not been 

identified outside of the CNS (Dearry et al., 1990). Dopaminergic input to the 

hippocampus from the mesolimbic pathway terminates on D1 receptors that display a 

dentate gyrus‐CA1 gradient (Mansour et al., 1991; Amenta et al., 2001). 

Unlike PACAP and the PAC1 receptor, there is a large variety of pharmacological tools 

available for the study including the benzazepine derivatives 6‐chloro‐2,3,4,5‐

tetrahydro‐1‐phenyl‐1H‐3‐benzazepine (SKF‐81297) and R(+)‐7‐chloro‐8‐hydroxy‐3‐

methyl‐1‐phenyl‐2,3,4,5‐tetrahydro‐1H‐3‐benzazepine (SCH‐23390), a specific agonist 

and antagonist respectively. 

1.2.6 D1 Receptor Signal Transduction 

When compared to the PAC1 receptor, investigations into dopaminergic effects on 

neurotransmission are vast and varied. A large number of studies have shown direct 

effects of D1 receptor activation on NMDA receptor function. In particular, chronic 

antagonism of the D1 receptor has been shown to significantly affect NMDA receptor 

function in the CA1 hippocampus (Tarazi et al., 1996), whereas activation of the same 

Page 27: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

20  

enhances NMDA receptor function (Yang, 2000). Furthermore, it has repeatedly been 

reported that D1 agonists and antagonists can both facilitate and inhibit the induction 

and maintenance of LTP at the hippocampal and whole organismal levels (Stramiello and 

Wagner, 2008; Navakkode et al., 2007; Granado et al., 2008; Otmakhova and Lisman, 

1996).  

These previous investigations leave a large amount of speculation as to the exact role of 

D1 receptor activity on CA1 hippocampal NMDA activity and synaptic plasticity. Recent 

studies into D1 activity in the hippocampus have demonstrated an enhancement of LTP 

dependent on PKA, SFKs and NR2B containing receptors (Stramiello and Wagner, 2008). 

A significant study has shown that D1 mediated modulation of NMDA receptors depends 

on the subunit composition of the receptors, enhancing NMDAR activity in regions of 

low NR2A:NR2B ratios and inhibiting NMDAR activity in regions of high NR2A:NR2B 

ratios and that the ratios themselves are modifiable by D1 activity (Varela et al., 2009). 

In terms of synaptic plasticity, there is a similar variance in investigations. There are 

studies that have shown that D1 activation can enhance LTP (Otmakhova and Lisman, 

1996), enhance LTD (Chen et al. 1996; Chen et al., 1995), and even cause a form of 

chemical‐LTP not dependent on the NMDA receptor (Huang and Kandel, 1995). Still 

other studies suggest D1 receptor agonism simply predisposes synapses to plasticity, 

both LTP and LTD (Lemon and Manahan‐Vaughan, 2006) The unique cellular effects of 

D1 receptor agonism on long‐term synaptic plasticity are therefore probably highly 

dependent on cell‐type and intracellular protein complement.  

Page 28: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

21  

1.3 Hippocampus 

Since the beginnings of anatomy, the hippocampus has been one of the most frequently 

studied mammalian structures. Its prominence in the human brain as well as its ease of 

removal without damage were initially its appealing features, but it has since been an 

ideal subject for study due to its demonstrable functional significance and ease of ex 

vivo study with the conserved so‐called trisynaptic circuitry (Figure 1.1B).  

Anatomically, the hippocampal formation is defined as the ventral elaboration of the 

medial temporal cortex. Here the temporal cortex narrows into a single layer of densely 

packed neurons and winds into an S‐shaped structure in the lateral ventricle (Figure 

1.1A; Ramon y Cajal, 1894). Although the limbic system is no longer considered a 

functionally relevant designation, the hippocampus is included as a structure. 

The transverse hippocampal formation consists of two interlocking C‐shaped regions, 

the dentate gyrus (DG) and the hippocampus proper. The simplified circuitry of the 

hippocampus begins in the entorhinal cortex (EC), projecting onto granule cells of the 

DG via the mossy fiber pathway. The perforant pathway projects from the DG into the 

CA3 region, which in turn projects into the CA1 region via the Schaeffer collaterals. The 

major output of the region is to the EC. This trisynaptic circuit is preserved in acutely 

prepared hippocampal slices, making it an ideal candidate for study of synaptic 

machinery.  

Functionally, the hippocampus has been shown to be relevant for explicit memory 

formation, spatial navigation and memory and is thought to be involved in numerous 

Page 29: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

22  

other processes. Synaptic plasticity was first discovered in the hippocampus and is thus 

thought to play a major role in the coding of memories (Bliss and Lomo, 1973). 

 

1.4 Synaptic Plasticity 

The mammalian brain is able to encode and store a remarkable variety of information 

for many years and neuroscientists have repeatedly pursued the question of how this is 

achieved. In many brain areas integral to memory formation, it has been shown that 

there are activity dependent long‐lasting changes in synaptic efficacy and this is widely 

believed to be the cellular equivalent of memory. This long‐term change can either be a 

potentiation (LTP) or depression (LTD) of synaptic communication and combined they 

are referred to as plasticity of the synapse. The fact that both LTP and LTD can be 

reliably generated in a variety of brain regions, both in vitro and in vivo, and is activity 

dependent, has been used to defend its functional relevance.  

Briefly, synaptic plasticity was postulated as Hebbian theory in the late 1940s, and even 

before that by the anatomist Ramon y Cajal, as the idea that if one neuron repeatedly 

and persistently activates another, the synapses between them will become 

strengthened and more stable (Ramon y Cajal, 1894; Hebb, 1949). The work done by the 

Andersen lab in the 1960s and 1970s established that synaptic plasticity, specifically LTP, 

can be induced in both anesthetized and awake animals’ hippocampi (Bliss and Lomo, 

1973). The large field of research into synaptic plasticity has since demonstrated both 

LTP and LTD at a variety of mammalian synapses and research into the mechanisms and 

Page 30: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

23  

modes of induction have resulted in anti‐Hebbian, non‐Hebbian, NMDA receptor 

dependent and independent forms of synaptic plasticity. In the hippocampus, for 

instance, LTP of the mossy fiber pathway is NMDA receptor independent whereas 

Schaeffer collateral – CA1 LTP is NMDA receptor dependent. Because this thesis focuses 

on the CA1 synapse, NMDA receptor dependent plasticity is discussed further. 

 

1.4.1 NMDA­receptor Dependent Synaptic Plasticity 

The CA1 synapse is one of the most heavily studied regions for synaptic plasticity. It has 

been repeatedly demonstrated by antagonists and calcium buffering that the NMDA 

receptor, and more specifically, calcium influx through the NMDA receptor is required 

for the long‐lasting changes at this synapse (Harris et al., 1984; Mulkey and Malenka, 

1992). Although highly controversial, it has been reported that the NR2A‐containing 

receptor mediated signaling leads to LTP whereas the NR2B‐containing receptor 

mediated signaling leads to LTD (Liu et al., 2004; Morishita et al., 2007). A more recent 

hypothesis suggests that it may be the ratio of contribution between the two NR2 

subunits that determines the direction of plasticity (Cho et al., 2009). Whichever the 

case, it is certain that calcium influx via the NMDA receptor is prerequisite for synaptic 

plasticity at the CA1 synapse.  

The mechanisms by which the calcium signal causes either LTP or LTD have been 

extensively studied and many of the major components of the pathway have been 

elucidated. In the case LTP, it has been shown that calcium‐calmodulin dependent 

Page 31: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

24  

kinase II (CaMKII) activation mediates a phosphorylation and postsynaptic insertion of 

AMPA receptors (Figure 1.5). More recently, LTD has been shown to be dependent on 

calcium mediated activation of calcineurin (protein phosphatase 2B, PP2B). PP2B 

activation dephosphorylates and disinhibits protein phosphatase 1 (PP1), which can 

subsequently dephosphorylate AMPA receptors with a resultant internalization 

(Kameyama et al., 1998; Lee et al., 1998; Lee et al., 2000). Whether changes in the 

phosphorylation state serve only to stabilize or destabilize AMPA receptors in the 

postsynaptic membrane or also change their channel properties is not definitively 

known, although some studies report no change in single channel AMPA conductance following 

plasticity inducing protocols (Shi et al., 1999; Oh and Derkach, 2005). 

 

 

   

Page 32: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

25  

 

Figure 1.5 NMDA Receptor Dependent Long‐term Potentiation. The induction of LTP begins with sufficient depolarization caused by influx of sodium through the AMPA receptor (1) as to cause a relief of extracellular magnesium block of the NMDA receptor pore (2). Subsequent influx of calcium through the NMDA receptor activates CaMKII and PKC (3) which in turn phosphorylate existing AMPA receptors (4) and cause a rapid insertion of new AMPA receptors (5). This stabilizes them in the membrane, increases single channel conductance and overall causes increased future activity.   

Page 33: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

26  

1.4.2 Src Family Kinases (SFKs), NMDA Receptors, and Synaptic Plasticity 

Although the Src family of tyrosine kinases has classically been associated with the 

etiology and pathogenesis of cancers, they also play an integral functional role in a 

number of other cellular processes. In terms of the CA1 hippocampus, there is much 

evidence to suggest that the Src family kinases (SFKs), and Src kinase in particular, are 

integral to long‐lasting synaptic plasticity (Grant et al., 1992; Lu et al, 1998; Kojima et al., 

1997). 

Briefly, the SFKs are a family of intracellular, modular, non‐receptor tyrosine kinases. 

Thus far, nine members of the family have been described in mammals, with numerous 

homologs in a wide variety of species, suggesting an integral role in cellular function 

(Tatosyan and Mizenina, 2000). At the hippocampal CA1 synapse, two of the SFKs, Src 

and Fyn, have been shown to be important regulators of NMDA receptor function as 

well as synaptic plasticity (Le et al., 2006; MacDonald et al., 2006; Yaka et al., 2003).  

Initial investigations into the role of non‐receptor tyrosine kinases in LTP showed that 

non‐functional mutations in Fyn, but not Src, causes an impairment in LTP and 

associated spatial learning tasks (Grant et al., 1992). However, subsequent studies have 

shown that Src as well as Fyn are important for these processes (Salter and Kalia, 2004). 

In particular, cultured and acutely isolated CA1 hippocampal neurons show an 

enhancement of NMDA receptor mediated currents and occlusion of LTP via an activator 

of endogenous Src (Lu et al., 1998; Huang et al., 2001); furthermore, inhibition of Src 

kinase by the synthetic peptide Src(40‐58), can impair induction of LTP (Lu et al., 1998). 

Page 34: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

27  

In concert, these results strongly suggest a pivotal role for Src in NMDA receptor 

dependent LTP at the CA1 synapse.  

Specific investigations into the molecular actions of Src kinase in LTP have shown that 

Src kinase activity is increased by PKC or Pyk2 activation (Huang et al., 2001; McCulloch 

et al., 2002; Seabold et al., 2003), and can be enhanced directly by sodium influx (Yu and 

Salter, 1998). Furthermore investigations it has been shown that dephosphorylation of 

tyrosine Y416 by the phosphatase STEP inhibits Src mediated enhancement of NMDARs 

(Salter and Kalia, 2004), and inhibition of dephosphorylation of Y524 by a separate 

phosphatase, PTPa, blocks the induction of LTP (Lei et al., 2002). A still further 

complicating piece of the Src dependent pathway is the demonstration that NMDA 

receptors and AMPA mediated currents are not subject to Src dependent modifications 

in the basal state due to a continuous inhibition by C‐terminal Src kinase (Csk) (Xu et al., 

2008). The interplay between these and other phosphatases and kinases is therefore 

strongly implicated in Src dependent NMDA receptor function during induction of 

synaptic plasticity.  

Along with this evidence suggesting a complex role for Src in regulating NMDA 

receptors, there is also a growing body of evidence suggesting the same for Fyn kinase. 

In particular, it has been demonstrated that LTP induction is correlated with 

phosphorylation of the NR2B tail at tyrosine residue Y1472 and that this site has a 

decreased phosphorylation with functional knockout of Fyn (Nakazawa et al., 2001). 

Furthermore, it has since been demonstrated that a scaffolding protein, RACK1, binds 

Page 35: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

28  

both Fyn and the NR2B subunit, and PKA‐dependent phosphorylation of RACK1 results 

in phosphorylation of the NR2B subunit by Fyn and enhancement of NMDA‐mediated 

currents (Yaka et al., 2003; Yaka et al., 2002). 

These complex interactions of Src, Fyn and the NMDA receptor are dependent therefore 

on a large number of scaffolding proteins, kinases, and phosphatases working in 

concert. The evidence suggests that the SFKs are each part of multipart complexes with 

the NMDA receptors, and that their interactions may therefore be receptor subtype 

specific.  

