fyp presentation new

32
PRESSURE DROP AND HEAT TRANSFER CHARACTERISTICS OF LOUVERED FIN HEAT EXCHANGERS SUPERVISED BY: MR. SHAHRIN HISHAM BIN AMIRNORDIN PRESENTED BY: DJAMAL HISSEIN DIDANE

Upload: djamal-didane

Post on 18-Dec-2014

113 views

Category:

Technology


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Fyp presentation new

 PRESSURE DROP AND HEAT TRANSFER CHARACTERISTICS OF 

LOUVERED FIN HEAT EXCHANGERS 

SUPERVISED BY:

MR. SHAHRIN HISHAM BIN AMIRNORDIN

PRESENTED BY: 

DJAMAL HISSEIN DIDANE

Page 2: Fyp presentation new

Figure 1: Flat-sided tube and louvered plate fin heat transfersurface [1].

INTRODUCTION

Heat exchangers are devices that facilitate the exchange of heat between two fluids that are at different temperatures while keeping them from mixing with each other.

Louvered fin compact heat exchangers are used extensively in several automotive applications such as radiators, oil coolers, condensers, and charge air coolers [1].

Page 3: Fyp presentation new

Figure 2: Section through typical louvered-fin showing key geometrical parameters [15].

INTRODUCTION cont’

In order to improve the performance of the heat exchanger fins are added on the air side. These serve several purposes:

They increase the available surface for heat transfer and interrupt the growth of the boundary layer forming along the fin surface [1].

Page 4: Fyp presentation new

BACKGROUND OF STUDY

• More efficient in enhancing heat transfer.• Able to interrupt the growth of the boundary layer

forming along the fin surface.• Louvered fin appears to be the most suitable type of fin

for automotive applications. Advantages of louvered fin [1]:

• The associated pressure drop when using louvered fin is significant.

• Adding more fins will increase the material costDisadvantages [3]:

Page 5: Fyp presentation new

PROBLEM STATEMENT

    Heat exchanger is an important device in automotive and air conditioning applications, therefore having an effective heat exchanger will enhance the performance of the whole system.

    Past studies have shown that the flow in the heat exchanger is strongly dependent on geometrical parameters. 

    Hence, by manipulating the geometrical parameters of the fin, we will obtain a heat exchanger with maximum heat transfer coefficient and the pressure drop is within the allowable design limit[1].

Page 6: Fyp presentation new

OBJECTIVE 

SCOPE OF STUDY

   The objective of this study is to determine the pressure drop and heat transfer characteristics of a louvered fin heat   exchanger. 

    Simulation will be performed using ANSYS Fluent.

  Validation will be conducted using the experimental result from literature.

  The Reynolds number (based on louver pitch) is 200-1000.

  The air inlet temperature is 27 °C which is the room temperature.

Page 7: Fyp presentation new

LITERATURE REVIEW 

  

Figure 3: Flow efficiency [15]

Flow efficiency

•Flow efficiency is used to describe the percentage of the fluid flowing along the louver direction.

•100 % efficiency represents ideal louver-directed flow while 0% represents complete duct-directed flow [14].

•As Reynolds number increases, flow undergoes a transition from duct directed flow (low efficiency) to louver directed flow (high efficiency) [11].

Page 8: Fyp presentation new

Figure 4: Section through louver array indicating possible flow directions [15].

LITERATURE REVIEW cont’ 

Flow behavior

•louvers act to realign the air flow in a direction parallel to their own planes.

•the degree of alignment with the louvers was a function of Reynolds number.

•At low Reynolds number values, realignment would be slight, but at high Reynolds number it was almost complete [15].

Page 9: Fyp presentation new

SUMMARY OF THE LITERATURE REVIEW

The flow efficiency is strongly dependent on the geometry, especially at low Reynolds numbers.

The flow efficiency increases with the Reynolds number and louver angle, but it decreases with the fin pitch and thickness ratio.

The heat transfer for louvered fins is more appropriately described by a Reynolds number based on the louver pitch.

A louvered fin heat exchanger produced a 25% increase in heat transfer and a 110% increase in pressure drop relative to a plain fin.

Louvered-fin flow behavior is generally laminar in The ReLP range tested (50-600) with vortex shedding occurring within the louver array for ReLP > 400, depending on the model.

Page 10: Fyp presentation new

METHODOLOGY

Figure 5: Methodology flow chart 

Page 11: Fyp presentation new

GEOMETRICAL DETAILS

Configuration No.

