ft appl talk

196
The Fourier Transform and applications Mihalis Kolountzakis University of Crete January 2006 Mihalis Kolountzakis (U. of Crete ) FT and applicatio ns January 2006 1 / 36

Upload: singara-velan

Post on 07-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 1/196

The Fourier Transform and applications

Mihalis Kolountzakis

University of Crete

January 2006

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 1 / 36

Page 2: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 2/196

Groups and Haar measure

Locally compact abelian groups:

Haar measure on G  = translation invariant on G : µ(A) = µ(A + t ).Unique up to scalar multiple.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 2 / 36

Page 3: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 3/196

Groups and Haar measure

Locally compact abelian groups:

Integers Z = {. . . , −2, −1, 0, 1, 2, . . .}

Haar measure on G  = translation invariant on G : µ(A) = µ(A + t ).Unique up to scalar multiple.

Counting measure on Z

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 2 / 36

Page 4: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 4/196

Groups and Haar measure

Locally compact abelian groups:

Integers Z = {. . . , −2, −1, 0, 1, 2, . . .}Finite cyclic group Zm = {0, 1, . . . , m − 1}: addition modm

Haar measure on G  = translation invariant on G : µ(A) = µ(A + t ).Unique up to scalar multiple.

Counting measure on Z

Counting measure on Zm, normalized to total measure 1 (usually)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 2 / 36

Page 5: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 5/196

Groups and Haar measure

Locally compact abelian groups:

Integers Z = {. . . , −2, −1, 0, 1, 2, . . .}Finite cyclic group Zm = {0, 1, . . . , m − 1}: addition modm

Reals R

Haar measure on G  = translation invariant on G : µ(A) = µ(A + t ).Unique up to scalar multiple.

Counting measure on Z

Counting measure on Zm, normalized to total measure 1 (usually)

Lebesgue measure on R

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 2 / 36

Page 6: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 6/196

Groups and Haar measure

Locally compact abelian groups:

Integers Z = {. . . , −2, −1, 0, 1, 2, . . .}Finite cyclic group Zm = {0, 1, . . . , m − 1}: addition modm

Reals R

Torus T = R/Z: addition of reals mod1

Haar measure on G  = translation invariant on G : µ(A) = µ(A + t ).Unique up to scalar multiple.

Counting measure on Z

Counting measure on Zm, normalized to total measure 1 (usually)Lebesgue measure on R

Lebesgue masure on T viewed as a circle

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 2 / 36

Page 7: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 7/196

Groups and Haar measure

Locally compact abelian groups:

Integers Z = {. . . , −2, −1, 0, 1, 2, . . .}Finite cyclic group Zm = {0, 1, . . . , m − 1}: addition modm

Reals R

Torus T = R/Z: addition of reals mod1

Products: Zd , Rd , T× R, etc

Haar measure on G  = translation invariant on G : µ(A) = µ(A + t ).Unique up to scalar multiple.

Counting measure on Z

Counting measure on Zm, normalized to total measure 1 (usually)Lebesgue measure on R

Lebesgue masure on T viewed as a circle

Product of Haar measures on the components

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 2 / 36

Page 8: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 8/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to the

multiplicative  group U  = {z  ∈C

: |z | = 1}.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

Page 9: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 9/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to the

multiplicative  group U  = {z  ∈C

: |z | = 1}.χ : G  → U  satsifies χ(h + g ) = χ(h)χ(g )

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

Page 10: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 10/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to themultiplicative 

groupU 

= {z 

∈C

: |z 

| = 1}.χ : G  → U  satsifies χ(h + g ) = χ(h)χ(g )

If  χ, ψ are characters then so is χψ (pointwise product). Write χ + ψfrom now on instead of  χψ.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

Page 11: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 11/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to themultiplicative 

groupU 

= {z 

∈C

: |z 

| = 1}.χ : G  → U  satsifies χ(h + g ) = χ(h)χ(g )

If  χ, ψ are characters then so is χψ (pointwise product). Write χ + ψfrom now on instead of  χψ.

Group of characters (written additively )

G  is the dual group of  G 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

Page 12: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 12/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to themultiplicative 

groupU 

= {z 

∈C

: |z 

| = 1}.χ : G  → U  satsifies χ(h + g ) = χ(h)χ(g )

If  χ, ψ are characters then so is χψ (pointwise product). Write χ + ψfrom now on instead of  χψ.

Group of characters (written additively )

G  is the dual group of  G 

G  = Z =⇒ G  = T: the functions χx (n) = exp(2πixn), x  ∈ T

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

Page 13: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 13/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to themultiplicative  group U  = {z  ∈ C : |z | = 1}.

χ : G  → U  satsifies χ(h + g ) = χ(h)χ(g )

If  χ, ψ are characters then so is χψ (pointwise product). Write χ + ψfrom now on instead of  χψ.

Group of characters (written additively )

G  is the dual group of  G 

G  = Z =⇒ G  = T: the functions χx (n) = exp(2πixn), x  ∈ TG  = T =⇒ G  = Z: the functions χn(x ) = exp(2πinx ), n ∈ Z

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

C

Page 14: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 14/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to themultiplicative  group U  = {z  ∈ C : |z | = 1}.

χ : G  → U  satsifies χ(h + g ) = χ(h)χ(g )

If  χ, ψ are characters then so is χψ (pointwise product). Write χ + ψfrom now on instead of  χψ.

Group of characters (written additively )

G  is the dual group of  G 

G  = Z =⇒ G  = T: the functions χx (n) = exp(2πixn), x  ∈ TG  = T =⇒ G  = Z: the functions χn(x ) = exp(2πinx ), n ∈ ZG  = R =⇒ G  = R: the functions χt (x ) = exp(2πitx ), t  ∈ R

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

Ch d h d l

Page 15: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 15/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to themultiplicative  group U  = {z  ∈ C : |z | = 1}.

χ : G  → U  satsifies χ(h + g ) = χ(h)χ(g )

If  χ, ψ are characters then so is χψ (pointwise product). Write χ + ψfrom now on instead of  χψ.

Group of characters (written additively )

G  is the dual group of  G 

G  = Z =⇒ G  = T: the functions χx (n) = exp(2πixn), x  ∈ TG  = T =⇒ G  = Z: the functions χn(x ) = exp(2πinx ), n ∈ ZG  = R =⇒ G  = R: the functions χt (x ) = exp(2πitx ), t  ∈ RG  = Zm =⇒

G  = Zm: the functions χk (n) = exp(2πikn/m), k  ∈ Zm

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

Ch d h d l

Page 16: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 16/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to themultiplicative  group U  = {z  ∈ C : |z | = 1}.

χ : G  → U  satsifies χ(h + g ) = χ(h)χ(g )

If  χ, ψ are characters then so is χψ (pointwise product). Write χ + ψfrom now on instead of  χψ.

Group of characters (written additively )

G  is the dual group of  G 

G  = Z =⇒ G  = T: the functions χx (n) = exp(2πixn), x  ∈ TG  = T =⇒ G  = Z: the functions χn(x ) = exp(2πinx ), n ∈ ZG  = R =⇒ G  = R: the functions χt (x ) = exp(2πitx ), t  ∈ RG  = Zm =⇒

G  = Zm: the functions χk (n) = exp(2πikn/m), k  ∈ Zm

G  = A × B  =⇒ G  = A × B 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

Ch t d th d l

Page 17: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 17/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to themultiplicative  group U  = {z  ∈ C : |z | = 1}.

χ : G  → U  satsifies χ(h + g ) = χ(h)χ(g )

If  χ, ψ are characters then so is χψ (pointwise product). Write χ + ψfrom now on instead of  χψ.

Group of characters (written additively )

G  is the dual group of  G 

G  = Z =⇒ G  = T: the functions χx (n) = exp(2πixn), x  ∈ TG  = T =⇒ G  = Z: the functions χn(x ) = exp(2πinx ), n ∈ ZG  = R =⇒ G  = R: the functions χt (x ) = exp(2πitx ), t  ∈ RG  = Zm =⇒

G  = Zm: the functions χk (n) = exp(2πikn/m), k  ∈ Zm

G  = A × B  =⇒ G  = A × B Example: G  = T× R =⇒ G  = Z×R. The characters areχn,t (x , y ) = exp(2πi (nx  + ty )).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

Ch t d th d l

Page 18: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 18/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to themultiplicative  group U  = {z  ∈ C : |z | = 1}.

χ : G  → U  satsifies χ(h + g ) = χ(h)χ(g )

If  χ, ψ are characters then so is χψ (pointwise product). Write χ + ψfrom now on instead of  χψ.