 

1.4.3 Metaplasticity 

Because synaptic plasticity is an integrative and highly complex process with both pre‐ 

and post‐ synaptic contributors, it was naturally thought that any modulation of 

intermediaries in synaptic plasticity can alter the nature of the plasticity induced. As one 

example, partial agonists of the NMDA receptor glycine binding site can enhance LTP 

and attenuate LTD (Zhang et al., 2008). These changes in synaptic plasticity, 

enhancements or attenuations, are together defined as metaplasticity, or the “plasticity 

of plasticity” (Abraham and Bear, 1996).  

Originally, the idea of metaplasticity was postulated and modeled mathematically on 

visual cortical neurons’ responses to binocular and monocular inputs (Bienenstock et al., 

1982). This Bienenstock‐Cooper‐Munro (BCM) theory of metaplasticity suggests that 

present postsynaptic activity is a function of previous postsynaptic activity and that this 

Page 36: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

29  

function is itself modifiable (Figure 1.6). The predictions of the BCM model have since 

been confirmed in visual cortical neurons as well as in the hippocampus.  

The BCM model can be simplified and made less mathematical by constraining it to 

NMDA receptor dependent plasticity in the CA1 region. Briefly, a range of presynaptic 

stimulations can elicit plasticity to varying degrees at the CA1 synapse. The degree to 

which any given presynaptic stimulation will affect the synaptic activity is dependent not 

only on the chosen stimulation, but also on other proximal factors, such as the state of 

the NMDA receptor. In particular, the total relationship between presynaptic 

stimulation and postsynaptic response can be described simply by the modification 

threshold, , the point at which response switches between depression and 

potentiation. This modifiable threshold is predicted to be dependent on any factors that 

the induction of plasticity is dependent upon; in the case of CA1 synaptic plasticity, it is 

expected that the state of the NMDA receptors is a particularly important determinant 

of .  

 

   

Page 37: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

30  

 

Figure 1.6 The Bienenstock‐Cooper‐Munro Model of Metaplasticity. The BCM model predicts that with varied levels of presynaptic activity, varied levels of future postsynaptic activity can be elicited. Theta represents the setpoint activity at which LTD inducing events are changed to LTP inducing events and this setpoint can be shifted leftward, enhancing LTP, or rightward, enhancing LTD. The BCM model is modified with presynaptic stimulation frequency as a proxy measure for presynaptic activity. 

   

Page 38: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

31  

 

 

 

SECTION TWO 

 

RATIONALE AND HYPOTHESIS 

Page 39: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

32  

2.1 GPCRs Modulate NMDA Receptor Function 

Modification of NMDA receptor function has been studied extensively by way of a 

variety of experimental approaches. Our group has been able to demonstrate the 

modulation of NMDA receptor function by way of stimulation of different upstream 

pathways. Of particular importance, we have been able to show that GPCRs have the 

ability to enhance NMDA mediated currents by way of different intracellular pathways. 

Through the use of genetic manipulations, biochemical techniques and 

electrophysiological recordings, we have been able to elucidate the pathways by which 

these upstream GPCRs can modulate the NMDA receptor. Of particular relevance, 

activation of the PAC1 receptor leads to a long‐lasting enhancement of NMDA mediated 

EPSCs by way of activation of a Gq/PKC mediated signaling pathway. In contrast, 

activation of the D1 receptor leads to a similar enhancement by way of activation of a 

Gs/PKA pathway. 

2.1.1 GPCR Mediated Effects are Subunit Specific 

Although PKC and PKA phosphorylation sites do exist on the NR1 subunit and these 

could contribute to the observed enhancements, we have also demonstrated differing 

pathways for the enhancement (Leonard and Hell, 1997; Tingley et al., 1997). Activation 

of the PAC1 receptor and subsequent activation of PKC causes activation of a different 

signaling cascade that results in NR2A subunit phosphorylation. Alternately, activation 

of the D1 receptor and subsequent activation of PKA causes activation of a signaling 

cascade terminating in NR2B phosphorylation. The NR2 subunit specificity of these 

cascades, coupled with the stark differences in physiological role of these subunits, 

Page 40: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

33  

suggests that the balance of competing GPCR signaling could play a role in maintaining 

or changing the function of a given neuron. 

   

Page 41: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

34  

 

Figure 2.1 PACAP38 Mediated Modulation of NMDA Receptors. Briefly, the PAC1 receptor is Gq coupled and mobilizes ER calcium stores as well as liberates DAG via PLC activation, causing PKC to be activated. PKC phosphorylates Pyk2, which in turn phophorylates RACK1 and releases Src in the vicinity of the NMDA receptor. Src phosphorylates the intracellular NR2A tail, enhancing the activity of NR2A containing receptors. (Modified from MacDonald et al., 2005) 

   

Page 42: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

35  

 

Figure 2.2 D1 Mediated Modulation of NMDA Receptors. Briefly, the D1 receptor is Gs coupled and causes formation of cAMP via AC activation, causing PKA to be activated. PKA directly phosphorylates RACK1 releasing Fyn in the vicinity of the NMDA receptor. Fyn phosphorylates the intracellular NR2B tail, enhancing the activity of NR2B containing receptors.  

   

Page 43: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

36  

2.2 NR2 Subunit Contributions to Metaplasticity 

The prevalent hypotheses today concerning the induction of plasticity at the CA1 

synapse are centered on the NR2 subunit. There is currently a large body of 

electrophysiological evidence suggesting that the NR2B subunit is required for LTP 

whereas the NR2A subunit is required for LTD, although this theory is not uncontested 

(Morishita et al., 2007; but see Liu et al., 2004). More recently, in vivo experiments have 

uncovered roles for both NR2 subtypes in both LTP and LTD induction (Fox et al., 2006). 

The compromise that is materializing amongst all possible theories is that a ratio of 

activity of the NR2 subtypes determines the degree and direction of synaptic plasticity in 

this area (Cho et al., 2009). Still, whether an increase in the NR2A:NR2B activity ratio 

preferentially results in LTP or LTD is not by any means a decided point. 

2.3 Hypothesis 

The convergence of the NR2 subunit hypotheses of metaplasticity and our own work 

determining subunit specific enhancement of NMDA currents suggests a physiological 

mechanism governing synaptic plasticity in the CA1 subfield of the hippocampus. Since 

both Gs and Gq receptors generally, and the D1 and PAC1 receptor specifically, do exist 

in CA1 postsynaptic neurons and because the signaling cascades terminating at the 

NMDA receptor are NR2 subunit specific, we suggest that synaptic plasticity may be 

altered by the balance amongst upstream neuromodulators.  

More specifically, because the initial investigations of Yu Tian Wang’s group suggested a 

close association between LTD and the NR2B subunit, we hypothesize that the D1 

Page 44: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

37  

receptor signaling pathway, terminating in the NR2B subunit, will enhance LTD over LTP, 

shifting the BCM relationship rightward; also, PAC1 receptor signaling, terminating in 

the NR2A subunit, will enhance LTP over LTD, shifting the BCM relationship leftward.  

However, considering that initial investigations were based on imperfect pharmacology, 

and a separate hypothesis put forth by Mark Bear’s group, suggesting increases in the 

NR2A:NR2B results in increased LTD, we also considered as an alternative hypothesis 

that decreasing the NR2A:NR2B by D1 receptor activation will enhance LTP over LTD, 

with the reverse situation for PAC1 receptor activation. 

 

   

Page 45: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

38  

 

 

 

SECTION THREE 

 

METHODS 

 

   

Page 46: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

39  

3.1 Hippocampal Slice Recordings 

3‐4 week old Wistar rats were anesthetized using isoflurane and immediately 

decapitated. The brains were rapidly removed and submerged in chilled (4oC) 

oxygenated (95% O2/5% CO2) artificial cerebrospinal fluid (aCSF) composed of (in mM): 

NaCl (124), KCl (3), CaCl2 (2.6), MgCl2 (1.3), NaHCO3 (26), NaH2PO4 (1.25) and D‐

glucose (10) with osmolarity adjusted to 300‐310 mOsM and pH to 7.4. Both hippocampi 

were acutely isolated and mounted on a block of 3% agar. Transverse hippocampal 

slices of a thickness of 350 um were cut using a vibrotome (VT1000E; Leica). Slices were 

allowed to recover in a submerged holding chamber for at least 90 minutes under 

continuous oxygenation until needed. Slices were transferred to a holding chamber, 

mechanically fixed using a thin platinum wire grid and continuously perfused with warm 

(30oC) oxygenated aCSF. Slices were allowed 10 minutes to recover before any 

recording. Field excitatory postsynaptic potentials (fEPSPs) were evoked at a frequency 

of 0.05Hz by electrical stimulation (100us duration) delivered to the Schaffer‐collateral 

pathway using a concentric bipolar stimulating electrode (25um exposed tip, David Kopf 

Instruments), and recorded using glass microelectrodes (3‐5M filled with aCSF) 

positioned in the stratum radiatum layer of the CA1 subfield at a distance of 

approximately 50um from the cell layer. Electrode depth was varied until a maximal 

response was elicited (approximately 175um from surface). The input‐output 

relationship was first determined in each slice by varying stimulus intensity (10‐1000 uA) 

and recording the corresponding fEPSP. Using a stimulus intensity that evoked 30‐40% 

of maximal fEPSP, paired‐pulse responses were measured every 20s by delivering two 

Page 47: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

40  

stimuli in rapid succession with intervals (interstimulus interval, ISI) varying from 10‐

1000 ms. Following this protocol, fEPSPs were evoked and measured for twenty minutes 

at 0.05Hz using the same stimulus intensity to test for stability of the response. At this 

time, plasticity was induced by 1, 10, 20, 50 or 100Hz stimulation with train pulse 

number constant at 600. Any treatments were added to aCSF and perfused the slice for 

the ten minutes immediately prior to induction of plasticity. Determination of degree of 

synaptic plasticity was done for the period 50‐60 minutes post‐induction. 

Fields were recorded using an Axopatch‐1D amplifier (Axon Instruments), filtered at 

2kHz, digitized using a Digidata 1320 (Axon Instruments) and acquired using Clampex 

(Axon Instruments). Data were analyzed using Clampex and Graphpad Prism software. 

Animals were chosen to ensure maximum randomness in experiments. Briefly, to ensure 

there were no specific animal dependent effects, no same day consecutive slices were 

chosen to be part of the same sample set and no sample set contained more than two 

slices from the same animal. All animals used for a treatment sample were also used for 

control experiments. In order to ensure the health of each slice, input‐output 

relationships and paired‐pulse ratios were measured prior to each recording, but after 

recovery periods. Any slices that showed a variance of greater than two standard 

deviations from the mean input/output slope or paired‐pulse facilitation ratio with 

interstimulus interval of 40ms were discarded. 

Page 48: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

41  

3.2 Animals 

All animal experimentation was conducted in accordance with the Policies on the Use of 

Animals at the University of Toronto and the University of Western Ontario.  

3.3 Drugs and Peptides 

The sources of drugs used for this study are as follows: PACAP38 (Calbiochem); 

SKF81297, SCH23390 (Tocris Bioscience). M65 and Maxadilan were generously provided 

by Dr. EA Lerner. 

3.4 Statistical Analysis 

All population data are expressed as means ± standard error of the mean (SEM). Paired 

t‐test was used to compare within groups, student’s t‐test was used to compare 

between two groups, and analysis of variance (ANOVA) was used to analyze multiple 

groups. P values were constant at 0.05.   

Page 49: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

42  

 

Figure 3.1 Acutely Prepared Hippocampal Slice Recordings. The conserved trisynaptic circuitry is shown. Stimulating electrodes are placed between the CA3 and CA1 regions to activate Schaffer collaterals (SC) and recordings are obtained from the CA1 region (GC: granule cell; MF: mossy fibre; PP: perforant pathway; drawn by Salter MW) 

   

Page 50: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

43  

 

 

 

SECTION FOUR 

 

RESULTS 

   

Page 51: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

44  

4.1 PACAP38 has no effect on baseline synaptic transmission 

In order to assess the effects of the PAC1 signaling pathway on the induction of synaptic 

plasticity, it was first undertook to investigate any action PACAP38 may have on baseline 

fEPSPs. As above, we have previously described a maximal enhancement of the NMDA 

receptor through Gq‐type signaling at a concentration of 1nM and so this concentration 

was chosen for all experiments (MacDonald et al., 2005). Therefore, fEPSPs were 

recorded for 10 minutes at 0.05Hz in standard aCSF followed by 10 mins at 0.05Hz with 

addition of 1nM PACAP38 to the bath. fEPSPs were then recorded for 60 mins without 

any plasticity inducing protocols in order to demonstrate long term effects of 1nM 

PACAP38 on synaptic transmission. 1nM PACAP38, applied in this way, did not affect 

fEPSP slope (1.04±0.05, n=4 at t=60 mins, vs. control 1.06±0.02, n=3) and did not induce 

any plasticity (Figure 4.1). 