Fin pitch, Fp

[mm]

Louver pitch,

Lp [mm]

Louver angle, α

[°]

Louver thickness, t [mm]

1 1.65 0.7

25.5 0.052 1.65 1.4

3 2.02 0.7

4 2.02 1.4

5 3.25 0.7

6 3.25 1.4

Table 1: Dimensional details of computational model

Figure 6: geometrical etails of the louver

Page 12: Fyp presentation new

LOUVERED FIN GEOMETRY

Figure 7: Isometric and side view of the louvered heat exchanger

Page 13: Fyp presentation new

PRE PROCESSINGDefine the model goal

Identity the model domainDesign and create the grid

PROCESSING(FLUENT)

Set up the numerical modelCompute and monitor the solution

POST PROCESSINGExamine the result

Consider revisions to the model

CFD ANALYSIS

Page 14: Fyp presentation new

FLOW CHART FOR CFD SIMULATION PROCESS

Page 15: Fyp presentation new

PARAMETERS

No

Louver pitch = 0.7 mm Louver pitch = 1.4 mm

Reynolds number Velocity (m/s) Reynolds number Velocity (m/s)

1 200 4.51 200 2.26

2 400 9.03 400 4.51

3 600 13.54 600 6.77

4 800 18.06 800 9.03

5 1000 22.57 1000 11.28

Table 2: Parameter for Numerical Study

   Here  is the geometrical parameters and velocity  inputs been used throughout this study.

  The velocity adopted in accordance with the Reynolds number and louver pitch.

Page 16: Fyp presentation new

BOUNDARY CONDITION

No  Name  Type of boundary condition

1 Inlet Velocity inlet

2 Outlet Pressure outlet

3 Side wall Wall

4 Wall Periodic

5 Fin Wall

Page 17: Fyp presentation new
Page 18: Fyp presentation new

RESULT & DISCUSSION

Page 19: Fyp presentation new

MESHING SCHEME STUDIED (VALIDATION)

Pressure Drop for each velocity Percentage Difference (%) Mean Difference

Velocity (m/s) 2.264.51 6.77 9.03 11.28 2.26 4.51 6.77 9.03 11.28

No Size of Elements

No of Elements

43.50143.40 255.89 383.34 523.40 43.50 143.40 255.89 383.34 523.40 Percentage

1 0.2 45548043.76

147.26 290.39 488.89 767.27 0.6 2.69 13.48 27.53 46.59 18.18

2 0.23 48523543.5

147.24 277.78 491.43 750.33 0 2.68 8.55 28.2 43.36 16.56

3 0.24 46436644.23

151.39 296.78 505.77 762.63 1.68 5.57 15.98 31.94 45.71 20.18

4 0.25 46330044.24

148.37 293.45 502.54 775.68 1.7 3.47 14.68 31.1 44.38 19.07

5 0.26 44368042.65

146.54 291.91 497.01 728.73 1.95 2.19 14.08 29.65 39.23 17.42

6 0.27 42148042.96

146.88 287.76 460.31 732.38 1.24 2.43 12.45 20.08 39.92 15.22

7 0.28 35560242

141.34 276.81 459 730.15 3.44 1.44 8.18 19.74 39.5 14.46

8 0.29 33579043.5

147.24 277.57 491.43 750.33 0 2.68 8.47 28.2 43.36 16.54

9 0.3 33855942.89

142.59 290.19 496.72 735.39 1.4 0.56 13.4 29.58 40.5 17.09

10 0.31 39480043.03

148.41 291.95 519.93 772.08 1.08 3.49 14.09 35.63 47.51 20.36

11 0.32 39536041.47

141.83 291.68 490.19 743.52 4.67 1.09 13.99 27.87 42.06 17.94

12 0.33 39604042.47

143.54 286.49 482.34 730.13 2.37 0.1 11.96 25.83 39.5 15.95

13 0.34 39112043.5

147.24 286.98 491.43 750.33 0 2.68 12.15 28.2 43.36 17.28

14 0.35 39220041.2

137.42 293.47 491 750.4 5.29 4.17 14.69 28.08 43.37 19.12

15 0.4 37292043.5

147.24 267.8 491.43 750.33 0 2.68 4.65 28.2 43.36 15.78

Page 20: Fyp presentation new

CONFIGURATION 1 AFTER MESHING

Page 21: Fyp presentation new

Difference of pressure drop between experiment and simulation

Air velocity

(m/s)

Experimental work [1, 2]

Current work Difference (%)

Pressure drop (Pa)

Pressure drop (Pa)

2.26 43.50 42.00 3.45

4.51 143.40 141.34 1.44

6.77 255.89 276.81 8.18

9.03 383.34 459.00 19.74

11.28 523.40 730.15 39.5

Average 14.46

2 4 6 8 10 12

0

100

200

300

400

500

600

700

800

Pres

sure

dro

p (P

a)

Reynolds Number (ReLp

)

Experimenatl Numerical

Figure 9: Numerical and experimental pressure drop against Reynolds number

Page 22: Fyp presentation new

200 400 600 800 1000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Pres

sure

dro

p (P

a)

Reynolds number (ReLp

)

Fp=1.65 Fp=2.02 Fp=3.25

2 4 6 8 10 12

0

200

400

600

800

1000

1200

Pres

sure

dro

p (P

a)

Reynolds number (ReLp

)

Fp=1.65 Fp=2.02 Fp=3.25

Figure 11: Pressure drop against Reynolds number at louver pitch 1.4 mm

Figure 10: Pressure drop against Reynolds number at louver pitch 0.7 mm

PRESSURE DROP, ∆P

Page 23: Fyp presentation new

200 400 600 800 10000.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Hea

t tra

nsef

er c

oeffi

cien

t (W

/m2.