Group of characters (written additively )

G  is the dual group of  G 

G  = Z =⇒ G  = T: the functions χx (n) = exp(2πixn), x  ∈ TG  = T =⇒ G  = Z: the functions χn(x ) = exp(2πinx ), n ∈ ZG  = R =⇒ G  = R: the functions χt (x ) = exp(2πitx ), t  ∈ RG  = Zm =⇒

G  = Zm: the functions χk (n) = exp(2πikn/m), k  ∈ Zm

G =

B =⇒ G 

= A × B 

Example: G  = T× R =⇒ G  = Z×R. The characters areχn,t (x , y ) = exp(2πi (nx  + ty )).

G  is compact ⇐⇒ G  is discrete

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

Ch t s d th d l

Page 19: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 19/196

Characters and the dual group

Character is a (continuous) group homomorphism from G  to themultiplicative  group U  = {z  ∈ C : |z | = 1}.

χ : G  → U  satsifies χ(h + g ) = χ(h)χ(g )

If  χ, ψ are characters then so is χψ (pointwise product). Write χ + ψfrom now on instead of  χψ.

Group of characters (written additively )

G  is the dual group of  G 

G  = Z =⇒ G  = T: the functions χx (n) = exp(2πixn), x  ∈ TG  = T =⇒ G  = Z: the functions χn(x ) = exp(2πinx ), n ∈ ZG  = R =⇒ G  = R: the functions χt (x ) = exp(2πitx ), t  ∈ RG  = Zm =⇒

G  = Zm: the functions χk (n) = exp(2πikn/m), k  ∈ Zm

G =

B =⇒ G 

= A × B 

Example: G  = T× R =⇒ G  = Z×R. The characters areχn,t (x , y ) = exp(2πi (nx  + ty )).

G  is compact ⇐⇒ G  is discrete

Pontryagin duality:  G  = G .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 3 / 36

The Fourier Transform of integrable functions

Page 20: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 20/196

The Fourier Transform of integrable functions

f   ∈ L1(G ). That is f  1 := G 

|f  (x )| d µ(x ) < ∞

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 4 / 36

The Fourier Transform of integrable functions

Page 21: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 21/196

The Fourier Transform of integrable functions

f   ∈ L1(G ). That is f  1 := G 

|f  (x )| d µ(x ) < ∞If  G  is finite then L1(G ) is all functions G  → C

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 4 / 36

The Fourier Transform of integrable functions

Page 22: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 22/196

The Fourier Transform of integrable functions

f   ∈ L1(G ). That is f  1 := G 

|f  (x )| d µ(x ) < ∞If  G  is finite then L1(G ) is all functions G  → CThe FT of  f   is f   : G  → C defined by

 f  (χ) =

 G 

f  (x )χ(x ) d µ(x ), χ ∈ G 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 4 / 36

The Fourier Transform of integrable functions

Page 23: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 23/196

The Fourier Transform of integrable functions

f   ∈ L1(G ). That is f  1 := G 

|f  (x )| d µ(x ) < ∞If  G  is finite then L1(G ) is all functions G  → CThe FT of  f   is f   : G  → C defined by

 f  (χ) =

 G 

f  (x )χ(x ) d µ(x ), χ ∈ G 

Example: G  = T (“Fourier coefficients”):

 f  (n) = T

f  (x )e −2πinx dx , n ∈ Z

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 4 / 36

The Fourier Transform of integrable functions

Page 24: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 24/196

The Fourier Transform of integrable functions

f   ∈ L1(G ). That is f  1 := G 

|f  (x )| d µ(x ) < ∞If  G  is finite then L1(G ) is all functions G  → CThe FT of  f   is f   : G  → C defined by

 f  (χ) =

 G 

f  (x )χ(x ) d µ(x ), χ ∈ G 

Example: G  = T (“Fourier coefficients”):

 f  (n) = T

f  (x )e −2πinx dx , n ∈ Z

Example: G  = R (“Fourier transform”):

 f  (ξ) =  T f  (x )e 

−2πi ξx 

dx , ξ ∈ R

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 4 / 36

The Fourier Transform of integrable functions

Page 25: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 25/196

The Fourier Transform of integrable functions

f   ∈ L1(G ). That is f  1 := G 

|f  (x )| d µ(x ) < ∞If  G  is finite then L1(G ) is all functions G  → CThe FT of  f   is f   : G  → C defined by

 f  (χ) =

 G 

f  (x )χ(x ) d µ(x ), χ ∈ G 

Example: G  = T (“Fourier coefficients”):

 f  (n) = T

f  (x )e −2πinx dx , n ∈ Z

Example: G  = R (“Fourier transform”):

 f  (ξ) =  T f  (x )e 

−2πi ξx 

dx , ξ ∈ RExample: G  = Zm (“Discrete Fourier transform or DFT”):

 f  (k ) =

1

m

m−1

 j =0

f  ( j )e −2πikj /m, k  ∈ Zm

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 4 / 36

Elementary properties of the Fourier Transform

Page 26: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 26/196

Elementary properties of the Fourier Transform

Linearity: λf  + µg  = λ

 f  + µ

 g .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 5 / 36

Elementary properties of the Fourier Transform

Page 27: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 27/196

Elementary properties of the Fourier Transform

Linearity: λf  + µg  = λ

 f  + µ

 g .

Symmetry: f  (−x ) = f  (x ), f  (x ) = f  (−x )

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 5 / 36

Elementary properties of the Fourier Transform

Page 28: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 28/196

Elementary properties of the Fourier Transform

Linearity: λf  + µg  = λ

 f  + µ

 g .

Symmetry: f  (−x ) = f  (x ), f  (x ) = f  (−x )

Real f  : then f  (x ) = f  (−x )

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 5 / 36

Elementary properties of the Fourier Transform

Page 29: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 29/196

y p p

Linearity: λf  + µg  = λ

 f  + µ

 g .

Symmetry: f  (−x ) = f  (x ), f  (x ) = f  (−x )

Real f  : then f  (x ) = f  (−x )

Translation: if  τ  ∈ G , ξ ∈ G , f  τ (x ) = f  (x  − τ ) then

 f  τ (ξ) = ξ(τ ) ·

 f  (ξ).

Example: G  = T: f  (x  − θ)(n) = e −2πinθ f  (n), for θ ∈ T, n ∈ Z.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 5 / 36

Elementary properties of the Fourier Transform

Page 30: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 30/196

y p p

Linearity: λf  + µg  = λ

 f  + µ

 g .

Symmetry: f  (−x ) = f  (x ), f  (x ) = f  (−x )

Real f  : then f  (x ) = f  (−x )

Translation: if  τ  ∈ G , ξ ∈ G , f  τ (x ) = f  (x  − τ ) then

 f  τ (ξ) = ξ(τ ) ·

 f  (ξ).

Example: G  = T: f  (x  − θ)(n) = e −2πinθ f  (n), for θ ∈ T, n ∈ Z.

Modulation: If  χ, ξ ∈ G  then χ(x )f  (x )(ξ) = f  (ξ − χ).

Example: G  = R: e 2πitx f  (x )(ξ) = f  (ξ − t ).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 5 / 36

Elementary properties of the Fourier Transform

Page 31: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 31/196

y p p

Linearity: λf  + µg  = λ

 f  + µ

 g .

Symmetry: f  (−x ) = f  (x ), f  (x ) = f  (−x )

Real f  : then f  (x ) = f  (−x )

Translation: if  τ  ∈ G , ξ ∈ G , f  τ (x ) = f  (x  − τ ) then

 f  τ (ξ) = ξ(τ ) ·

 f  (ξ).

Example: G  = T: f  (x  − θ)(n) = e −2πinθ f  (n), for θ ∈ T, n ∈ Z.

Modulation: If  χ, ξ ∈ G  then χ(x )f  (x )(ξ) = f  (ξ − χ).

Example: G  = R: e 2πitx f  (x )(ξ) = f  (ξ − t ).

f  , g  ∈ L1(G ): their convolution is f  ∗ g (x ) =  G  f  (t )g (x  − t ) d µ(t ).

Then f  ∗ g 1 ≤ f  1g 1 and

 f  ∗ g (ξ) = f  (ξ) · g (ξ), ξ ∈ G 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 5 / 36

Orthogonality of characters on compact groups

Page 32: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 32/196

g y p g p

If  G  is compact (=⇒ total Haar measure = 1) then characters are inL1(G ), being bounded.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 6 / 36

Orthogonality of characters on compact groups

Page 33: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 33/196

g y g

If  G  is compact (=⇒ total Haar measure = 1) then characters are inL1(G ), being bounded.

If  χ ∈ G  then G 

χ(x ) dx  =

 G 

χ(x  + g ) dx  = χ(g )

 G 

χ(x ) dx ,

so  G  χ = 0 if  χ nontrivial, 1 if  χ is trivial (= 1).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 6 / 36

Orthogonality of characters on compact groups

Page 34: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 34/196

If  G  is compact (=⇒ total Haar measure = 1) then characters are inL1(G ), being bounded.

If  χ ∈ G  then G 

χ(x ) dx  =

 G 

χ(x  + g ) dx  = χ(g )

 G 

χ(x ) dx ,

so  G  χ = 0 if  χ nontrivial, 1 if  χ is trivial (= 1).