   

Page 52: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

45  

Effect of PACAP38 (1nM) on Baseline (0.05Hz) Evoked fEPSP

Baseli

ne

During Applic

ation

t=25-35

mins

t=50-60

mins

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.6

+PACAP38 (1nM) (n=4)Control (n=3)

Norm

aliz

ed fE

PSP

Slop

e

20ms

0.3m

V

Control

20ms

0.3m

V

+PACAP38

Figure 4.1

 

Figure 4.1 PACAP38 has no effect on baseline fEPSPs when applied for ten minutes. PACAP38 was applied for ten minutes after ten minutes of baseline recording. fEPSP slope was measured for the subsequent sixty minutes. At t=60 mins post application, PACAP38 had no effect on fEPSP slope (control: 1.06±0.02, n=3; PACAP38: 1.04±0.05, n=4). Sample traces in the presence and absence of PACAP38 at t=‐20 (baseline), t=0 (during application), t=35 mins post application, and t=60 mins post application are shown below.  

 

   

Page 53: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

46  

4.2 PACAP38 alters synaptic plasticity induction 

Having determined that 1nM PACAP38 applied exogenously does not affect baseline 

synaptic transmission, we undertook to determine its effects on synaptic plasticity 

induction. Briefly, fEPSPs were evoked for ten minutes at 0.05Hz prior to a ten minute 

period of PACAP38 application. Bath application of PACAP38 (1nM) for 10 minutes 

caused no immediate changes to baseline fEPSPs. After 10 minutes of drug application, 

LTP or LTD was induced using a 600 pulse varying frequency protocol. This protocol was 

chosen as a compromise between 900 pulse LTD inducing stimulations and 200 pulse 

LTP inducing stimulations. The pulses were kept constant in order to control for total 

charge transfer to the slice. Pre‐tetanus application of 1nM PACAP38 caused no change 

in LTD induction at 1Hz (0.63±0.04, n=5, vs. control 0.70±0.11, n=5) or LTP induction at 

50Hz (1.63±0.24, n=6, vs. control 1.40±0.12, n=4) or 100Hz (1.50±0.20, n=4, vs. control 

1.25±0.13, n=4) (Figure 4.2A,D,E).  The effects of bath application of 1nM PACAP38 

caused a reversal of LTD induction with 10Hz stimulation (1.40±0.15, n=7, vs. control 

0.65±0.08, n=6; p=0.0015) and a similar reversal at 20Hz (1.19±0.09, n=5, vs. control 

0.87±0.11, n=5; p<0.05 (Mann‐Whitney U)) (Figure 4.2B,C). Together, the results show 

an alteration in the expression of synaptic plasticity and therefore the BCM relationship 

in the presence of PACAP38 (Figure 4.2F).  

   

Page 54: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

47  

1 Hz Stimulation

-20 -10 0 10 20 30 40 50 600.2

0.4

0.6

0.8

1.0

1.2

+PACAP38 (1nM)Control

1 2

Time (min)

Norm

aliz

ed fE

PSP

Slop

e

10ms

0.25

mV

1

2

Control

12

10ms

0.25

mV

+PACAP38

Figure 4.2A

 

Figure 4.2A PACAP38 causes no change in LTD induction at 1Hz. Application of 1 nM PACAP38 for ten minutes (t=‐10 to t=0 mins) did not change LTD induction relative to control slices (control: 0.63±0.04, n=5; PACAP38: 0.70±0.11, n=5). Sample traces with and without PACAP38 application at time points 1 (t=‐20 ‐ ‐18 mins) and 2 (t=58‐60 mins) are shown below. 

   

Page 55: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

48  

10 Hz Stimulation

-20 -10 0 10 20 30 40 50 600.5

0.7

0.9

1.1

1.3

1.5

+PACAP38 (1nM) (n=7)Control (n=6)

1 2

Time (min)

Norm

aliz

ed fE

PSP

Slop

e

2

1 10ms0.25

mV

Control

1

210ms0.

25m

V+PACAP38

Figure 4.2B

 

Figure 4.2B PACAP38 reversed LTD with 10Hz induction. Application of 1 nM PACAP38 for ten minutes (t=‐10 to t=0 mins) reversed LTD induction relative to control slices (control: 0.65±0.08, n=6; PACAP38: 1.40±0.15, n=7; p=0.0015). Sample traces with and without PACAP38 application at time points 1 (t=‐20 ‐ ‐18 mins) and 2 (t=58‐60 mins) are shown below. 

   

Page 56: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

49  

20 Hz Stimulation

-20 -10 0 10 20 30 40 50 600.6

0.8

1.0

1.2

1.4

1.6

Control (n=5)+PACAP38 (1nM) (n=6)

1 2

Time (min)

Norm

aliz

ed fE

PSP

Slop

e

2

1

10ms0.2m

V

Control

1

210ms

0.2m

V+PACAP38

Figure 4.2C

 

Figure 4.2C PACAP38 reversed LTD with 20Hz induction. Application of 1 nM PACAP38 for ten minutes (t=‐10 to t=0 mins) reversed LTD induction relative to control slices (control: 0.87±0.11, n=5; PACAP38: 1.19±0.09, n=5; p<0.05). Sample traces with and without PACAP38 application at time points 1 (t=‐20 ‐ ‐18 mins) and 2 (t=58‐60 mins) are shown below. 

   

Page 57: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

50  

50 Hz Stimulation

-20 -10 0 10 20 30 40 50 600.8

1.0

1.2

1.4

1.6

1.8

+PACAP38 (1nM) (n=6)Control (n=4)

1

2

Time (min)

Norm

aliz

ed fE

PSP

Slop

e

Control

10ms0.2m

V

1

2

+PACAP38

10ms

0.2m

V

1

2

Figure 4.2D

 

Figure 4.2D PACAP38 did not change LTP induction at 50Hz. Application of 1 nM PACAP38 for ten minutes (t=‐10 to t=0 mins) did not change LTP induction relative to control slices (control: 1.40±0.12, n=4; PACAP38: 1.63±0.24, n=6). Sample traces with and without PACAP38 application at time points 1 (t=‐20 ‐ ‐18 mins) and 2 (t=58‐60 mins) are shown below. 

   

Page 58: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

51  

100 Hz Stimulation

-20 -10 0 10 20 30 40 50 600.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

+PACAP38 (1nM) (n=4)Control (n=4)

1

2

Time (min)

Norm

aliz

ed fE

PSP

Slop

e

Control

10ms

0.2m

V

1

2

+PACAP38

10ms

0.2m

V

Figure 4.2E

 

Figure 4.2E PACAP38 did not change LTP induction at 100Hz. Application of 1 nM PACAP38 for ten minutes (t=‐10 to t=0 mins) did not affect LTP induction relative to control slices (control: 1.25±0.13, n=4; PACAP38: 1.50±0.20, n=4). Sample traces with and without PACAP38 application at time points 1 (t=‐20 ‐ ‐18 mins) and 2 (t=58‐60 mins) are shown below. 

 

   

Page 59: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

52  

Figure 4.2F. BCM Relationship for PACAP38 (1nM)

1 10 20 50 1000.50

0.75

1.00

1.25

1.50

**

PACAP38, 1nMControl

Stimulus Frequency (Hz)

Norm

aliz

ed fE

PSP

Ampl

itude

 

Figure 4.2F Bath applied PACAP38 for ten minutes prior to induction of plasticity causes a leftward shift in the plasticity modification threshold and BCM relationship. *p<0.05. 

   

Page 60: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

53  

4.3 PACAP38 mediated reversal of LTD at 10Hz is PAC1R dependent 

It has been well studied that the effects of endogenous and exogenous PACAP38 can be 

mediated by any of three receptors, the PAC1, VPAC1 and VPAC2 receptors. The varying 

affinities for PACAP38 and VIP along with our previous work in acutely isolated 

hippocampal neurons suggested that the effect of 1nM PACAP38 could only be 

mediated by the PAC1 receptor (MacDonald et al., 2005). However, to confirm this 

result, we used the selective PAC1 antagonist M65 (1uM) in conjunction with PACAP38 

(1 nM) at a plasticity induction frequency of 10Hz. Bath co‐application of M65 and 

PACAP38 caused no change in induction of LTD with a stimulation protocol of 10Hz for 1 

minute. From above, PACAP38 alone caused a dramatic reversal of LTD to LTP under the 

same protocol. 

   

Page 61: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

54  

Control (n

=6)

+PACAP38

(n=7

)

+M65

(n=3

)

+PACAP38

M65

(n=4

)0

1

2

Norm

aliz

ed fE

PSP

Slop

e;60

min

s po

st te

tanu

s

Figure 4.3

*

 

Figure 4.3 The effect of PACAP38 on LTD induction at 10Hz was PAC1 receptor mediated. The effect of 1nM PACAP38 was abolished by coapplication of M65, a specific PAC1 antagonist (0.86±0.09, n=4; PACAP38 alone: 1.40±0.15, n=7; p=0.032). M65 application alone had no effect relative to control (0.82±0.01, n=3; control: 0.65±0.08, n=6). 

   

Page 62: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

55  

4.4 D1 agonist SKF81297 alters synaptic plasticity induction 

Having demonstrated a metaplastic effect for PACAP38, it was undertaken to determine 

whether our observed enhancements in NMDA EPSCs in acutely isolated hippocampal 

neurons via Gs signaling pathways also elicited a metaplastic effect. To that end, 

hippocampal slices were prepared and recordings were made as in 4.2 excepting the 

replacement of PACAP38 (1nM) with SKF81297 (10uM), a specific D1 agonist. Bath 

application of SKF81297 had no immediate effect on baseline fEPSPs. SKF81297 did not 

elicit an observed change in LTP induction at 50Hz (1.00±0.05, n=4, vs. control 

1.18±0.10, n=5) nor in LTD induction at 1Hz (0.82±0.10, n=6, vs. control 0.65±0.13, n=6) 

(Figure 4.4D,A). SKF81297 attenuated LTP at 60 min induced by 100Hz stimulation 

(1.07±0.09, n=5, vs. control 1.32±0.09, n=5; p=0.04) and enhanced LTD induction using 

10Hz (0.54±0.11, n=6, vs. control 0.81±0.17, n=5) and 20Hz (0.67±0.07, n=5, vs. control 

0.86±0.09, n=5; p<0.05) induction protocols (Figure 4.4E,B,C). Together, it was 

illustrated that the D1 agonist SKF81297 can alter the expression of synaptic plasticity 

and therefore the BCM relationship at the CA1 synapse in slice (Figure 4.4F). 

   

Page 63: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

56  

 

Figure 4.4A SKF81297 did not change LTD induction at 1Hz. Application of 10uM SKF81297 for ten minutes (t=‐10 to t=0 mins) did not affect LTD induction relative to control slices (control: 0.65±0.13, n=6; SKF81297: 0.82±0.10, n=6). Sample traces with and without SKF81297 application at time points 1 (t=‐20 ‐ ‐18 mins) and 2 (t=58‐60 mins) are shown below. 

   

1 Hz Stimulation

-20 -10 0 10 20 30 40 50 600.4

0.6

0.8

1.0

1.2

1.4

+SKF81297 (10uM) (n=6)Control (n=6)

1

2

Time (min)

Norm

aliz

ed fE

PSP

Slop

e

Control

0.2m

V

10ms1

2

SKF81297

1

20.

2mV

10ms

Figure 4.4A

Page 64: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

57  

 

Figure 4.4B SKF81297 enhanced LTD induction at 10Hz. Application of 10uM SKF81297 for ten minutes (t=‐10 to t=0 mins) increased LTD induction relative to control slices (control: 0.81±0.17, n=5; SKF81297: 0.54±0.11, n=6). Sample traces with and without SKF81297 application at time points 1 (t=‐20 ‐ ‐18 mins) and 2 (t=58‐60 mins) are shown below. 

   

10Hz Stimulation

-20 -10 0 10 20 30 40 50 600.3

0.5

0.7

0.9

1.1

1.3

+SKF81297 (10uM) (n=6)Control, (n=5)

1

2

Time (min)

Norm

aliz

ed fE

PSP

Slop

e

Control

12

10ms

0.2m

V

SKF81297

1

2

10ms

0.2m

V

Figure 4.4B

Page 65: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

58  

 

Figure 4.4C SKF81297 enhanced LTD induction at 20Hz stimulation protocol. Application of 10uM SKF81297 for ten minutes (t=‐10 to t=0 mins) increased LTD relative to control slices (control: 0.86±0.08, n=5; SKF81297: 0.67±0.06, n=5; p<0.05 by Mann‐Whitney U test). Sample traces with and without SKF81297 application at time points 1 (t=‐20 ‐ ‐18 mins) and 2 (t=58‐60 mins) are shown below. 