K)

Reynolds number (ReLp

)

Fp=1.65 Fp=2.02 Fp=3.25

200 400 600 800 1000

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Hea

t tra

nsef

er c

oeffi

cien

t (W

/m2.

K)

Reynolds number (ReLp

)

Fp=1.65 Fp=2.02 Fp=3.25

Figure 12: Heat transfer coefficient versus Reynolds number at louver pitch 0.7mm

Figure 13: Heat transfer coefficient versus Reynolds number at louver pitch 1.4 mm

HEAT TRANSFER COEFFICIENT, h

Page 24: Fyp presentation new

200 400 600 800 10000

2

4

Eule

r Num

ber (

Eu)

Reynolds Number (ReLp

)

Fp=1.65 Fp=2.02 Fp=3.25

200 400 600 800 1000

2

4

6

8

10

Eule

r Num

ber (

Eu)

Reynolds Number (ReLp

)

Fp=1.65 Fp=2.02 Fp=3.25

Figure 15: Euler number versus Reynolds number at louver pitch 1.4 mm

Figure 14: Euler number versus Reynolds number at louver pitch 0.7 mm

EULER NUMBER, EuHigher Euler number means that higher pressure drop occurred.

Page 25: Fyp presentation new

200 400 600 800 10000.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

Nus

selt

Num

ber (

Nu)

Reynolds Number (ReLp

)

Fp=1.65 Fp=2.02 Fp=3.25

200 400 600 800 1000

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

Nuss

elt N

umbe

r (Nu

)

Reynolds Number (ReLp

)

Fp=1.65 Fp=2.02 Fp=3.25

Figure 17: Nusselt number versus Reynolds number at louver pitch 1.4 mm

Figure 16: Nusselt number versus Reynolds number at louver pitch 0.7 mm

NUSSELT NUMBER, Nu

    Nusselt number is a ratio of convective to conductive heat transfer across the boundary.    A larger Nusselt number corresponds to more active heat convection between two boundary.

Page 26: Fyp presentation new

200 400 600 800 10000.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fric

tion

Fact

or (f

)

Stan

ton

Num

ber (

St)

Reynolds Number (ReLp

)

St- Fp=1.65 f- Fp=1.65

200 400 600 800 1000

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Fric

tion

Fact

or (f

)

Stan

ton

Num

ber (

St)

Reynolds Number (ReLp

)

St- Fp=2.02 f- Fp=2.02

Figure 19: Stanton number and friction factor against Reynolds number for configuration 3

Figure 18: Stanton number and friction factor against Reynolds number for configuration 1

STANTON NUMBER, St AND FRICTION FACTOR, f

Page 27: Fyp presentation new

200 400 600 800 1000

0.02

0.03

0.04

0.05

0.06

0.07

Fric

tion

Fact

or (f

)

Stan

ton

Num

ber (

St)

Reynolds Number (ReLp

)

St- Fp=3.25 f- Fp=3.25

200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

Fric

tion

Fact

or (f

)

Stan

ton

Num

ber (

St)

Reynolds Number (ReLp

)

St- Fp=1.65 f- Fp=1.65

Figure 20: Stanton number and friction factor against Reynolds number for

configuration 5

Figure 21: Stanton number and friction factor against Reynolds

number for configuration 2

STANTON NUMBER, St AND FRICTION FACTOR,f

Page 28: Fyp presentation new

200 400 600 800 10000.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fric

tion

Fact

or (f

)

Stan

ton

Num

ber (

St)

Reynolds Number (ReLp

)

St- Fp=2.02 f- Fp=2.02

200 400 600 800 10000.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fric

tion

Fact

or (f

)

Stan

ton

Num

ber (

St)

Reynolds Number (ReLp

)

St-Fp=3.25 f- Fp=3.25

Figure 22: Stanton number and friction factor against Reynolds number for configuration 4

Figure 23: Stanton number and friction factor against Reynolds number for configuration 6

STANTON NUMBER,St AND FRICTION FACTOR,f

Page 29: Fyp presentation new

TEMPERATURE, PRESSURE CONTOURS AND STREAMLINES FOR CONFIGURATION 2

Page 30: Fyp presentation new

CONCLUSIONS

The major findings are summarized as follows:

Heat transfer rate increases when the fin pitch is increased. While the opposite is true in the case of pressure drop. Pressure drop and heat transfer increases when the louver pitch is decreased. The friction factor decreases with the increase in fin pitch. While the opposite is true in the case of Stanton number. Greater heat transfer values are obtained as the fin pitch is increased, due to the increased heat transfer surface area. Greater heat transfer and pressure drop values are obtained as the Reynolds number is increased. That is due to the flow tends to be louver directed flow at high Reynolds number and duct directed flow at low Reynolds number, and this two behaviors have a huge impact on heat transfer and pressure drop respectively.

Page 31: Fyp presentation new

for paying attention.

Page 32: Fyp presentation new

Q & A