If  χ, ψ ∈ G  then χ(x )ψ(−x ) is also a character. Hence

χ, ψ =

 G 

χ(x )ψ(x ) dx  =

 G 

χ(x )ψ(−x ) dx  =

1 χ = ψ0 χ = ψ

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 6 / 36

Orthogonality of characters on compact groups

Page 35: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 35/196

If  G  is compact (=⇒ total Haar measure = 1) then characters are inL1(G ), being bounded.

If  χ ∈ G  then G 

χ(x ) dx  =

 G 

χ(x  + g ) dx  = χ(g )

 G 

χ(x ) dx ,

so  G  χ = 0 if  χ nontrivial, 1 if  χ is trivial (= 1).

If  χ, ψ ∈ G  then χ(x )ψ(−x ) is also a character. Hence

χ, ψ =

 G 

χ(x )ψ(x ) dx  =

 G 

χ(x )ψ(−x ) dx  =

1 χ = ψ0 χ = ψ

Fourier representation (inversion) in Zm: G  = Zm =⇒ the m

characters form a complete orthonormal set in L2(G ):

f  (x ) =m−1k =0

f  (·), e 2πik ·e 2πikx  =m−1k =0

 f  (k )e 2πikx 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 6 / 36

L2 of compact G 

Page 36: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 36/196

Trigonometric polynomials = finite linear combinations of characters

onG 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 7 / 36

L2 of compact G 

Page 37: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 37/196

Trigonometric polynomials = finite linear combinations of characters

onG 

Example: G  = T. Trig. polynomials are of the type N k =−N c k e 2πikx .

The least such N  is called the degree of the polynomial.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 7 / 36

L2 of compact G 

Page 38: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 38/196

Trigonometric polynomials = finite linear combinations of characters

onG 

Example: G  = T. Trig. polynomials are of the type N k =−N c k e 2πikx .

The least such N  is called the degree of the polynomial.

Example: G  = R. Trig. polynomials are of the typeK 

k =1 c k e 2πi λk x ,where λ j  ∈ R.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 7 / 36

L2 of compact G 

Page 39: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 39/196

Trigonometric polynomials = finite linear combinations of characterson G 

Example: G  = T. Trig. polynomials are of the type N k =−N c k e 2πikx .

The least such N  is called the degree of the polynomial.

Example: G  = R. Trig. polynomials are of the typeK 

k =1 c k e 2πi λk x ,where λ j  ∈ R.

Compact G : Stone - Weierstrass Theorem =⇒ trig. polynomialsdense in C (G ) (in ·∞).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 7 / 36

L2 of compact G 

Page 40: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 40/196

Trigonometric polynomials = finite linear combinations of characterson G 

Example: G  = T. Trig. polynomials are of the type N k =−N c k e 2πikx .

The least such N  is called the degree of the polynomial.

Example: G  = R. Trig. polynomials are of the typeK 

k =1 c k e 2πi λk x ,where λ j  ∈ R.

Compact G : Stone - Weierstrass Theorem =⇒ trig. polynomialsdense in C (G ) (in ·∞).

Fourier representation in L2(G ): Compact G : The characters form a

complete ONS. Since C (G ) is dense in L2(G ):

f   = χ∈  b G 

 f  (χ)χ d χ all f   ∈ L2(G ), convergence in L2(G )

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 7 / 36

L2 of compact G 

Page 41: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 41/196

Trigonometric polynomials = finite linear combinations of characterson G 

Example: G  = T. Trig. polynomials are of the type N k =−N c k e 2πikx .

The least such N  is called the degree of the polynomial.

Example: G  = R. Trig. polynomials are of the typeK 

k =1 c k e 2πi λk x ,where λ j  ∈ R.

Compact G : Stone - Weierstrass Theorem =⇒ trig. polynomialsdense in C (G ) (in ·∞).

Fourier representation in L2(G ): Compact G : The characters form a

complete ONS. Since C (G ) is dense in L2(G ):

f   = χ∈  b G 

 f  (χ)χ d χ all f   ∈ L2(G ), convergence in L2(G )

 G  necessarily discrete in this case

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 7 / 36

L2 of compact G , continued

Page 42: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 42/196

Compact G : Parseval formula:

 G 

f  (x )g (x ) dx  =   b G 

 f  (χ) g (χ) d χ.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 8 / 36

L2 of compact G , continued

Page 43: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 43/196

Compact G : Parseval formula:

 G 

f  (x )g (x ) dx  =   b G 

 f  (χ) g (χ) d χ.

Compact G : f   →

 f   is an isometry  from L2(G ) onto L2(

 G ).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 8 / 36

L2 of compact G , continued

Page 44: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 44/196

Compact G : Parseval formula:

 G 

f  (x )g (x ) dx  =   b G 

 f  (χ) g (χ) d χ.

Compact G : f   →

 f   is an isometry  from L2(G ) onto L2(

 G ).

Example: G  = T T

f  (x )g (x ) dx  =k ∈Z

 f  (k ) g (k ), f  , g  ∈ L2(T).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 8 / 36

L2 of compact G , continued

Page 45: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 45/196

Compact G : Parseval formula:

 G 

f  (x )g (x ) dx  =   b G 

 f  (χ) g (χ) d χ.

Compact G : f   →

 f   is an isometry  from L2(G ) onto L2(

 G ).

Example: G  = T T

f  (x )g (x ) dx  =k ∈Z

 f  (k ) g (k ), f  , g  ∈ L2(T).

Example: G  = Zm

m−1 j =0

f  ( j )g ( j ) =m−1k =0

 f  (k ) g (k ), all f  , g  : Zm → C

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 8 / 36

Triple correlations in Zp : an application

Page 46: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 46/196

Problem of significance in (a) crystallography, (b) astrophysics:determine a subset E  ⊆ Zn from its triple correlation:

N E (a, b ) = #{x  ∈ Zn : x , x  + a, x  + b  ∈ E }, a, b  ∈ Zn

=x ∈Zn

1E (x )1E (x  + a)1E (x  + b )

Counts number of occurences of translated 3-point patterns {0, a, b }.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 9 / 36

Triple correlations in Zp : an application

Page 47: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 47/196

Problem of significance in (a) crystallography, (b) astrophysics:determine a subset E  ⊆ Zn from its triple correlation:

N E (a, b ) = #{x  ∈ Zn : x , x  + a, x  + b  ∈ E }, a, b  ∈ Zn

=x ∈Zn

1E (x )1E (x  + a)1E (x  + b )

Counts number of occurences of translated 3-point patterns {0, a, b }.E  can only be determined up to translation: E  and E  + t  have thesame N (·, ·).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 9 / 36

Triple correlations in Zp : an application

Page 48: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 48/196

Problem of significance in (a) crystallography, (b) astrophysics:determine a subset E  ⊆ Zn from its triple correlation:

N E (a, b ) = #{x  ∈ Zn : x , x  + a, x  + b  ∈ E }, a, b  ∈ Zn

=x ∈Zn

1E (x )1E (x  + a)1E (x  + b )

Counts number of occurences of translated 3-point patterns {0, a, b }.E  can only be determined up to translation: E  and E  + t  have thesame N (·, ·).For general n it has been proved that N (·, ·) cannot determine E  evenup to translation (non-trivial).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 9 / 36

Triple correlations in Zp : an application

Page 49: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 49/196

Problem of significance in (a) crystallography, (b) astrophysics:determine a subset E  ⊆ Zn from its triple correlation:

N E (a, b ) = #{x  ∈ Zn : x , x  + a, x  + b  ∈ E }, a, b  ∈ Zn

=x ∈Zn

1E (x )1E (x  + a)1E (x  + b )

Counts number of occurences of translated 3-point patterns {0, a, b }.E  can only be determined up to translation: E  and E  + t  have thesame N (·, ·).For general n it has been proved that N (·, ·) cannot determine E  evenup to translation (non-trivial).

Special case: E  can be determined up to translation from N (·, ·) if n = p  is a prime.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 9 / 36

Triple correlations in Zp : an application

Page 50: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 50/196

Problem of significance in (a) crystallography, (b) astrophysics:determine a subset E  ⊆ Zn from its triple correlation:

N E (a, b ) = #{x  ∈ Zn : x , x  + a, x  + b  ∈ E }, a, b  ∈ Zn

=x ∈Zn

1E (x )1E (x  + a)1E (x  + b )

Counts number of occurences of translated 3-point patterns {0, a, b }.E  can only be determined up to translation: E  and E  + t  have thesame N (·, ·).For general n it has been proved that N (·, ·) cannot determine E  evenup to translation (non-trivial).