   

20Hz Stimulation

-20 -10 0 10 20 30 40 50 600.4

0.6

0.8

1.0

1.2

1.4

+SKF81297 (10uM) (n=5)Control (n=5)

1

2

Time (min)

Norm

aliz

ed fE

PSP

Slop

e

Control

12

10ms

0.2m

V

SKF81297

1

2 10ms0.

2mV

Figure 4.4C

Page 66: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

59  

 

Figure 4.4D SKF81297 did not alter LTP induction at 50Hz. Application of 10uM SKF81297 for ten minutes (t=‐10 to t=0 mins) did not affect LTP induction relative to control slices (control: 1.18±0.10, n=5; SKF81297: 1.00±0.05, n=4). Sample traces with and without SKF81297 application at time points 1 (t=‐20 ‐ ‐18 mins) and 2 (t=58‐60 mins) are shown below. 

   

50 Hz Stimulation

-20 -10 0 10 20 30 40 50 600.6

0.8

1.0

1.2

1.4

1.6

+SKF81297 (10uM) (n=5)Control (n=5)

1

2

Time (min)

Norm

aliz

ed fE

PSP

Slop

e

Control

1

210ms

0.2m

V

SKF81297

1

2 10ms

0.2m

V

Figure 4.4D

Page 67: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

60  

 

Figure 4.4E SKF81297 attenuated LTP induced by 100Hz stimulation. Application of 10uM SKF81297 for ten minutes (t=‐10 to t=0 mins) prior to stimulation attenuated LTP induction relative to control slices (control: 1.32±0.09, n=5; SKF81297: 1.07±0.09, n=5; p=0.04). Sample traces with and without SKF81297 application at time points 1 (t=‐20 ‐ ‐18 mins) and 2 (t=58‐60 mins) are shown below. 

100Hz Stimulation

-20 -10 0 10 20 30 40 50 600.7

0.9

1.1

1.3

1.5

1.7

+SKF81297 (10uM) (n=5)Control (n=5)

1 2

Time (min)

Norm

aliz

ed fE

PSP

Slop

e

Control

1

2

10ms0.2m

V

SKF81297

10ms0.2m

V

12

Figure 4.4E

Page 68: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

61  

Figure 4.4F. BCM Relationship for SKF81297 (10uM)

1 10 20 50 100

0.25

0.50

0.75

1.00

1.25

*

*

SKF81297, 10uMLegend

*

Stimulus Frequency (Hz)

Norm

aliz

ed fE

PSP

Ampl

itude

 

Figure 4.4F Bath applied SKF81297 for ten minutes prior to induction of plasticity causes a rightward shift in the plasticity modification threshold and BCM relationship. *p<0.05. 

 

   

Page 69: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

62  

4.5 SCH23390 blocks the effect of SKF81297 at 10Hz 

To further demonstrate that the effects of bath application of SKF81297 were indeed 

due to D1 activation and not to non‐specific effects or agonism at a different receptor, 

the specific D1 antagonist SCH23390’s effects were investigated using a 10Hz induction 

protocol. Using the same paradigm as above, SCH23390, in the presence and absence of 

the agonist SKF81297, was bath applied immediately prior to 10Hz stimulation. 

SCH23390 was able to completely abolish the enhancement of LTD in the presence of 

the agonist (0.85±0.13, n=5, vs. SKF81297 alone 0.54±0.11, n=6; p=0.049), but had no 

independent effect (0.88±0.12, n=5, vs. control 0.88±0.08, n=5) (Figure 4.5). This 

suggests strongly that the effects of SKF81297 are in fact mediated by stimulation of the 

Gs coupled D1 receptor, and not attributable to nonspecific activity. 

   

Page 70: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

63  

 

Figure 4.5 The effect of SKF81297 on LTD induction at 10Hz was D1 receptor mediated. The effect of 10uM SKF81297 was abolished by coapplication of SCH23390, a specific D1 antagonist (0.85±0.13, n=5; SKF81297 alone: 0.54±0.11, n=5; p=0.049). SCH23390 application alone had no effect relative to control (0.88±0.12, n=5; control: 0.88±0.08, n=5). 

 

   

Control (n

=5)

+SKF81

297 (

n=6)

+SCH23

390 (

n=5)

+SKF81

297,

SCH2339

0 (n=5

)0.00

0.25

0.50

0.75

1.00

1.25

Norm

aliz

ed fE

PSP

Slop

e;60

min

s po

st te

tanu

s

Figure 4.5

Page 71: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

64  

4.6 Neither PACAP38, nor SKF81297 alter presynaptic transmitter release 

The effects of PACAP38 and SKF81297 on synaptic plasticity have been shown above to 

be dependent on the D1 and PAC1 receptors. However, whether these receptors are 

acting at a presynaptic or postsynaptic site had not been investigated. Therefore, to 

determine whether PACAP38 or SKF81297 caused an alteration in presynaptic 

transmitter release, a comparison of paired‐pulse ratios was undertaken. Briefly, CA1 

synapses are synapses of medium release probability (P=0.3‐0.6; Thomson and 

Bannister 1999; Markram et al 1998) and therefore demonstrate facilitation when 

stimuli are paired. The release probability is determined by the fraction of release sites 

that are fully activated by a presynaptic stimulus; the remainder are partially activated 

and therefore primed for release by a second stimulus (Thomson, 2000). Any change in 

presynaptic release probability will affect both the magnitude of the measured response 

to a single stimulus, but also the facilitation induced by paired stimuli. Explicitly, a higher 

release probability would impair facilitation. 

Briefly, as above, after initial determination of input‐output relationship and paired‐

pulse ratio, fEPSPs were evoked at 0.05Hz for ten minutes in control aCSF followed by 

ten minutes in the presence or absence of treatments. Subsequently, the paired‐pulse 

ratios were again measured. Compared with time matched controls (1.59±0.02, n=5), 

none of PACAP38 (1.42±0.07, n=5), SKF81297 (1.42±0.07, n=5), and SCH23390 

(1.54±0.03, n=5) affected the paired‐pulse ratio with an interstimulus interval of 40ms. 

Furthermore, no group differed significantly from pretreatment controls (1.49±0.03, 

n=5), reaffirming the health of the slice (Figure 4.6). Paired pulse ratios at 10, 20, 80, 

Page 72: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

65  

150, 300, 500, and 1000 ms were also measured and no effects were elicited (Data not 

shown).  

   

Page 73: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

66  

 

Figure 4.6 PACAP38, SKF81297 and SCH23390 did not alter presynaptic machinery. The paired pulse ratio was measured using a 40ms interstimulus interval at t=0 and t=20 minutes with or without drug application (t=10‐20 minutes). SKF81297 (1.42±0.07, n=5), SCH23390 (1.54±0.03, n=5) and PACAP38 (1.42±0.07, n=5) did not affect paired pulse ratio relative to negative control, at t=0, (1.49±0.03, n=5) or time‐matched control, at t=20, (1.59±0.02, n=5). 

 

   

Pretrea

tmen

t

Time M

atched

Control

PACAP38 (1

nM)

SKF8129

7 (10

uM)

SCH2339

0 (0.5

uM)0.0

0.5

1.0

1.5

2.0

Treatment (10min)

Baseline Stimulation (0.05Hz,20min)

Paire

d Pu

lse

Ratio

Figure 4.6

Page 74: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

67  

4.7 PAC1 antagonist M65 attenuates LTP induction by 100Hz Stimulation 

As in 4.3, we undertook to confirm that the effects of PACAP38 on LTP induction were in 

fact mediated by the PAC1 receptor. Therefore, the specific PAC1 antagonist M65 was 

used with a 100Hz stimulation protocol. In the absence of exogenous PACAP38, M65 

was able to attenuate LTP induction at 100Hz (1.16±0.04, n=4, vs. control 1.48±0.03, 

n=5; p=0.0003) (Figure 4.7). Because this suggests that PAC1 antagonism can itself be 

metaplastic, any results using M65 could be confounding. The attenuation of LTP 

induction by M65 suggests that high frequency stimulation somehow causes the PAC1 

receptor to be activated, or else M65 has some other non‐specific effect. Given that 

exogenous PACAP38 did not have an effect on LTP induction at 100Hz, we hypothesize 

that PACAP38’s effects were occluded by the stimulation protocol. The most 

parsimonious and attractive explanation is that 100Hz stimulation itself caused a release 

of endogenous PACAP38 and thus M65 could attenuate this effect and the effects of 

exogenous PACAP38 were occluded. 

Page 75: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

68  

 

Figure 4.7 M65 attenuates LTP induction. Application of 1 uM M65 for ten minutes (t=‐10 to t=0 mins) attenuated LTP induction (control: 1.48±0.03, n=5; M65: 1.16±0.04, n=4; p=0.0003). Sample traces with and without M65 application are shown below.  

    

100Hz Stimulation

-20 -10 0 10 20 30 40 50 600.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

M65 (1 uM) (n=4)Control (n=5)

Time (min)

Norm

aliz

ed fE

PSP

Slop

e

Control

10ms

0.2m

V

1

2

+M65

10ms

0.2m

V

1

2

Figure 4.7

Page 76: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

69  

4.8 PACAP38 preferentially increases NR2A phosphorylation 

The pathway we have proposed for the effects of PACAP38 on hippocampal neurons 

suggests the effects are mediated by the NR2A subunit of the NMDA receptor. In order 

to demonstrate that PACAP38 does have a specific effect on the NR2A subunit, we 

undertook biochemical experiments to investigate Src kinase and NR2 phosphorylation 

in the presence of PACAP38. Briefly, hippocampal slices were treated for 10 minutes at 

37oC with 1nM PACAP38 and then homogenized for experiments. Either NR2A or NR2B 

was immunoprecipitated followed by Western blot analysis. NR2A, but not NR2B, 

tyrosine phosphorylation increased in the PACAP38 treated slices when compared to 

controls, as measured by the non‐specific phosphotyrosine antibody 4G10(Figure 

4.8A,B,C). Furthermore, Src tyrosine residue 416 showed an increased phosphorylation 

in the PACAP38 treated group when compared to controls (Figure 4.8D). Because it has 

been shown that Src phosphorylates the NR2A intracellular tail, the results suggest that 

PACAP38 mediated effects on the NMDA receptor, and thereby on CA1 plasticity, is 

dependent on preferential phosphorylation of the NR2A subunit by Src kinase.  

   

Page 77: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

70  

 

Figure 4.8 Low concentrations of PACAP38 induce NR2A but not NR2B tyrosine phosphorylation. Rat pup (PN17) hippocampi were cut to slices and treated with 1nM PACAP38 at 37oC prior to homogenization for experiments. Immunoprecipitations were performed using anti‐NR2A antibody (A) or NR2B antibody (B). A. The blot was first probed with anti‐phosphotyrosine antibody (4G10), then probed with anti‐NR2A after membrane stripping. B. Quantification of results from A. Tyrosine phosphorylation is increased by PACAP38 treatment. C. The blot was probed with anti‐phosphotyrosine antibody, then probed with anti‐NR2B after membrane stripping. PACAP38 application did not increase NR2B phosphorylation. D. Western blot analysis was performed using anti‐pSrcY416 and total Src after membrane stripping. PACAP38 treatment increased phosphorylation of the Src activating residue Y416. (*p<0.05, n=3; Performed by Gang Lei) 

   

Page 78: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

71  

4.9 SKF81297 preferentially increases NR2B phosphorylation 

To complement the above, we also undertook to investigate the effects of D1 agonism 

on NR2 subunit phosphorylation. The pathway we propose for D1 receptor mediated 

effects is dependent on NR2B and the Src family kinase Fyn. With a similar procedure as 

above, we demonstrated that SKF81297 increases NR2B and not NR2A phosphorylation 

and that the increase is blocked completely by the D1 antagonist SCH23390 (Figure 4.9). 

Furthermore, we demonstrated an increase in Fyn Y420, but not Src Y416, 

phosphorylation with SKF81297 treatment, and the abolition of this phosphorylation by 

the D1 antagonist SCH23390 (Figure 4.10A,B). The results taken together suggest that 

the effects of D1 activation on the NMDA receptor are caused by a Fyn, but not Src, 

phosphorylation of the NR2B tail. Confirmatory blots for NR2B pY1472, a substrate for 

Fyn, showed an increase in the SKF81297 treated group (Figure 4.10C) and the global 

increase in NR2B tyrosine phosphorylation in the treated group could be abolished by 

an inhibitor peptide for Fyn (Figure 4.10D).  

   

Page 79: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

72  

 

Figure 4.9 SKF81297 increases NR2B but not NR2A tyrosine phosphorylation. Hippocampi from rat pups (PN17) were cut to slices and treated with 10uM of SKF81297 with or without SCH23390 (10uM) at 37oC for 15 minutes. A. Tissue lysate containing 400ug protein was incubated with anti‐NR2B antibody overnight and precipitated with protein A/G plus agarose beads. The precipitates were subject to Western blot analysis, probing sequentially with 4G10 and anti‐NR2B antibodies respectively after membrane stripping. B. Quantification of results of A. C. The same procedure as A was performed excepting precipitation with anti‐NR2A antibody. (*p<0.05, one‐way ANOVA, n=4; Performed by Gang Lei). 

   

Page 80: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

73  

 

Figure 4.10 NR2B tyrosine phosphorylation by SKF81297 is mediated through Fyn kinase activation. A. SKF81297 (10uM) has no observed effect on tyrosine phosphorylation of Src kinase, but PACAP38 (100nM) does. B. SKF81297 facilitates tyrosine phosphorylation of Fyn kinase and this effect can be blocked completely by the D1 receptor antagonist SCH23390 (10uM) or an inhibitor peptide of Fyn (10uM). C. D1 receptor activation increases phosphorylation of pNR2BY1472, a Fyn kinase substrate. D. An inhibitor peptide of Fyn kinase fully blocks the tyrosine phosphorylation of NR2B by SKF81297. (Performed by Gang Lei). 

   

Page 81: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

74  

 

 

 

SECTION FIVE 

 

DISCUSSION 

Page 82: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

75  

5.1 Summary of Key Findings 

The major aim of this thesis was to provide a possible physiological mechanism for 

metaplasticity at the hippocampal CA1 synapse. We propose that metaplasticity at the 

synapse is governed by the interplay between a variety of upstream signaling pathways 

terminating at the NR2 subunit of the NMDA receptor. Furthermore, we have 

demonstrated that at least two neuromodulators that are present and active in the CA1 

hippocampus can have these metaplastic effects. The major conclusions are outlined 

here: 

1. PACAP, acting through PAC1 receptors, enhances the propensity for LTP at the CA1 

synapse. 

2. SKF81297, acting through D1‐type dopamine receptors, enhances the propensity for 

LTD at the CA1 synapse. 

3. PACAP38 modulation of NMDA receptors is Src‐dependent and NR2A subunit 

specific; SKF81297 modulation of NMDA receptors is fyn‐dependent and NR2B 

subunit specific.  

 

5.2 PAC1R and D1R dependent modulation of NMDARs 

Previous work on PACAP mediated effects on CA1 neurotransmission has shown an 

ability for PACAP to alter baseline synaptic transmission (Costa et al., 2009; Roberto et 

al., 2001; Roberto and Brunelli, 2000; Kondo et al., 1997) and, in fact, induce a form of 

chemical plasticity (Roberto et al., 2001). We have previously shown that the effects of 

Page 83: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

76  

PACAP38 on NMDA activity are concentration dependent and the range of effects is 

probably dependent on different modes of action (MacDonald et al., 2005). Briefly, we 

have shown that concentrations below 0.1nM do not elicit an enhancement in NMDA 

peak currents, whereas concentrations above 100nM directly inhibit the NMDA 

receptor. To ensure that there was also no direct inhibition or enhancement of mixed 

field EPSPs, it was demonstrated that 1nM PACAP38 does not affect baseline CA1 

neurotransmission. As the PAC1 receptor can be both Gq and Gs coupled (Ohtaki et al., 

1993; McCulloch et al., 2002; Spengler et al., 1993), and as VPAC receptors respond to 

higher concentrations of PACAP38 (Gottschall et al., 1990), we hypothesize that study 

paradigms that use higher concentrations of PACAP do not elicit their effects through 

the PAC1‐Gq pathway alone, but instead through a mixed PACAP‐mediated response. 

Similarly, with sufficiently lower concentrations of PACAP38, we have not been able to 

observe any effect on NMDAR function and therefore suggest that any effects here must 

also be attributed to a separate PACAP‐mediated response. Our investigations, 

therefore, suggest that the results presented here are indicative of actions of the PAC1‐

Gq receptor pathway and not some mixed effect. 

Similar to our work with PACAP38, we have been able to show a direct effect of the D1‐

specific agonist SKF81297 on NMDAR mediated EPSCs. In particular, we have been able 

to demonstrate an enhancement in peak current that is insensitive to inhibitors of Src 

kinase or NR2A knockout, enhanced by NVP‐AAM077, and is sensitive to Ro25‐6981, 

inhibitors of Fyn kinase, and the specific D1 antagonist SCH23390 (Trepanier, 

unpublished). Our demonstrations of NR2B‐dependent enhancement, and potential 

Page 84: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

77  

NR2A‐dependent depression by SKF81297 are strengthened by other investigations and 

other preparations (Hallett et al., 2006; Gao and Wolf, 2008; Schilstrom et al., 2006; 

Varela et al., 2009). Moreover, the absence of effect on presynaptic release probability 

is corroborated by other investigations determining dopamine mediated presynaptic 

effects to by D2‐type receptor dependent (Hsu, 1996). The strength of our evidence 

along with the demonstrations of other groups suggests that the effects elicited by the 

D1‐agonist SKF81297 are elicited by a postsynaptic Gs‐NR2B pathway.  

 

5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity 

The major results of this thesis suggest a physiological role for receptors upstream of the 

NMDA receptor in terms of synaptic plasticity. The model put forth by Bienenstock, 

Cooper and Munro suggests that the degree and direction of synaptic plasticity is 

dependent on prior postsynaptic activity and a modification threshold, . This 

modification threshold is itself modifiable in a process termed metaplasticity. PAC1 and 

D1 receptor activation both appear to modify this threshold and therefore show direct 

metaplastic effects.  

Investigations into synaptic plasticity at the CA1 synapse have predominantly focused on 

the molecular mechanisms responsible for the expression of LTP and LTD. A significant 

number of necessary components as well as modulators have thus been discovered and 

arguably the NMDA receptor is foremost amongst them. Application of the BCM model 

Page 85: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

78  

to plasticity must therefore be concerned with how  is modified by the state of the 

NMDA receptor.  

Because the role of the NMDA receptor is in part conferred by the subunit composition 

of the receptor, and because the NMDA receptor is inextricably linked to synaptic 

plasticity, the NR2 subunit has been repeatedly studied in terms of its role in the same. 

In the visual cortex it has been demonstrated that a modification in the functional 

contribution of the NR2A and NR2B subunits directly affects the induction of synaptic 

plasticity (Cho et al., 2009; Philpot et al., 2007). In particular, it has been shown that a 

decrease in the functional NR2A:NR2B ratio facilitates potentiation (Cho et al., 2009).  

In the context of the CA1 hippocampus, the same general hypotheses have guided 

study. Initially, it was shown that inhibition of NR2B preferentially inhibited LTD, 

whereas inhibition of NR2A preferentially inhibited LTP (Liu et al., 2004; Massey et al., 

2004). This interpretation would suggest that the LTP inducing stimuli activate NR2A 

containing receptors and LTD inducing stimuli activate NR2B containing receptors. 

Further evidence that NR2B receptors are selectively implicated in the internalization of 

AMPARs and LTD of NMDARs during low frequency stimuli strengthen the suggestion 

that NR2B receptors are integral to LTD (Sobczyk and Svoboda, 2007; Tigaret et al., 

2006). However, since this demonstration, a number of groups have collaborated to 

show that pharmacological blockers of NR2B containing receptors do not prevent LTD 

and similarly that NR2A receptors are not required for induction of LTP (Morishita et al., 

2007; Berberich et al., 2005; Weitlauf et al., 2005). The extension of these experiments 

Page 86: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

79  

to the in vivo situation has reinforced the contribution of NR2A in LTP and NR2B in LTD 

(Fox et al., 2006).  

Reconciliation of these mutually exclusive hypotheses has suggested a NR2 ratio based 

determination of synaptic plasticity where both subunits can potentially cause both 

types of plasticity, but where the differential contribution of each is the ultimate 

determinant (Philpot et al., 2001; Chen and Bear, 2007; Morishita et al., 2007). Indeed, 

this is the very same hypothesis that has been demonstrated in ocular dominance 

plasticity in the visual cortex and is suggested in varying other areas of the brain.  

By extending the discussion of metaplasticity outside of the realm of pharmacological 

blockers and genetic knockout animals, we have been able to demonstrate a 

physiological mechanism for metaplasticity at the CA1 synapse. In particular, it is shown 

that PACAP38 activation, through the NR2A subunit, is able to decrease the threshold 

for LTP, and D1 activation, through the NR2B subunit, is able to increase the threshold 

for LTP. Although superficially it appears that this would simply strengthen the original 

hypothesis regarding subunit contribution, we suggest that within this subunit‐ratio‐

based hypothesis it is more physiologically relevant to discuss endogenous upstream 

regulators of the NMDA receptor. Indeed, the specific manner in which the NMDA 

receptor subunits are modulated may be pivotal in this determination of plasticity and 

that may be leading to a controversy in results. The work of the Bear group on ocular 

dominance plasticity determining an NR2A:NR2B ratio based model is rooted in genetic 

manipulation of the NR2A subunit (Cho et al., 2009) versus an acute effect on the NMDA 

Page 87: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

80  

receptor, either via pharmacological blockers (Liu et al., 2004) or upstream signaling. 

Because of this difference in approach, between acute effects and systemic effects, 

there are reasons to believe the conclusion that the specific manner in which the NMDA 

receptor is affected is critical to plasticity. Our paradigm of acute effects and specificity 

is discussed further. 

 

5.4 Functional Target Specificity 

Although many groups have been able to show that through manipulation of the NMDA 

receptor we can observe metaplastic effects, very few have investigated how these 

metaplastic effects may occur in vivo. We suggest that the balance between a variety of 

upstream signaling pathways terminating at the NMDA receptor and specifically the NR2 

subunits provide the basis for metaplasticity of NMDAR dependent synaptic plasticity 

and further show that the SFKs play a particularly important role in distinguishing NR2A‐ 

from NR2B‐ containing receptors. 

We as well as other groups have previously investigated the subunit specificity of 

actions of the SFKs Src and Fyn. Investigations into Src kinase dependent enhancement 

of NMDA EPSCs has shown that the effect can be pharmacologically blocked by NVP‐

AAM077 and Zn2+, but not Ro25‐6981, and is not present in NR2A knockout mice (Yang, 

unpublished). Alternatively, we have been able to show that Fyn kinase dependent 

enhancement of NMDA EPSCs can be blocked by Ro25‐6981, but not Zn2+ or NVP‐

AAM077, and is not absent in NR2A knockout mice. Other groups have similarly been 

able to show an NR2B effect via Fyn activity (Abe et al., 2005; Nakazawa et al., 2001) and 

Page 88: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

81  

an NR2A effect via Src activity (Yang and Leonard, 2001). The physical interactions of the 

same have also been investigated, including a RACK1 binding of both Fyn and NR2B 

(Yaka et al., 2002), and PSD‐95 association of NR2A and Src (Kalia and Salter, 2003). This 

mounting evidence suggests that Src is able to preferentially target NR2A and Fyn is able 

to preferentially target NR2B and therefore that each of these NMDAR‐complexes is 

functionally separate in the postsynaptic neuron. 

Because of this target‐specificity of the SFKs, upstream activators of the same should be 

able to produce similarly target‐specific effects. Indeed, we have shown that activation 

of the PAC1 receptor Gq signaling cascade is able to increase the phosphorylation of Src 

at tyrosine Y416, a residue required for catalytic activity (Smart et al., 1981; Xu et al., 

1999). Furthermore, PAC1 receptor activation is able to preferentially increase NR2A 

phosphorylation, suggesting that the target specificity of Src is translated upstream to 

the PAC1 receptor. Similarly, we have been able to show that activation of the D1 Gs 

signaling cascades are able to preferentially phosphorylate Fyn at the activating residue 

Y420 (Sun G et al., 1998; Superti‐Furga et al., 1993). Moreover, D1 activity is able to 

preferentially increase NR2B phosphorylation. The target‐specificity previously 

demonstrated by SFKs, therefore, is translatable to the upstream GPCRs, whether Gs or 

Gq coupled.   

This demonstration of target‐specificity previously and above displays that specific 

signaling cascades can have direct differential effects on the NR2 subunit of the NMDA 

receptor. This linear relationship between affector and effector could be particularly 

Page 89: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

82  

useful in eliciting predictable effects on synaptic plasticity by alterations in 

neuromodulator release by upstream neurons and glia.  