Special case: E  can be determined up to translation from N (·, ·) if n = p  is a prime.Fourier transform of  N E  : Zn × Zn → R is easily computed:

 N E (ξ, η) =

1E (ξ)

 1E (η)

 1E (−(ξ + η)), ξ, η ∈ Zn.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 9 / 36

Triple correlations in Zp : an application (continued)

Page 51: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 51/196

If  N E  ≡ N F  for E , F  ⊆ Zn then

 1E (ξ) 1E (η) 1E (−(ξ + η)) = 1F (ξ) 1F (η) 1F (−(ξ + η)), ξ , η ∈ Zn (1)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 10 / 36

Triple correlations in Zp : an application (continued)

Page 52: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 52/196

If  N E  ≡ N F  for E , F  ⊆ Zn then

 1E (ξ) 1E (η) 1E (−(ξ + η)) = 1F (ξ) 1F (η) 1F (−(ξ + η)), ξ , η ∈ Zn (1)

Setting ξ = η = 0 we deduce #E  = #F .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 10 / 36

Triple correlations in Zp : an application (continued)

Page 53: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 53/196

If  N E  ≡ N F  for E , F  ⊆ Zn then

 1E (ξ) 1E (η) 1E (−(ξ + η)) = 1F (ξ) 1F (η) 1F (−(ξ + η)), ξ , η ∈ Zn (1)

Setting ξ = η = 0 we deduce #E  = #F .

Setting η = 0, and using

f  (−x ) =

f  (x ) for real f  , we get

 1E 

 1F 

.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 10 / 36

Triple correlations in Zp : an application (continued)

Page 54: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 54/196

If  N E  ≡ N F  for E , F  ⊆ Zn then

 1E (ξ) 1E (η) 1E (−(ξ + η)) = 1F (ξ) 1F (η) 1F (−(ξ + η)), ξ , η ∈ Zn (1)

Setting ξ = η = 0 we deduce #E  = #F .

Setting η = 0, and using

f  (−x ) =

f  (x ) for real f  , we get

 1E 

 1F 

.

If 1F  is never 0 we divide (1) by its RHS to get

φ(ξ)φ(η) = φ(ξ + η), where φ = 1E  1F  (2)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 10 / 36

Triple correlations in Zp : an application (continued)

Page 55: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 55/196

If  N E  ≡ N F  for E , F  ⊆ Zn then

 1E (ξ) 1E (η) 1E (−(ξ + η)) = 1F (ξ) 1F (η) 1F (−(ξ + η)), ξ , η ∈ Zn (1)

Setting ξ = η = 0 we deduce #E  = #F .

Setting η = 0, and using

f  (−x ) =

f  (x ) for real f  , we get

 1E 

 1F 

.

If 1F  is never 0 we divide (1) by its RHS to get

φ(ξ)φ(η) = φ(ξ + η), where φ = 1E  1F  (2)

Hence φ : Zn → C is a character and 1E  ≡ φ 1F .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 10 / 36

Triple correlations in Zp : an application (continued)

Page 56: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 56/196

If  N E  ≡ N F  for E , F  ⊆ Zn then

 1E (ξ) 1E (η) 1E (−(ξ + η)) = 1F (ξ) 1F (η) 1F (−(ξ + η)), ξ , η ∈ Zn (1)

Setting ξ = η = 0 we deduce #E  = #F .

Setting η = 0, and using

f  (−x ) =

f  (x ) for real f  , we get

 1E 

 1F 

.

If 1F  is never 0 we divide (1) by its RHS to get

φ(ξ)φ(η) = φ(ξ + η), where φ = 1E  1F  (2)

Hence φ : Zn → C is a character and 1E  ≡ φ 1F .Since Zn = Zn we have φ(ξ) = e 2πit ξ/n for some t  ∈ Zn

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 10 / 36

Triple correlations in Zp : an application (continued)

Page 57: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 57/196

If  N E  ≡ N F  for E , F  ⊆ Zn then

 1E (ξ) 1E (η) 1E (−(ξ + η)) = 1F (ξ) 1F (η) 1F (−(ξ + η)), ξ , η ∈ Zn (1)

Setting ξ = η = 0 we deduce #E  = #F .

Setting η = 0, and using

f  (−x ) =

f  (x ) for real f  , we get

 1E 

 1F 

.

If 1F  is never 0 we divide (1) by its RHS to get

φ(ξ)φ(η) = φ(ξ + η), where φ = 1E  1F  (2)

Hence φ : Zn → C is a character and 1E  ≡ φ 1F .Since Zn = Zn we have φ(ξ) = e 2πit ξ/n for some t  ∈ Zn

Hence E  = F  + t 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 10 / 36

Triple correlations in Zp : an application (continued)

Page 58: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 58/196

If  N E  ≡ N F  for E , F  ⊆ Zn then

 1E (ξ) 1E (η) 1E (−(ξ + η)) = 1F (ξ) 1F (η) 1F (−(ξ + η)), ξ , η ∈ Zn (1)

Setting ξ = η = 0 we deduce #E  = #F .

Setting η = 0, and using

f  (−x ) =

f  (x ) for real f  , we get

 1E 

 1F 

.

If 1F  is never 0 we divide (1) by its RHS to get

φ(ξ)φ(η) = φ(ξ + η), where φ = 1E  1F  (2)

Hence φ : Zn → C is a character and 1E  ≡ φ 1F .Since Zn = Zn we have φ(ξ) = e 2πit ξ/n for some t  ∈ Zn

Hence E  = F  + t 

So N E  determines E  up to translation if 

1E  is never 0

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 10 / 36

Triple correlations in Zp : an application (conclusion)

Page 59: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 59/196

Suppose n = p  is a prime, E  ⊆ Zp . Then

 1E (ξ) = 1p s ∈E 

(ζ ξ)s , ζ  = e −2πi /p  is a p -root of unity. (3)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 11 / 36

Triple correlations in Zp : an application (conclusion)

Page 60: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 60/196

Suppose n = p  is a prime, E  ⊆ Zp . Then

 1E (ξ) = 1p s ∈E 

(ζ ξ)s , ζ  = e −2πi /p  is a p -root of unity. (3)

Each ζ ξ, ξ = 0, is a primitive p -th root of unity itself.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 11 / 36

Triple correlations in Zp : an application (conclusion)

Page 61: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 61/196

Suppose n = p  is a prime, E  ⊆ Zp . Then

 1E (ξ) = 1p s ∈E 

(ζ ξ)s , ζ  = e −2πi /p  is a p -root of unity. (3)

Each ζ ξ, ξ = 0, is a primitive p -th root of unity itself.

All powers (ζ ξ)s  are distinct, so 1E (ξ) is a subset sum of all primitivep -th roots of unity (ξ = 0).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 11 / 36

Triple correlations in Zp : an application (conclusion)

Page 62: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 62/196

Suppose n = p  is a prime, E  ⊆ Zp . Then

 1E (ξ) = 1p s ∈E 

(ζ ξ)s , ζ  = e −2πi /p  is a p -root of unity. (3)

Each ζ ξ, ξ = 0, is a primitive p -th root of unity itself.

All powers (ζ ξ)s  are distinct, so 1E (ξ) is a subset sum of all primitivep -th roots of unity (ξ = 0).

The polynomial 1 + x  + x 2 + · · · + x p −1 is the minimal polynomial 

over Q of each primitive root of unity (there are p − 1 of them).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 11 / 36

Triple correlations in Zp : an application (conclusion)

Page 63: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 63/196

Suppose n = p  is a prime, E  ⊆ Zp . Then

 1E (ξ) = 1p s ∈E 

(ζ ξ)s , ζ  = e −2πi /p  is a p -root of unity. (3)

Each ζ ξ, ξ = 0, is a primitive p -th root of unity itself.

All powers (ζ ξ)s  are distinct, so 1E (ξ) is a subset sum of all primitivep -th roots of unity (ξ = 0).

The polynomial 1 + x  + x 2 + · · · + x p −1 is the minimal polynomial 

over Q of each primitive root of unity (there are p − 1 of them).

It divides any polynomial in Q[x ] which vanishes on some primitive

p -th root of unity

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 11 / 36

Triple correlations in Zp : an application (conclusion)

Page 64: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 64/196

Suppose n = p  is a prime, E  ⊆ Zp . Then

 1E (ξ) = 1p s ∈E 

(ζ ξ)s , ζ  = e −2πi /p  is a p -root of unity. (3)

Each ζ ξ, ξ = 0, is a primitive p -th root of unity itself.

All powers (ζ ξ)s  are distinct, so 1E (ξ) is a subset sum of all primitivep -th roots of unity (ξ = 0).

The polynomial 1 + x  + x 2 + · · · + x p −1 is the minimal polynomial 

over Q of each primitive root of unity (there are p − 1 of them).