5.5 Physiological Specificity of PAC1 and D1 Activation 

The target‐specificity of Src and Fyn kinases, and by extension the PAC1 and D1 

receptors, is augmented by the functional specificity of those same receptors. We have 

been able to show that not only does activity at these receptors directly affect the 

NMDA receptor, but also that the effects change the induction of synaptic plasticity at 

the CA1 synapse. 

It has been reported that activity of the NMDA receptor directly determines the 

direction and degree of synaptic plasticity at any given synapse. By showing that 

upstream GPCRs can directly target the NMDA receptor, and that this targeting is 

subunit specific, we have hypothesized that upstream GPCRs can directly modify the 

induction of synaptic plasticity.  

In the course of this thesis, it has been shown that activation of the PAC1 receptor at 

middle frequencies can directly affect the induction of synaptic plasticity. In particular, 

at these middle frequencies, CA1 synapses have an increased propensity towards LTP 

versus LTD when the PAC1 receptor is activated prior to induction. From our previous 

results and the observations of others, we suspect that PAC1 activation causes Src 

mediated enhancement of NR2A containing receptors and that this enhancement during 

induction causes this shift in plasticity. In this model, NR2A is phosphorylated prior to 

Page 90: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

83  

induction of plasticity by Src kinase whereby effectually increasing the functional 

contribution of NR2A containing receptors when they are activated during induction. 

Similarly, activation of the D1 receptor has been shown to directly affect the induction 

of synaptic plasticity by increasing the propensity towards LTD. Given the results that 

suggest that activation of the D1 receptor increases NR2B Y1472 phosphorylation 

mediated by Fyn kinase, and that D1 receptor activation increases NMDA activity, we 

suggest that D1 activity enhances NR2B containing receptors leading to this alteration in 

plasticity. Similar to the PAC1 situation, D1 activation causes NR2B to be phosphorylated 

prior to induction at Y1472 by Fyn kinase which effectively increases the contribution of 

NR2B containing receptors and promotes depression.  

The results presented above, both in terms of Fyn and Src mediated phosphorylation, 

and PAC1 and D1 mediated shifts in plasticity, suggest a physiological specificity of the 

PAC1 and D1 signaling cascades. In particular, not only do PAC1 and D1 receptors target 

NR2A and NR2B in a physically and functionally specific way, they also target synaptic 

plasticity in a physiologically specific manner. 

5.6 Extensions and Future Directions 

The demonstrations here of metaplastic effects initiated by Gq and Gs type GPCRs 

suggests that there may be a great number of different signal transduction pathways 

that affect synaptic plasticity in a physiological way. The intracellular messengers that 

we have shown play intermediary roles between GPCR and NMDA receptor are 

Page 91: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

84  

activated by a truly enormous variety of other pathways. As an extension therefore, it is 

probable that all Gq and Gs pathways have metaplastic effects to varying degrees. 

Potential avenues for advancement in the areas of hippocampal synaptic plasticity and 

metaplasticity are numerous. In terms of the specific effects demonstrated in this work, 

a small number of future directions are discussed. 

The causal linkage between the GPCR mediated changes in the NMDA receptor and 

metaplasticity, although suggested strongly, has not been definitively shown. The 

evidence that is presented here would be strengthened therefore by a demonstration 

that Src(40‐58), an inhibitor peptide of Src kinase (Yu et al., 1997), can block the effects 

elicited by PACAP38. Similarly, blocking the D1 mediated effect via an inhibitor peptide 

of Fyn kinase would strengthen the causal linkage. Blockade of this last step in the 

intracellular pathway while applying plasticity inducing protocols would be one possible 

way to solidify the GPCR‐SFK‐NR2 metaplasticity pathways. 

Outside of this Gq/Gs paradigm, there are other signal transduction systems that elicit 

metaplastic effects with regards to NMDA receptor dependent plasticity. As an example, 

hormones released by the global stress response alter the induction of LTP in the 

hippocampus (Hirata et al., 2009). This stress‐induced metaplasticity is dependent on 

disruptions in calcium homeostasis (Kim and Yoon, 1998). With this evidence in hand, 

we can predict that other GPCR systems, such as Gi‐coupled serotonergic and 

dopaminergic systems, or calcium homeostasis modifiers may play a role in determining 

the direction and degree of synaptic plasticity.   

Page 92: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

85  

More broadly, investigations into metaplasticity are a very new and interesting field of 

neuroscience and as such there is still a wealth of directions in which we can investigate. 

We have and are demonstrating that through a variety of upstream GPCR pathways, the 

NR2 subunit can be regulated affecting metaplasticity. In this vein in particular, there are 

a number of different receptors including the cholinergic, adrenergic and metabotropic 

glutamatergic that can and do affect the NMDA receptor and each of these probably 

plays a differing role in the regulation of synaptic function . Furthermore, a number of 

non‐GPCR mediated affectors of the NMDA receptor exist and all of these lend 

themselves to further investigation. 

In a more global vein, metaplasticity has been investigated most thoroughly in the visual 

cortex and the hippocampus, but should be investigated elsewhere as well. A better 

understanding of the whole CNS mechanisms of in vitro and ex vivo metaplasticity 

should lead to better investigations into the functional physiological role of 

metaplasticity in vivo. 

 

5.7 Overall Conclusions 

The work presented here has centered on demonstrating one possible physiological 

mechanism for metaplasticity in the CA1 hippocampus. In summary, it has been shown 

that the Gq signaling pathway initiated by PACAP38 activation of the PAC1 receptor 

causes an increase in Src and NR2A phosphorylation and shifts the modification 

threshold leftward, increasing the propensity for LTP. Conversely, the Gs signaling 

pathway initiated by SKF81297 activation of the D1 receptor causes an increase in Fyn 

Page 93: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

86  

and NR2B phosphorylation and shifts the modification threshold rightward, increasing 

the propensity for LTD. Upstream modulators of the NMDA receptor are therefore 

implicated in a physiological mediation of long term synaptic plasticity in the CA1 

hippocampus. 

   

Page 94: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

87  

 

 

 

SECTION SIX 

 

REFERENCES 

 

Page 95: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

88  

1. Abe T, Matsumura S, Katano T, Mabuchi T, Takagi K, Xu L, Yamamoto A, Hattori K, Yagi T, 

Watanabe M, Nakazawa T, Yamamoto T, Mishina M, Nakai Y, Ito S (2005) Fyn kinase‐

mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for 

maintenance of neuropathic pain. Eur J Neurosci 22: 1445‐54. 

2. Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends 

Neurosci 19: 126‐30. 

3. Amenta F, Mignini F, Ricci A, Sabbatini M, Tomassoni D, Tayebati SK (2001) Age‐related 

changes of dopamine receptors in rat hippocampus: a light microscope autoradiography 

study. Mech Ageing Dev 122: 2071‐83. 

4. Beazely MA, Lim A, Li H, Trepanier C, Chen X, Sidhu B, MacDonald JF (2009) Platelet‐derived 

growth factor selectively inhibits NR2B‐containing N‐methyl‐D‐aspartate receptors in CA1 

hippocampal neurons. J Biol Chem 284: 8054‐63. 

5. Bennett JA, Dingledine R (1995) Topology profile for a glutamate receptor: three 

transmembrane domains and a channel‐lining reentrant membrane loop. Neuron 14: 373‐84. 

6. Berberich S, Punnakkal P, Jensen V, Pawlak V, Seeburg PH, Hvalby O, Kohr G (2005) Lack of 

NMDA receptor subtype selectivity for hippocampal long‐term potentiation. J Neurosci 25: 

6907‐10. 

7. Bertler A, Rosengren E (1959) Occurrence and distribution of catechol amines in brain. Acta 

Physiol Scand 47: 350‐61. 

8. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for development of neuron selectivity: 

orientation specificity and binocular interaction in visual cortex. J Neurosci 2: 32‐48. 

9. Bliss TV, Lomo T (1973) Long‐lasting potentiation of synaptic transmission in the dentate area 

of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331‐56. 

Page 96: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

89  

10. Cauvin A, Robberecht P, De Neef P, Gourlet P, Vandermeers A, Vandermeers‐Piret MC, 

Christophe J (1991) Properties and distribution of receptors for pituitary adenylate cyclase 

activating peptide (PACAP) in rat brain and spinal cord. Regul Pept 35: 161‐73. 

11. Chatterjee TK, Sharma RV, Fisher RA (1996) Molecular cloning of a novel variant of the 

pituitary adenylate‐cyclase activating polypeptide (PACAP) receptor that stimulates calcium 

influx by activation of L‐type calcium channels. J Biol Chem 271: 32226‐32. 

12. Chen WS, Bear MF (2007) Activity‐dependent regulation of NR2B translation contributes to 

metaplasticity in mouse visual cortex. Neuropharmacology 52: 200‐14. 

13. Chen Z, Fujii S, Ito K, Kato H, Kaneko K, Miyakawa H (1995) Activation of dopamine D1 

receptors enhances long‐term depression of synaptic transmission induced by low frequency 

stimulation in rat hippocampal CA1 neurons. Neurosci Lett 188: 195‐8. 

14. Chen Z, Ito K, Fujii S, Miura M, Furuse H, Sasaki H, Kaneko K, Kato H, Miyakawa H (1996) Roles 

of dopamine receptors in long‐term depression: enhancement via D1 receptors and 

inhibition via D2 receptors. Receptors Channels 4: 1‐8. 

15. Cho KK, Khibnik L, Philpot BD, Bear MF (2009) The ratio of NR2A/B NMDA receptor subunits 

determines the qualities of ocular dominance plasticity in visual cortex. Proc Natl Acad Sci 

USA 106: 5377‐82. 

16. Clements JD, Westbrook GL (1991) Activation kinetics reveal the number of glutamate and 

glycine binding sites on the N‐methyl‐D‐aspartate receptor. Neuron 7: 605‐13. 

17. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. 

Annu Rev Pharmacol Toxicol 37: 205‐37. 

18. Costa L, Santangelo F, Li Volsi G, Ciranna L (2009) Modulation of AMPA receptor‐mediated 

ion current by pituitary adenylate cyclase‐activating polypeptide (PACAP) in CA1 pyramidal 

neurons from rat hippocampus. Hippocampus 1: 99‐109. 

Page 97: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

90  

19. Cui H, Hayashi A, Sun HS, Belmares MP, Cobey C, Phan T, Schweizer J, Salter MW, Wang YT, 

Tasker RA, Garman D, Rabinowitz J, Lu PS, Tymianski M (2007) PDZ protein interactions 

underlying NMDA receptor‐mediated excitotoxicity and neuroprotection by PSD‐95 

inhibitors. J Neurosci 27: 9901‐15. 

20. Dautzenberg FM, Mevenkamp G, Wille S, Hauger RL (1999) N‐terminal splice variants of the 

type I PACAP receptor: isolation, characterization and ligand binding/selectivity 

determinants. J Neuroendocrinol 11: 941‐9. 

21. Dearry A, Gingrich JA, Falardeau P, Fremeau RT Jr, Bates MD, Caron MG (1990) Molecular 

cloning and expression of the gene for a human D1 dopamine receptor. Nature 347: 72‐6. 

22. Derkach V, Barria A, Soderling TR (1999) Ca2+/calmodulin‐kinase II enhances channel 

conductance of alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionate type glutamate 

receptors. Proc Natl Acad Sci USA 96: 3269‐74. 

23. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. 

Pharmacol Rev 51: 7‐61. 

24. Erreger K, Dravid SM, Banke TG, Wyllie DJ, Traynelis SF (2005) Subunit‐specific gating controls 

rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signaling profiles. J Physiol 

563: 345‐58. 

25. Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R (2003) PKA phosphorylation of 

AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 6: 

136‐43. 

26. Fox CJ, Russell KI, Wang YT, Christie BR (2006) Contribution of NR2A and NR2B NMDA 

subunits to bidirectional synaptic plasticity in the hippocampus in vivo. Hippocampus 16: 

907‐15. 

Page 98: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

91  

27. Fremeau RT Jr, Duncan GE, Fornaretto MG, Dearry A, Gingrich JA, Breese GR, Caron MG 

(1991) Localization of D1 dopamine receptor mRNA in brain supports a role in cognitive, 

affective, and neuroendocrine aspects of dopaminergic neurotransmission. Proc Natl Acad Sci 

USA 88: 3772‐6. 

28. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in 

NMDA receptors. Nature 438: 185‐92. 

29. Gao C, Wolf ME (2008) Dopamine receptors regulate NMDA receptor surface expression in 

prefrontal cortex neurons. J Neurochem 106: 2489‐501. 

30. Gottschall PE, Tatsuno I, Miyata A, Arimura A (1990) Characterization and distribution of 

binding sites for the hypothalamic peptide, pituitary adenylate cyclase‐activating 

polypeptide. Endocrinology 127: 272‐7. 

31. Granado N, Ortiz O, Suarez LM, Martin ED, Cena V, Solis JM, Moratalla R (2008) D1 but not D5 

dopamine receptors are critical for LTP, spatial learning, and LTP‐Induced arc and zif268 

expression in the hippocampus. Cereb Cortex 18: 1‐12.  

32. Gray H (1918) Anatomy of the human body. Philadelphia: Lea & Febiger. 

33. Grant SG, O’Dell TJ, Karl KA, Stein PL, Soriano P, Kandel ER (1992) Impaired long‐term 

potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 

258: 1903‐10. 

34. Groc L, Heine M, Cousins SL, Stephenson FA, Lounis B, Cognet L, Choquet D (2006) NMDA 

receptor surface mobility depends on NR2A‐2B subunits. Proc Natl Acad Sci USA 103: 18769‐

74. 

35. Guthrie PB, Segal M, Kater SB (1991) Independent regulation of calcium revealed by imaging 

dendritic spines. Nature 354: 76‐80. 

Page 99: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

92  

36. Hall RA, Premont RT, Lefkowitz RJ (1999) Heptahelical receptor signaling: beyond the G 

protein paradigm. J Cell Biol 145: 927‐32. 

37. Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW (2006) Dopamine D1 activation 

potentiates striatal NMDA receptors by tyrosine phosphorylation‐dependent subunit 

trafficking. J Neurosci 26: 4690‐700. 

38. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic 

NMDARs by triggering CREB shut‐off and cell death pathways. Nat Neurosci 5:405‐14. 

39. Harris EW, Ganong AH, Cotman CW (1984) Long‐term potentiation in the hippocampus 

involves activation of N‐methyl‐D‐aspartate receptors. Brain Res 323: 132‐7. 

40. Hashimoto H, Ishihara T, Shigemoto R, Mori K, Nagata S (1993) Molecular cloning and tissue 

distribution of a receptor for pituitary adenylate cyclase‐activating polypeptide. Neuron 11: 

333‐42. 

41. Hebb DO (1949) The organization of behavior. New York: Wiley. 

42. Hirai H, Kirsch J, Laube B, Betz H, Kuhse J (1996) The glycine binding site of the N‐methyl‐D‐

aspartate receptor subunit NR1: identification of novel determinants of co‐agonist 

potentiation in the extracellular M3‐M4 loop region. Proc Natl Acad Sci USA 93: 6031‐6. 

43. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17: 31‐

108. 

44. Hornykiewicz O (1958) The action of dopamine on the arterial blood pressure of the guinea 

pig. Br J Pharmacol 12: 91‐4. 

45. Hosoya M, Kimura C, Ogi K, Ohkubo S, Miyamoto Y, Shimizu M, Onda H, Oshimura M, 

Arimura A, Fujino M (1992) Structure of the human pituitary adenylate cycalse activating 

polypeptide (PACAP) gene. Biochem Biophys Acta 1129: 199‐206. 

Page 100: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

93  

46. Hsu KS (1996) Characterization of dopamine receptors mediating inhibition of excitatory 

synaptic transmission in the rat hippocampal slice. J Neurophysiol 76: 1887‐95. 

47. Huang Q, Zhou D, Chase K, Gusella JF, Aronin N, DiFiglia M (1992) Immunohistochemical 

localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre‐ and 

postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic 

reticular nucleus. Proc Natl Acad Sci USA 89: 11988‐92. 

48. Huang Y, Lu W, Ali DW, Pelkey KA, Pitcher GM, Lu YM, Aoto H, Roder JC, Sasaki T, Salter MW, 

MacDonald JF (2001) CAKbeta/Pyk2 kinase is a signaling link for induction of long‐term 

potentiation in CA1 hippocampus. Neuron 29: 485‐96. 

49. Huang YY, Kandel ER (1995) D1/D5 receptor agonists induce a protein synthesis‐dependent 

late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci USA 92: 2446‐50. 

50. Jahr CE (1992) High probability opening of NMDA receptor channels by L‐glutamate. Science 

255: 470‐2. 

51. Kalia LV, Salter MW (2003) Interactions between Src family protein tyrosine kinases and PSD‐

95. Neuropharmacology 45: 720‐8. 

52. Kameyama K, Lee HK, Bear MF, Huganir RL (1998) Involvement of a postsynaptic protein 

kinase A substrate in the expression of homosynaptic long‐term depression. Neuron 21: 

1163‐75. 

53. Kennedy MB (2000) Signal‐processing machines at the postsynaptic density. Science 290: 

750‐4. 

54. Kimura C, Ohkubo S, Ogi K, Hosoya M, Itoh Y, Onda H, Miyata A, Jian L, Dahl RR, Stibbs HH, 

Arimura A, Fujino M (1990) A novel peptide which stimulates adenylate cyclase: molecular 

cloning and characterization of the ovine and human cDNAs. Biochem Biophys Res Commun 

166: 81‐9. 

Page 101: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

94  

55. Kojima N, Wang J, Mansuy IM, Grant SG, Mayford M, Kandel ER (1997) Rescuing impairement 

of long‐term potentiation in fyn‐deficient mice by introducing Fyn transgene. Proc Natl Acad 

Sci USA 94: 4761‐5. 

56. Kondo T, Tominaga T, Ichikawa M, Iijima T (1997) Differential alteration of hippocampal 

synaptic strength induced by pituitary adenylate cyclase activating polypeptide‐38 (PACAP‐

38). Neurosci Lett 221: 189‐92. 

57. Kozell LB, Machida CA, Neve RL, Neve KA (1994) Chimeric D1/D2 dopamine receptors. 

Distinct determinants of selective efficacy, potency, and signal transduction. J Biol Chem 269: 

30299‐306. 

58. Kuner T, Wollmuth LP, Karlin A, Seeburg PH, Sakmann B (1996) Structure of the NMDA 

receptor channel M2 segment inferred from the accessibility of substituted cysteines. 

Neuron 17: 343‐52. 

59. Laube B, Kuhse J, Betz H (1998) Evidence for a tetrameric structure of recombinant NMDA 

receptors. J Neurosci 18: 2954‐61. 

60. Le HT, Maksumova L, Wang J, Pallen CJ (2006) Reduced NMDA receptor tyrosine 

phosphorylation in PTPalpha‐deficient mouse synaptosomes is accompanied by inhibition of 

four Src family kinases and Pyk2: an upstream role for PTPalpha in NMDA receptor 

regulation. J Neurochem 98: 1798‐809. 

61. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL. (2000) Regulation of distinct AMPA 

receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405: 955‐9. 

62. Lee HK, Kameyama K, Huganir RL, Bear MF (1998) NMDA induces long‐term synaptic 

depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. 

Neuron 21: 1151‐62. 

Page 102: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

95  

63. Lee HK, Takamiya K, Han JS, Man H, Kim CH, Rumbaugh G, Yu S, Ding L, He C, Petralia RS, 

Wenthold RJ, Gallagher M, Huganir RL (2003) Phosphorylation of the AMPA receptor GluR1 

subunit is required for synaptic plasticity and retention of spatial memory. Cell 112: 631‐43. 

64. Lei G, Xue S, Chery N, Liu Q, Xu J, Kwan CL, Fu YP, Lu YM, Liu M, Harder KW, Yu XM (2002) 

Gain control of N‐methyl‐D‐aspartate receptor activity by receptor‐like protein tyrosine 

phosphatase alpha. EMBO J 21: 2977‐89. 

65. Lemon N, Manahan‐Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of 

novel information through hippocampal long‐term potentiation and long‐term depression. J 

Neurosci 26: 7723‐9. 

66. Leonard AS, Hell JW (1997) Cyclic AMP‐dependent protein kinase and protein kinase C 

phosphorylate N‐methyl‐D‐aspartate receptors at different sites. J Biol Chem 272: 12107‐15. 

67. Lester RA, Clements JD, Westbrook GL, Jahr CE (1999) Channel kinetics determine the time 

course of NMDA receptor‐mediated synaptic currents. Nature 346: 565‐7. 

68. Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) 

Role of NMDA receptor subtypes in governing the direction of synaptic plasticity. Science 

304: 1021‐4. 

69. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM, 

Wang YT (2007) NMDA receptor subunits have differential roles in mediating excitotoxic 

neuronal death both in vitro and in vivo. J Neurosci 27: 2846‐57. 

70. Lu YM, Roder JC, Davidow J, Salter MW (1998) Src activation in the induction of long‐term 

potentiation in CA1 hippocampal neurons. Science 279: 1363‐7. 

71. MacDonald DS, Weerapura M, Beazely MA, Martin L, Czerwinski W, Roder JC, Orser BA, 

MacDonald JF (2005) Modulation of NMDA receptors by pituitary adenylate cyclase 

Page 103: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

96  

activating peptide in CA1 neurons requires G alpha q, protein kinase C, and activation of Src. J 

Neurosci 25: 11374‐84. 

72.  MacDonald JF, Porietis AV, Wojtowicz JM (1982) L‐aspartic acid induces a region of negative 

slope conductance in the current‐voltage relationship of cultured spinal cord neurons. Brain 

Res 237: 248‐53.A 

73. Man HY, Sekine‐Aizawa Y, Huganir RL (2007) Regulation of {alpha}‐amino‐3‐hydroxy‐5‐

methyl‐4‐isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu 

receptor 1 subunit. Proc Natl Acad Sci USA 104: 3579‐84. 

74. Mansour A, Meador‐Woodruff JH, Zhou QY, Civelli O, Akil H, Watson SJ (1991) A comparison 

of D1 receptor binding and mRNA in rat brain using autoradiographic and in situ hybridization 

techniques. Neuroscience 45: 359‐71. 

75. Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical 

pyramidal neurons. Proc Natl Acad Sci USA 95: 5323‐8. 

76. Martin Shreeve S (2002) Identification of G‐proteins coupling to vasoactive intestinal peptide 

receptor VPAC(1) using immunoaffinity chromatography: evidence for precoupling. Biochem 

Biophys Res Commun 290: 1300‐7. 

77. Masey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, Collingridge GL, Bashir 

ZL (2004) Differential roles of NR2A and NR2B‐containing NMDA receptors in cortical long‐

term potentiation and long‐term depression. J Neurosci 24: 7821‐8. 

78. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage‐dependent block by Mg2+ of NMDA 

responses in spinal cord neurones. Nature 309: 261‐3. 

79. McBain CJ, Mayer ML (1994) N‐methyl‐D‐aspartic acid receptor structure and function. 

Physiol Rev 74: 723‐60. 

Page 104: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

97  

80. McCulloch DA, MacKenzie CJ, Johnson MS, Robertson DN, Holland PJ, Ronaldson E, Lutz EM, 

Mitchell R (2002) Additional signals from VPAC/PAC family receptors. Biochem Soc Trans 30: 

441‐6. 

81. Misu Y, Kitahama K, Goshima Y (2003) L‐3,4‐dihydoxyphenylalanine as a neurotransmitter 

candidate in the central nervous system. Pharmacol Ther 97: 117‐32. 

82. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) 

Isolation of a novel 38 residue‐hypothalamic polypeptide which stimulates adenylate cyclase 

in pituitary cells. Biochem Biophys Res Commun 164: 567‐74. 

83. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A (1990) 

Isolation of a neuropeptide corresponding to the N‐terminal 27 residues of the pituitary 

adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res 

Commun 170: 643‐8. 

84. Morishita W, Lu W, Smith GB, Nicoll RA, Bear MF, Malenka RC (2007) Activation of NR2B‐

containing NMDA receptors is not required for NMDA receptor‐dependent long‐term 

depression. Neuropharmacology 52: 71‐6. 

85. Moro O, Lerner EA (1997) Maxadilan, the vasodilator from sand flies, is a specific pituitary 

adenylate cyclase activating peptide type I receptor agonist. J Biol Chem 272: 966‐70. 

86. Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long‐

term depression in area CA1 of the hippocampus. Neuron 9: 967‐75. 

87. Muller W, Connor JA (1991) Dendritic spines as individual neuronal compartments for 

synaptic Ca2+ responses. Nature 354: 73‐6. 

88. Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation and 

plasticity. Neuron 13: 1031‐7. 

Page 105: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

98  

89. Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T, 

Yamamoto T (2001) Characterization of Fyn‐mediated tyrosine phosphorylation sites on GluR 

epsilon 2 (NR2B) subunit of the N‐methyl‐D‐aspartate receptor. J Biol Chem 276: 693‐9. 

90. Navakkode S, Sajikumar S, Frey JU (2007) Synergistic requirements for the induction of 

dopaminergic D1/D5‐receptor‐mediated LTP in hippocampal slices of rat CA1 in vitro. 

Neuropharmacology 52: 1547‐54. 

91.  Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296: 1636‐9. 