It divides any polynomial in Q[x ] which vanishes on some primitive

p -th root of unityThe only subset sums of all roots of unity which vanish are the emptyand the full sum (E  = or E  = Zp ).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 11 / 36

Triple correlations in Zp : an application (conclusion)

Page 65: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 65/196

Suppose n = p  is a prime, E  ⊆ Zp . Then

 1E (ξ) = 1p s ∈E 

(ζ ξ)s , ζ  = e −2πi /p  is a p -root of unity. (3)

Each ζ ξ, ξ = 0, is a primitive p -th root of unity itself.

All powers (ζ ξ)s  are distinct, so 1E (ξ) is a subset sum of all primitivep -th roots of unity (ξ = 0).

The polynomial 1 + x  + x 2 + · · · + x p −1 is the minimal polynomial 

over Q of each primitive root of unity (there are p − 1 of them).

It divides any polynomial in Q[x ] which vanishes on some primitive

p -th root of unityThe only subset sums of all roots of unity which vanish are the emptyand the full sum (E  = or E  = Zp ).

So in Zp  the triple correlation N E (·, ·) determines E  up to translation.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 11 / 36

The basics of the FT on the torus (circle) T = R/2πZ

Page 66: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 66/196

1 ≤ p  ≤ q  ⇐⇒ Lq (T) ⊆ Lp (T): nested Lp  spaces. True on compactgroups.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 12 / 36

The basics of the FT on the torus (circle) T = R/2πZ

Page 67: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 67/196

1 ≤ p  ≤ q  ⇐⇒ Lq (T) ⊆ Lp (T): nested Lp  spaces. True on compactgroups.

f   ∈ L1(T): we write f  (x ) ∼ ∞k =−∞ f  (k )e 2πikx  to denote the

Fourier series of  f  . No claim of convergence is made.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 12 / 36

The basics of the FT on the torus (circle) T = R/2πZ

( ) ( )

Page 68: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 68/196

1 ≤ p  ≤ q  ⇐⇒ Lq (T) ⊆ Lp (T): nested Lp  spaces. True on compactgroups.

f   ∈ L1(T): we write f  (x ) ∼ ∞k =−∞ f  (k )e 2πikx  to denote the

Fourier series of  f  . No claim of convergence is made.

The Fourier coefficients of  f  (x ) = e 2πikx  is the sequence f  (n) = δk ,n.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 12 / 36

The basics of the FT on the torus (circle) T = R/2πZ

1 Lq(T) Lp(T) d Lp T

Page 69: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 69/196

1 ≤ p  ≤ q  ⇐⇒ Lq (T) ⊆ Lp (T): nested Lp  spaces. True on compactgroups.

f   ∈ L1(T): we write f  (x ) ∼ ∞k =−∞ f  (k )e 2πikx  to denote the

Fourier series of  f  . No claim of convergence is made.

The Fourier coefficients of  f  (x ) = e 2πikx  is the sequence f  (n) = δk ,n.

The Fourier series of a trig. poly. f  (x ) = N k =−N ak e 2πikx  is the

sequence . . . , 0, 0, a−N , a−N +1, . . . , a0, . . . , aN , 0, 0, . . ..

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 12 / 36

The basics of the FT on the torus (circle) T = R/2πZ

1 ≤ ≤ Lq(T) ⊆ Lp(T) d Lp T

Page 70: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 70/196

1 ≤ p  ≤ q  ⇐⇒ Lq (T) ⊆ Lp (T): nested Lp  spaces. True on compactgroups.

f   ∈ L1(T): we write f  (x ) ∼ ∞k =−∞ f  (k )e 2πikx  to denote the

Fourier series of  f  . No claim of convergence is made.

The Fourier coefficients of  f  (x ) = e 2πikx  is the sequence f  (n) = δk ,n.

The Fourier series of a trig. poly. f  (x ) = N k =−N ak e 2πikx  is the

sequence . . . , 0, 0, a−N , a−N +1, . . . , a0, . . . , aN , 0, 0, . . ..Symmetric partial sums of the Fourier series of  f  :S N (f  ; x ) =

N k =−N 

 f  (k )e 2πikx 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 12 / 36

The basics of the FT on the torus (circle) T = R/2πZ

1 ≤ ≤ ⇐⇒ Lq(T) ⊆ Lp(T) t d Lp T t

Page 71: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 71/196

1 ≤ p  ≤ q  ⇐⇒ Lq (T) ⊆ Lp (T): nested Lp  spaces. True on compactgroups.

f   ∈ L1(T): we write f  (x ) ∼ ∞k =−∞ f  (k )e 2πikx  to denote the

Fourier series of  f  . No claim of convergence is made.

The Fourier coefficients of  f  (x ) = e 2πikx  is the sequence f  (n) = δk ,n.

The Fourier series of a trig. poly. f  (x ) = N k =−N ak e 2πikx  is the

sequence . . . , 0, 0, a−N , a−N +1, . . . , a0, . . . , aN , 0, 0, . . ..Symmetric partial sums of the Fourier series of  f  :S N (f  ; x ) =

N k =−N 

 f  (k )e 2πikx 

From f  ∗ g  =

f  ·

 g  we get easily S N (f  ; x ) = f  (x ) ∗ D N (x ), where

D N (x ) =N 

k =−N 

e 2πikx  =sin2π(N  + 1

2 )x 

sin πx (Dirichlet kernel of order N 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 12 / 36

The Dirichlet kernel

Page 72: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 72/196

-5

0

5

10

15

20

25

-0.4 -0.2 0 0.2 0.4

The Dirichlet kernel D N (x ) for N  = 10

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 13 / 36

Pointwise convergence

Page 73: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 73/196

Important: D N 1 ≥ C  log N , as N  → ∞

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 14 / 36

Pointwise convergence

Page 74: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 74/196

Important: D N 1 ≥ C  log N , as N  → ∞

T N  : f   → S N (f  ; x ) = D N  ∗ f  (x ) is a (continuous) linear functionalC (T) → C. From the inequality D N  ∗ f  ∞ ≤ D N 1f  ∞

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 14 / 36

Pointwise convergence

Page 75: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 75/196

Important: D N 1 ≥ C  log N , as N  → ∞

T N  : f   → S N (f  ; x ) = D N  ∗ f  (x ) is a (continuous) linear functionalC (T) → C. From the inequality D N  ∗ f  ∞ ≤ D N 1f  ∞T N  = D N 1 is unbounded

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 14 / 36

Pointwise convergence

Page 76: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 76/196

Important: D N 1 ≥ C  log N , as N  → ∞

T N  : f   → S N (f  ; x ) = D N  ∗ f  (x ) is a (continuous) linear functionalC (T) → C. From the inequality D N  ∗ f  ∞ ≤ D N 1f  ∞T N  = D N 1 is unbounded

Banach-Steinhaus (uniform boundedness principle) =⇒Given x  there are many continuous functions f   such that T N (f  ) isunbounded

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 14 / 36

Pointwise convergence

Page 77: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 77/196

Important: D N 1 ≥ C  log N , as N  → ∞

T N  : f   → S N (f  ; x ) = D N  ∗ f  (x ) is a (continuous) linear functionalC (T) → C. From the inequality D N  ∗ f  ∞ ≤ D N 1f  ∞T N  = D N 1 is unbounded

Banach-Steinhaus (uniform boundedness principle) =⇒Given x  there are many continuous functions f   such that T N (f  ) isunbounded

Consequence: In general S N (f  ; x ) does not converge pointwise to

f  (x ), even for continuous f  

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 14 / 36

Summability

Look at the arithmetical means of S (f ; x)

Page 78: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 78/196

Look at the arithmetical means of  S N (f  ; x )

σN (f  ; x ) =1

N  + 1

N n=0

S n(f  ; x ) = K N  ∗ f  (x )

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 15 / 36

Summability

Look at the arithmetical means of S (f ; x)

Page 79: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 79/196

Look at the arithmetical means of  S N (f  ; x )

σN (f  ; x ) =1

N  + 1

N n=0

S n(f  ; x ) = K N  ∗ f  (x )

The Fejer kernel K N (x ) is the mean of the Dirichlet kernels

K N (x ) =N 

n=−N 

1 −

|n|

N  + 1

e 2πinx  =

1

N  + 1

sin π(N  + 1)x 

sin πx 

2

≥ 0.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 15 / 36

Summability

Look at the arithmetical means of SN(f ; x)

Page 80: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 80/196

Look at the arithmetical means of  S N (f  ; x )

σN (f  ; x ) =1

N  + 1

N n=0

S n(f  ; x ) = K N  ∗ f  (x )

The Fejer kernel K N (x ) is the mean of the Dirichlet kernels

K N (x ) =N 

n=−N 

1 −

|n|

N  + 1

e 2πinx  =

1

N  + 1

sin π(N  + 1)x 

sin πx 

2

≥ 0.