92. Neyton J, Paoletti P (2006) Relating NMDA receptor function to receptor subunit 

composition: limitations of the pharmacological approach. J Neurosci 26: 1331‐3. 

93.  Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates 

glutamate‐activated channels in mouse central neurones. Nature 307: 462‐5. 

94. Oh BH, Kang CH, De Bondt H, Kim SH, Nikaido K, Joshi AK, Ames GF (1994) The bacterial 

periplasmic histidine‐binding protein. structure/function analysis of the ligand‐binding site 

and comparison with related proteins. J Biol Chem 269: 4135‐43. 

95. Oh MC, Derkach VA (2005) Dominant role of the GluR2 subunit in regulation of AMPA 

receptors by CaMKII. Nat Neurosci 8: 853‐4. 

96. Ohtaki T, Masuda Y, Ishibashi Y, Kitada C, Arimura A, Fujino M (1993) Purification and 

characterization of the receptor for pituitary adenylate cyclase‐activating polypeptide. J Biol 

Chem 268: 26650‐7. 

97. Otmakhova NA, Lisman JE (1996) D1/D5 dopamine receptor activation increases the 

magnitude of early long‐term potentiation at CA1 hippocampal synapses. J Neurosci 16: 

7478‐86. 

98. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin 

Pharmacol 7: 39‐47. 

Page 106: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

99  

99. Peters A, Palay SL, Webster DeFH (1991) The Fine Structure of the Nervous System, Neurons 

and Their Supporting Cells. New York: Oxford University Press. 

100. Philpot BD, Cho KK, Bear MF (2007) Obligatory role of NR2A for metaplasticity in visual 

cortex. Neuron 53: 495‐502. 

101. Philpot BD, Weisberg MP, Ramos MS, Sawtell NB, Tang YP, Tsien JZ, Bear MF (2001) Effect of 

transgenic overexpression of NR2B on NMDA receptor function and synaptic plasticity in 

visual cortex. Neuropharmacology 41: 762‐70. 

102. Pisegna JR, Wank SA (1993) Molecular cloning and functional expression of the pituitary 

adenylate cyclase‐activating polypeptide type I receptor. Proc Natl Acad Sci USA 90: 6345‐9. 

103. Raab W, Gigee W (1951) Concentration and distribution of “encephalin” in the brain of 

humans and animals. Proc Soc Exp Biol Med 76: 97‐100. 

104. Ramon y Cajal S (1894) The Croonian Lecture: La Fine Structure des Centres Nerveux. Proc 

Roy Soc London 55: 444‐68. 

105. Ramon y Cajal S (1952) Histologie du Systeme Nerveux de l'homme et des Vertebres. Madrid: 

Instituto Ramon y Cajal. 

106. Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15: 665‐74. 

107. Robberecht P, Gourlet P, De Neef P, Wouseen‐Colle MC, Vandermeers‐Piret MC, 

Vandermeers A, Christophe J (1992) Structural requirements for the occupancy of pituitary 

adenylate‐cyclase‐activating‐peptide (PACAP) receptors and adenylate cyclase activation in 

human neuroblastoma NB‐OK‐1 cell membranes. Discovery of PACAP(6‐38) as a potent 

antagonist. Eur J Biochem 207: 239‐46. 

108. Roberto M, Brunelli M (2000) PACAP‐38 enhances excitatory synaptic transmission in the rat 

hippocampal CA1 region. Learn Mem 7: 303‐11. 

Page 107: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

100  

109. Roberto M, Scuri R, Brunelli M (2001) Differential effects of PACAP‐38 on synaptic responses 

in rat hippocampal CA1 region. Learn Mem 8:265‐71. 

110. Rogers M, Dani JA (1995) Comparison of quantitative calcium flux through NMDA, ATP and 

ACh receptor channels. Biophys J 68: 501‐6 

111. Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev 

Neurosci 5: 317‐28 

112. Sans N, Petralia RS, Wang YX, Blahos J, Hell JW, Wenthold RJ (2000) A developmental change 

in NMDA receptor‐associated proteins at hippocampal synapses. J Neurosci 20: 1260‐71. 

113. Schell MJ, Brady RO Jr, Molliver ME, Snyder SH (1997) D‐serine as a neuromodulator: regional 

and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17: 

1604‐15. 

114. Schell MJ, Molliver ME, Snyder SH (1995) D‐serine, an endogenous synaptic modulator: 

localization to astrocytes and glutamate‐stimulated release. Proc Natl Acad Sci USA 92: 3948‐

52. 

115. Schilstrom B, Yaka R, Argilli E, Suvarna N, Schumann J, Chen BT, Carman M, Singh V, Mailliard 

WS, Ron D, Bonci A (2006) Cocaine enhances NMDA receptor‐mediated currents in ventral 

tegmental area cells via dopamine D5 receptor‐dependent redistribution of NMDA receptors. 

J Neurosci 26: 8549‐58. 

116. Seabold GK, Burette A, Lim IA, Weinberg RJ, Hell JW (2003) Interaction of the tyrosine kinase 

Pyk2 with the N‐methyl‐D‐aspartate receptor complex via the Src homology 3 domains of 

PSD‐95 and SAP102. J Biol Chem 278: 15040‐8. 

117. Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid 

spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor 

activation. Science 284: 1811‐6. 

Page 108: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

101  

118. Sobczyk A, Svoboda K (2007) Activity‐dependent plasticity of the NMDA‐receptor fractional 

Ca2+ current. Neuron 53: 17‐24. 

119. Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L (1993) 

Differential signal transduction by five splice variants of the PACAP receptor. Nature 365: 

170‐5. 

120. Stramiello M, Wagner JJ (2008) D1/5 receptor‐mediated enhancement of LTP requires PKA, 

Src family kinases, and NR2B‐containing NMDARs. Neuropharmacology 55: 871‐7. 

121. Sun G, Sharma AK, Budde RJ (1998) Autophosphorylation of Src and Yes blocks their 

inactivation by Csk phosphorylation. Oncogene 17: 1587‐95. 

122. Sun L, Margolis FL, Shipley MT, Lidow MS (1998) Identification of a long variant of mRNA 

encoding the NR3 subunit of the NMDA receptor: its regional distribution and developmental 

expression in the rat brain. FEBS Lett 441: 392‐6. 

123. Sun YJ, Rose J, Wang BC, Hsiao CD (1998) The structure of glutamine‐binding protein 

complexed with glutamine at 1.94 A resolution: comparisons with other amino acid binding 

proteins. J Mol Biol 278: 219‐29.] 

124. Superti‐Furga G, Fumagalli S, Koegl M, Courtneidge SA, Draetta G (1993) Csk inhibition of c‐

Src activity requires both the SH2 and SH3 domains of Src. EMBO J 12: 2625‐34. 

125. Tarazi FI, Florijn WJ, Creese I (1996) Regulation of ionotropic glutamate receptors following 

subchronic and chronic treatment with typical and atypical antipsychotics. 

Psychopharmacology (Berl) 128: 371‐9. 

126. Tatosyan AG, Mizenina OA (2000) Kinases of the Src family: structure and functions. 

Biochemistry (Mosc) 65: 49‐58. 

Page 109: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

102  

127. Tatsuno I, Somogyvari‐Vigh A, Arimura A (1994) Developmental changes of pituitary 

adenylate cyclase activating polypeptide (PACAP) and its receptor in rat brain. Peptides 15: 

55‐60. 

128. Thomson AM (2000) Facilitation, augmentation and potentiation at central synapses. Trends 

Neurosci 23: 305‐12. 

129. Thomson AM, Bannister AP (1999) Release‐independent depression at pyramidal inputs onto 

specific cell targets: dual recordings in slice of rat cortex. J Physiol 519: 57‐70. 

130. Tigaret CM, Thalhammer A, Rast GF, Specht CG, Auberson YP, Stewart MG, Schoepfer R 

(2006) Subunit dependencies of N‐methyl‐D‐aspartate (NMDA) receptor‐induced alpha‐

amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptor internalization. Mol 

Pharmacol 69: 1251‐9. 

131. Tingley WG, Ehlers MD, Kameyama K, Doherty C, Ptak JB, Riley CT, Huganir RL (1997) 

Characterization of protein kinase A and protein kinase C phosphorylation of the N‐methyl‐D‐

aspartate receptor NR1 subunit using phosphorylation site‐specific antibodies. J Biol Chem 

272: 5157‐66. 

132. Uchida D, Tatsuno I, Tanaka T, Hirai A, Saito Y, Moro O, Tajima M (1998) Maxadilan is a 

specific agonist and its deleted peptide (M65) is a specific antagonist for PACAP type I 

receptor. Ann NY Acad Sci 865: 253‐8. 

133. Usdin TB, Bonner TI, Mezey E (1994) Two receptors for vasoactive intestinal polypeptide with 

similar specificity and complementary distributions. Endocrinology 135: 2662‐80. 

134. Varela JA, Hirsch SJ, Chapman D, Leverich LS, Greene RW (2009) D1/D5 modulation of 

synaptic NMDA receptor currents. J Neurosci 29: 3109‐19. 

135. Vogt M (1954) The concentration of sympathin in different parts of the central nervous 

system under normal conditions and after the administration of drugs. J Physiol 123: 451‐81. 

Page 110: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

103  

136. Weitlauf C, Honse Y, Auberson YP, Mishina M, Lovinger DM, Winder DG (2005) Activation of 

NR2A‐containing NMDA receptors is not obligatory for NMDA receptor‐dependent long‐term 

potentiation. J Neurosci 25: 8386‐90. 

137. Wood MW, VanDongen HM, VanDongen AM (1995) Structural conservation of ion 

conduction pathways in K channels and glutamate receptors. Proc Natl Acad Sci USA 92: 

4882‐6. 

138. Wyllie DJ, Behe P, Colquhoun D (1998) Single channel activations and concentration jumps: 

comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors. J Physiol 510: 1‐

18. 

139. Xiong ZG, Raouf R, Lu WY, Wang LY, Orser BA, Dudek EM, Browning MD, MacDonald JF (1998) 

Regulation of N‐methyl‐D‐aspartate receptor function by constitutively active protein kinase 

C. Mol Pharmacol 54: 1055‐63. 

140. Xu J, Weerapura M, Ali MK, Jackson MF, Li H, Lei G, Xue S, Kwan CL, Manolson MF, Yang K, 

MacDonald JF, Yu XM (2008) Control of excitatory synaptic transmission by C‐terminal Src 

kinase. J Biol Chem 283: 17503‐14. 

141. Yaka R, He DY, Phamluong K, Ron D (2003) Pituitary adenylate cyclase‐activating polypeptide 

(PACAP(1‐38)) enhances N‐methyl‐D‐aspartate receptor function and brain‐derived 

neurotrophic factor expression via RACK1. J Biol Chem 278: 9630‐8. 

142. Yaka R, Thornton C, Vagts AJ, Phamluong K, Bonci A, Ron D (2002) NMDA receptor function is 

regulated by the inhibitory scaffolding protein, RACK1. Proc Natl Acad Sci USA 99: 5710‐5. 

143. Yang M, Leonard JP (2001) Identification of mouse NMDA receptor subunit NR2A C‐terminal 

tyrosine sites phosphorylated by coexpression with v‐Src. J Neurochem 77: 580‐8.  

144. Yu XM, Askalan R, Keil GJ 2nd, Salter MW (1997) NMDA channel regulation by channel‐

associated protein tyrosine kinase Src. Science 275: 674‐8. 

Page 111: G‐PROTEIN COUPLED RECEPTOR MEDIATED …...5.3 PAC1 and D1 Receptor Mediated Effects on Synaptic Plasticity…77 5.4 Functional Target Specificity…80 5.5 Physiological Specificity

104  

145. Yu XM, Salter MW (1998) Gain control of NMDA‐receptor currents by intracellular sodium. 

Nature 396: 469‐74. 

146. Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. 

Nature 375: 682‐4. 

147. Zhang S, Ehlers MD, Bernhardt JP, Su CT, Huganir RL (1998) Calmodulin mediates calcium‐

dependent inactivation of N‐methyl‐D‐aspartate receptors. Neuron 21: 443‐53. 

148. Zhang XL, Sullivan JA, Moskal JR, Stanton PK (2008) A NMDA receptor glycine site partial 

agonist, GLYX‐13, simultaneously enhances LTP and reduces LTD at Schaffer collateral‐CA1 

synapses in hippocampus. Neuropharmacology 55: 1238‐50. 

149. Zhou CJ, Kikuyama S, Shibanuma M, Hirabayashi T, Nakajo S, Arimura A, Shioda S (2000) 

Cellular distribution of the splice variants of the pituitary adenylate cyclase‐activating 

polypeptide (PAC(1)‐R) in the rat brain by in situ RT‐PCR. Brain Res Mol Brain Res 75: 150‐8.