K N (x ) is an approximate identity:

(a)  T

K N (x ) dx  = K N (0) = 1,(b) K N 1 is bounded (K N 1 = 1, from nonnegativity and (a)),(c) for any > 0 we have

 |x |> |K N (x )| dx  → 0, as N  → ∞

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 15 / 36

The Fejer kernel

Page 81: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 81/196

0

2

4

6

8

10

12

-0.4 -0.2 0 0.2 0.4

The Fej’er kernel D N (x ) for N  = 10

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 16 / 36

Summability (continued)

K N  approximate identity =⇒ K N  ∗ f  (x ) → f  (x ), in some Banach

Page 82: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 82/196

spaces. These can be:

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 17 / 36

Summability (continued)

K N  approximate identity =⇒ K N  ∗ f  (x ) → f  (x ), in some Banach

Page 83: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 83/196

spaces. These can be:

C (T) normed with ·∞: If  f   ∈ C (T) then σN (f  ; x ) → f  (x )uniformly in T.

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 17 / 36

Summability (continued)

K N  approximate identity =⇒ K N  ∗ f  (x ) → f  (x ), in some Banach

Page 84: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 84/196

spaces. These can be:

C (T) normed with ·∞: If  f   ∈ C (T) then σN (f  ; x ) → f  (x )uniformly in T.

Lp (T), 1 ≤ p  < ∞: If  f   ∈ Lp (T) then σN (f  ; x ) − f  (x )p  → 0

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 17 / 36

Summability (continued)

K N  approximate identity =⇒ K N  ∗ f  (x ) → f  (x ), in some BanachTh b

Page 85: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 85/196

spaces. These can be:

C (T) normed with ·∞: If  f   ∈ C (T) then σN (f  ; x ) → f  (x )uniformly in T.

Lp (T), 1 ≤ p  < ∞: If  f   ∈ Lp (T) then σN (f  ; x ) − f  (x )p  → 0

C n(T), all n-times C -differentiable functions, normed withf  C n =

nk =0 f  (k )∞

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 17 / 36

Summability (continued)

K N  approximate identity =⇒ K N  ∗ f  (x ) → f  (x ), in some BanachTh b

Page 86: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 86/196

spaces. These can be:

C (T) normed with ·∞: If  f   ∈ C (T) then σN (f  ; x ) → f  (x )uniformly in T.

Lp (T), 1 ≤ p  < ∞: If  f   ∈ Lp (T) then σN (f  ; x ) − f  (x )p  → 0

C n(T), all n-times C -differentiable functions, normed withf  C n =

nk =0 f  (k )∞Summability implies uniqueness: the Fourier series of  f   ∈ L1(T)

determines the function.

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 17 / 36

Summability (continued)

K N  approximate identity =⇒ K N  ∗ f  (x ) → f  (x ), in some BanachTh b

Page 87: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 87/196

spaces. These can be:

C (T) normed with ·∞: If  f   ∈ C (T) then σN (f  ; x ) → f  (x )uniformly in T.

Lp (T), 1 ≤ p  < ∞: If  f   ∈ Lp (T) then σN (f  ; x ) − f  (x )p  → 0

C n(T), all n-times C -differentiable functions, normed withf  C n =

nk =0 f  (k )∞Summability implies uniqueness: the Fourier series of  f   ∈ L1(T)

determines the function.

Another consequence: trig. polynomials are dense inLp (T), C (T), C n(T)

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 17 / 36

Summability (continued)

K N  approximate identity =⇒ K N  ∗ f  (x ) → f  (x ), in some Banachs aces These ca be

Page 88: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 88/196

spaces. These can be:

C (T) normed with ·∞: If  f   ∈ C (T) then σN (f  ; x ) → f  (x )uniformly in T.

Lp (T), 1 ≤ p  < ∞: If  f   ∈ Lp (T) then σN (f  ; x ) − f  (x )p  → 0

C n(T), all n-times C -differentiable functions, normed withf  C n =

nk =0 f  (k )∞Summability implies uniqueness: the Fourier series of  f   ∈ L1(T)

determines the function.

Another consequence: trig. polynomials are dense inLp (T), C (T), C n(T)

Another important summability kernel: thePoisson

kernelP (r , x ) =

k ∈Z

r k e 2πikx , 0 < r  < 1: absolute convergence obvious

Significant for the theory of analytic functions.

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 17 / 36

The decay of the Fourier coefficients at ∞

Obvious: f  (n) ≤ f  1

Page 89: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 89/196

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 18 / 36

The decay of the Fourier coefficients at ∞

Obvious: f  (n) ≤ f  1

Page 90: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 90/196

Riemann-Lebesgue Lemma: lim|n|→∞ f  (n) = 0 if  f   ∈ L1(T).Obviously true for trig. polynomials and they are dense in L1(T).

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 18 / 36

The decay of the Fourier coefficients at ∞

Obvious: f  (n) ≤ f  1

Page 91: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 91/196

Riemann-Lebesgue Lemma: lim|n|→∞ f  (n) = 0 if  f   ∈ L1(T).Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f   ∈ L1.

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 18 / 36

The decay of the Fourier coefficients at ∞

Obvious: f  (n) ≤ f  1

Page 92: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 92/196

Riemann-Lebesgue Lemma: lim|n|→∞ f  (n) = 0 if  f   ∈ L1(T).Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f   ∈ L1.

f  (x ) = x 

0 g (t ) dt , where 

g  = 0:

f  (n) = 1

2πin

 g (n) (Fubini)

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 18 / 36

The decay of the Fourier coefficients at ∞

Obvious: f  (n) ≤ f  1

Page 93: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 93/196

Riemann-Lebesgue Lemma: lim|n|→∞ f  (n) = 0 if  f   ∈ L1(T).Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f   ∈ L1.

f  (x ) = x 

0 g (t ) dt , where 

g  = 0:

f  (n) = 1

2πin

 g (n) (Fubini)

Previous implies: f  (|n|) = − f  (−|n|) ≥ 0 =⇒ n=0 f  (n)n < ∞.

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 18 / 36

The decay of the Fourier coefficients at ∞

Obvious: f  (n) ≤ f  1

Page 94: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 94/196

Riemann-Lebesgue Lemma: lim|n|→∞ f  (n) = 0 if  f   ∈ L1(T).Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f   ∈ L1.

f  (x ) = x 

0 g (t ) dt , where 

g  = 0:

f  (n) = 1

2πin

 g (n) (Fubini)

Previous implies: f  (|n|) = − f  (−|n|) ≥ 0 =⇒ n=0 f  (n)n < ∞.n>0

sin nx log n is not a Fourier series.

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 18 / 36

The decay of the Fourier coefficients at ∞

Obvious: f  (n) ≤ f  1

1

Page 95: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 95/196

Riemann-Lebesgue Lemma: lim|n|→∞ f  (n) = 0 if  f   ∈ L1(T).Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f   ∈ L1.

f  (x ) = x 

0 g (t ) dt , where 

g  = 0:

f  (n) = 1

2πin

 g (n) (Fubini)

Previous implies: f  (|n|) = − f  (−|n|) ≥ 0 =⇒ n=0 f  (n)n < ∞.n>0

sin nx log n is not a Fourier series.

f   is an integral =⇒ f  (n) = o (1/n): the “smoother” f   is the betterdecay for the FT of  f  

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 18 / 36

The decay of the Fourier coefficients at ∞

Obvious: f  (n) ≤ f  1

1

Page 96: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 96/196

Riemann-Lebesgue Lemma: lim|n|→∞ f  (n) = 0 if  f   ∈ L1(T).

Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f   ∈ L1.

f  (x ) = x 

0 g (t ) dt , where 

g  = 0:

f  (n) = 1

2πin

 g (n) (Fubini)

Previous implies: f  (|n|) = − f  (−|n|) ≥ 0 =⇒ n=0 f  (n)n < ∞.n>0

sin nx log n is not a Fourier series.

f   is an integral =⇒ f  (n) = o (1/n): the “smoother” f   is the betterdecay for the FT of  f  

f   ∈ C 2

(T) =⇒ absolute convergence for the Fourier Series of  f  .

Mihalis Kolountzakis (U of Crete) FT and applications January 2006 18 / 36

The decay of the Fourier coefficients at ∞

Obvious: f  (n) ≤ f  1

( ) 1( )

Page 97: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 97/196

Riemann-Lebesgue Lemma: lim|n|→∞ f  (n) = 0 if  f   ∈ L1(T).

Obviously true for trig. polynomials and they are dense in L1(T).

Can go to 0 arbitrarily slowly if we only assume f   ∈ L1.

f  (x ) = x 

0 g (t ) dt , where 

g  = 0:

f  (n) = 1

2πin

 g (n) (Fubini)

Previous implies: f  (|n|) = − f  (−|n|) ≥ 0 =⇒ n=0 f  (n)n < ∞.n>0

sin nx log n is not a Fourier series.

f   is an integral =⇒ f  (n) = o (1/n): the “smoother” f   is the betterdecay for the FT of  f  

f   ∈ C 2

(T) =⇒ absolute convergence for the Fourier Series of  f  .Another condition that imposes “decay”:

f   ∈ L2(T) =⇒

n

 f  (n)2 < ∞.

Mih lis K l t kis (U f C t ) FT d li ti s J 2006 18 / 36

Interpolation of operators

T is bounded linear operator on dense subsets of Lp 1 and Lp 2 :

Page 98: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 98/196

T  is bounded linear operator on dense subsets of  Lp and Lp :

Tf  q 1 ≤ C 1f  p 1 , Tf  q 2 ≤ C 2f  p 2

Mih li K l t ki (U f C t ) FT d li ti J 2006 19 / 36

Interpolation of operators

T is bounded linear operator on dense subsets of Lp 1 and Lp 2 :

Page 99: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 99/196

T  is bounded linear operator on dense subsets of  L and L :

Tf  q 1 ≤ C 1f  p 1 , Tf  q 2 ≤ C 2f  p 2

Riesz-Thorin interpolation theorem: T  : Lp  → Lq  for any p 

between p 1, p 2 (all p ’s and q ’s ≥ 1).

Mih li K l t ki (U f C t ) FT d li ti J 2006 19 / 36

Interpolation of operators

T is bounded linear operator on dense subsets of Lp 1 and Lp 2 :

Page 100: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 100/196

T  is bounded linear operator on dense subsets of  L and L :

Tf  q 1 ≤ C 1f  p 1 , Tf  q 2 ≤ C 2f  p 2

Riesz-Thorin interpolation theorem: T  : Lp  → Lq  for any p 

between p 1, p 2 (all p ’s and q ’s ≥ 1).

p  and q  are related by:

1

p = t 

1

p 1+ (1 − t )

1

p 2=⇒

1

q = t 

1

q 1+ (1 − t )

1

q 2

Mih li K l t ki (U f C t ) FT d li ti J 2006 19 / 36

Interpolation of operators

T is bounded linear operator on dense subsets of Lp 1 and Lp 2 :

Page 101: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 101/196

T  is bounded linear operator on dense subsets of  L and L :

Tf  q 1 ≤ C 1f  p 1 , Tf  q 2 ≤ C 2f  p 2

Riesz-Thorin interpolation theorem: T  : Lp  → Lq  for any p 

between p 1, p 2 (all p ’s and q ’s ≥ 1).

p  and q  are related by:

1

p = t 

1

p 1+ (1 − t )

1

p 2=⇒

1

q = t 

1

q 1+ (1 − t )

1

q 2

T Lp →Lq  ≤ C t 1 C (1−t )2

Mih li K l ki (U f C ) FT d li i J 2006 19 / 36

Interpolation of operators

T  is bounded linear operator on dense subsets of  Lp 1 and Lp 2 :

Page 102: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 102/196

p

Tf  q 1 ≤ C 1f  p 1 , Tf  q 2 ≤ C 2f  p 2

Riesz-Thorin interpolation theorem: T  : Lp  → Lq  for any p 

between p 1, p 2 (all p ’s and q ’s ≥ 1).

p  and q  are related by:

1

p = t 

1

p 1+ (1 − t )

1

p 2=⇒

1

q = t 

1

q 1+ (1 − t )

1

q 2

T Lp →Lq  ≤ C t 1 C (1−t )2

The exponents p , q , . . . are allowed to be ∞.

Mih li K l ki (U f C ) FT d li i J 2006 19 / 36

Interpolation of operators: the 1p , 1q  plane

1

Page 103: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 103/196

1

   s

   s

 S  S  S  S  S  S 

 S  S  S  S  S 

0 1

0

1

(1/p 1, 1/q 1)

(1/p 2, 1/q 2)

(1/p , 1/q )

   s

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 20 / 36

Page 104: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 104/196

The Hausdorff-Young inequality

Page 105: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 105/196

Hausdorff-Young: Suppose 1 ≤ p  ≤ 2, 1p  + 1q  = 1, andf   ∈ Lp (T). It follows that

 f  Lq (Z)

≤ C p f  Lp (T)

False if  p  > 2.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 21 / 36

Page 106: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 106/196

The Hausdorff-Young inequality

Page 107: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 107/196

Hausdorff-Young: Suppose 1 ≤ p  ≤ 2, 1p  + 1q  = 1, andf   ∈ Lp (T). It follows that

 f  Lq (Z)

≤ C p f  Lp (T)

False if  p  > 2.

Clearly true if  p  = 1 (trivial) or p  = 2 (Parseval).

Use Riesz-Thorin interpolation for 1 < p  < 2 for the operatorf   → f   from Lp (T) → Lq (Z).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 21 / 36

An application: the isoperimetric inequality

Suppose Γ is a simple closed curve in the plane with perimeter L

enclosing area A.

Page 108: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 108/196

A ≤ 14π

L2 (isoperimetric inequality)

Equality holds only when Γ is a circle.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 22 / 36

An application: the isoperimetric inequality

Suppose Γ is a simple closed curve in the plane with perimeter L

enclosing area A.

Page 109: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 109/196

A ≤ 14π

L2 (isoperimetric inequality)

Equality holds only when Γ is a circle.

Wirtinger’s inequality: if  f   ∈ C ∞(T) then

 1

0f  (x ) − f  (0)2 dx  ≤ 1

4π2  1

0f  (x )2 dx . (4)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 22 / 36

An application: the isoperimetric inequality

Suppose Γ is a simple closed curve in the plane with perimeter L

enclosing area A.

Page 110: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 110/196

A ≤ 14π

L2 (isoperimetric inequality)

Equality holds only when Γ is a circle.

Wirtinger’s inequality: if  f   ∈ C ∞(T) then

 1

0f  (x ) − f  (0)2 dx  ≤ 1

4π2  1

0f  (x )2 dx . (4)

By smoothness f  (x ) equals its Fourier series and so doesf  (x ) = 2πi 

n n

 f  (n)e 2πinx 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 22 / 36

An application: the isoperimetric inequality

Suppose Γ is a simple closed curve in the plane with perimeter L

enclosing area A.

Page 111: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 111/196

A ≤ 14πL2 (isoperimetric inequality)

Equality holds only when Γ is a circle.

Wirtinger’s inequality: if  f   ∈ C ∞(T) then

 1

0f  (x ) − f  (0)2 dx  ≤ 1

4π2  1

0f  (x )2 dx . (4)

By smoothness f  (x ) equals its Fourier series and so doesf  (x ) = 2πi 

n n

 f  (n)e 2πinx 

FT is an isometry (Parseval) so LHS of (4) is n=0  f  (n)2 while the

RHS is

n=0 n f  (n)

2 so (4) holds.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 22 / 36

An application: the isoperimetric inequality

Suppose Γ is a simple closed curve in the plane with perimeter L

enclosing area A.

Page 112: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 112/196

A ≤ 14πL2 (isoperimetric inequality)

Equality holds only when Γ is a circle.

Wirtinger’s inequality: if  f   ∈ C ∞(T) then

 1

0f  (x ) − f  (0)2 dx  ≤ 1

4π2  1

0f  (x )2 dx . (4)

By smoothness f  (x ) equals its Fourier series and so doesf  (x ) = 2πi 

n n

 f  (n)e 2πinx 

FT is an isometry (Parseval) so LHS of (4) is n=0  f  (n)2 while the

RHS is

n=0 n f  (n)

2 so (4) holds.

Equality in (4) precisely when f  (x ) = f  (−1)e −2πix  + f  (0) + f  (1)e 2πix .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 22 / 36

An application: the isoperimetric inequality (continued)

Hurwitz’ proof. First assume Γ is smooth, has L = 1.

Page 113: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 113/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 23 / 36

An application: the isoperimetric inequality (continued)

Hurwitz’ proof. First assume Γ is smooth, has L = 1.Parametrization of Γ: (x (s ), y (s )), 0 ≤ s  ≤ 1 w.r.t. arc length s 

Page 114: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 114/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 23 / 36

An application: the isoperimetric inequality (continued)

Hurwitz’ proof. First assume Γ is smooth, has L = 1.Parametrization of Γ: (x (s ), y (s )), 0 ≤ s  ≤ 1 w.r.t. arc length s 

x , y  ∈ C ∞(T), (x (s ))2 + (y (s ))2 = 1.

Page 115: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 115/196

, y ( ), ( ( )) + (y ( ))

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 23 / 36

Page 116: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 116/196

An application: the isoperimetric inequality (continued)

Hurwitz’ proof. First assume Γ is smooth, has L = 1.Parametrization of Γ: (x (s ), y (s )), 0 ≤ s  ≤ 1 w.r.t. arc length s 

x , y  ∈ C ∞(T), (x (s ))2 + (y (s ))2 = 1.

Page 117: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 117/196

, y ( ), ( ( )) (y ( ))

Green’s Theorem =⇒ area A =  10 x (s )y (s ) ds :

A =

 (x (s ) − x (0))y (s ) =

=

1

4π  (2π(x (s ) − x (0)))

2

+ y 

(s )

2

− (2π(x (s ) − x (0)) − y 

(s ))

2

≤ 1

 4π2(x (s ) − x (0))2 + y (s )2 (drop last term)

≤ 14π  x (s )2 + y (s )2 (Wirtinger’s ineq)

= 1

For equality must have x (s ) = a cos2πs  + b sin2πs  + c ,y (s ) = 2π(x (s ) − x (0)). So x (s )2 + y (s )2 constant if  c  = 0.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 23 / 36

Fourier transform on Rn

Initially defined only for f   ∈ L1(Rn). f  (ξ) = Rn f  (x )e −2πi ξ·x dx .

Follows: f  ∞

≤ f  1. f   is continuous.

Page 118: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 118/196

 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 24 / 36

Fourier transform on Rn

Initially defined only for f   ∈ L1(Rn). f  (ξ) = Rn f  (x )e −2πi ξ·x dx .

Follows: f  ∞

≤ f  1. f   is continuous.

Page 119: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 119/196

  Trig. polynomials are not dense anymore in the usual spaces.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 24 / 36

Page 120: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 120/196

Page 121: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 121/196

Fourier transform on Rn

Initially defined only for f   ∈ L1(Rn). f  (ξ) = Rn f  (x )e −2πi ξ·x dx .

Follows: f  ∞

≤ f  1. f   is continuous.

Page 122: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 122/196

  Trig. polynomials are not dense anymore in the usual spaces.

But Riemann-Lebesgue is true. First for indicator function of aninterval

[a1, b 1] × · · · × [an, b n].

Then approximate an L1 function by finite linear combinations of such.

Multi-index notation α = (α1, . . . , αn) ∈ Nn:(a) |α| = α1 + · · · + αn.

(b) x α

= x α1

1 x α2

2 · · · x αn

n(c) ∂ α = (∂ 

∂ 1)α1 · · · (∂ 

∂ n)αn

Diff operators D  j φ := 12πi (∂ 

∂ x  j ), D αφ = (1

2πi )|α|∂ α.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 24 / 36

Schwartzfunctions on R

n

Lp (Rn) spaces are not nested.

Page 123: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 123/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 25 / 36

Schwartzfunctions on R

n

Lp (Rn) spaces are not nested.

Not clear how to define

f   for f   ∈ L2.

Page 124: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 124/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 25 / 36

Schwartzfunctions on R

n

Lp (Rn) spaces are not nested.

Not clear how to define

f   for f   ∈ L2.

Schwartz class S : those φ ∈ C ∞(Rn) s.t. for all multiindices α, γ 

Page 125: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 125/196

φα,γ  := sup

x ∈Rn

|x γ ∂ αφ(x )| < ∞.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 25 / 36

Schwartzfunctions on R

n

Lp (Rn) spaces are not nested.

Not clear how to define

f   for f   ∈ L2.

Schwartz class S : those φ ∈ C ∞(Rn) s.t. for all multiindices α, γ 

Page 126: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 126/196

φα,γ  := sup

x ∈Rn

|x γ ∂ αφ(x )| < ∞.

The φα,γ  are seminorms . They determine the topology of  S .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 25 / 36

Page 127: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 127/196

Schwartzfunctions on R

n

Lp (Rn) spaces are not nested.

Not clear how to define

f   for f   ∈ L2.

Schwartz class S : those φ ∈ C ∞(Rn) s.t. for all multiindices α, γ 

Page 128: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 128/196

φα,γ  := supx ∈Rn

|x γ ∂ αφ(x )| < ∞.

The φα,γ  are seminorms . They determine the topology of  S .

C ∞0 (Rn) ⊆ S Easy to see that D  j (φ)(ξ) = ξ j  φ(ξ) and x  j φ(x )(ξ) = −D  j  φ(ξ).

More generally ξαD γ  φ(ξ) = D α(−x )γ φ(x )(ξ).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 25 / 36

Schwartzfunctions on R

n

Lp (Rn) spaces are not nested.

Not clear how to define

f   for f   ∈ L2.

Schwartz class S : those φ ∈ C ∞(Rn) s.t. for all multiindices α, γ 

Page 129: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 129/196

φα,γ  := supx ∈Rn

|x γ ∂ αφ(x )| < ∞.

The φα,γ  are seminorms . They determine the topology of  S .

C ∞0 (Rn) ⊆ S Easy to see that D  j (φ)(ξ) = ξ j  φ(ξ) and x  j φ(x )(ξ) = −D  j  φ(ξ).

More generally ξαD γ  φ(ξ) = D α(−x )γ φ(x )(ξ).

φ ∈ S  =⇒

φ ∈ S  (smoothness =⇒ decay, decay =⇒ smoothness)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 25 / 36

Schwartzfunctions on R

n

Lp (Rn) spaces are not nested.

Not clear how to define

f   for f   ∈ L2.

Schwartz class S : those φ ∈ C ∞(Rn) s.t. for all multiindices α, γ 

Page 130: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 130/196

φα,γ  := supx ∈Rn

|x γ ∂ αφ(x )| < ∞.

The φα,γ  are seminorms . They determine the topology of  S .

C ∞0 (Rn

) ⊆ S Easy to see that D  j (φ)(ξ) = ξ j  φ(ξ) and x  j φ(x )(ξ) = −D  j  φ(ξ).

More generally ξαD γ  φ(ξ) = D α(−x )γ φ(x )(ξ).

φ ∈ S  =⇒

φ ∈ S  (smoothness =⇒ decay, decay =⇒ smoothness)

Fourier inversion formula: φ(x ) =  φ(ξ)e 2πi ξx d ξ.

Can also write as φ(−x ) = φ(x ).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 25 / 36

Schwartzfunctions on R

n

Lp (Rn) spaces are not nested.

Not clear how to define

f   for f   ∈ L2.

Schwartz class S : those φ ∈ C ∞(Rn) s.t. for all multiindices α, γ 

Page 131: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 131/196

φα,γ  := supx ∈Rn

|x γ ∂ αφ(x )| < ∞.

The φα,γ  are seminorms . They determine the topology of  S .

C ∞0 (Rn

) ⊆ S Easy to see that D  j (φ)(ξ) = ξ j  φ(ξ) and x  j φ(x )(ξ) = −D  j  φ(ξ).

More generally ξαD γ  φ(ξ) = D α(−x )γ φ(x )(ξ).

φ ∈ S  =⇒

φ ∈ S  (smoothness =⇒ decay, decay =⇒ smoothness)

Fourier inversion formula: φ(x ) =  φ(ξ)e 2πi ξx d ξ.

Can also write as φ(−x ) = φ(x ).

We first show its validity for φ ∈ S .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 25 / 36

Fourier inversion formula on S 

  shifting: f  , g  ∈ L1(Rn) =⇒ 

f  g  = f g  (Fubini)

Page 132: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 132/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 26 / 36

Page 133: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 133/196

Fourier inversion formula on S 

  shifting: f  , g  ∈ L1(Rn) =⇒ 

f  g  = f g  (Fubini)

Define the Gaussian function g (x ) = (2π)−n/2e −|x |2/2, x  ∈ Rn.

This normalization gives g (x) = |x |2

g (x) = 1

Page 134: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 134/196

This normalization gives  g (x ) =  |x | g (x ) = 1.Using Cauchy’s integral formula for analytic functions we prove g (ξ) = (2π)n/2g (2πξ). The Fourier inversion formula holds.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 26 / 36

Fourier inversion formula on S 

  shifting: f  , g  ∈ L1(Rn) =⇒ 

f  g  = f g  (Fubini)

Define the Gaussian function g (x ) = (2π)−n/2e −|x |2/2, x  ∈ Rn.

This normalization gives g (x) = |x |2

g (x) = 1

Page 135: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 135/196

This normalization gives  g (x ) =  |x | g (x ) = 1.Using Cauchy’s integral formula for analytic functions we prove g (ξ) = (2π)n/2g (2πξ). The Fourier inversion formula holds.

Write g (x ) = −ng (x /), an approximate identity.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 26 / 36

Fourier inversion formula on S 

  shifting: f  , g  ∈ L1(Rn) =⇒ 

f  g  = f g  (Fubini)

Define the Gaussian function g (x ) = (2π)−n/2e −|x |2/2, x  ∈ Rn.

This normalization gives g (x) = |x |2

g (x) = 1

Page 136: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 136/196

This normalization gives  g (x )  |x | g (x ) 1.Using Cauchy’s integral formula for analytic functions we prove g (ξ) = (2π)n/2g (2πξ). The Fourier inversion formula holds.

Write g (x ) = −ng (x /), an approximate identity.

We have g (ξ) = (2π)n/2

g (2πξ), lim→0 g (ξ) = 1.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 26 / 36

Fourier inversion formula on S 

  shifting: f  , g  ∈ L1(Rn) =⇒ 

f  g  = f g  (Fubini)

Define the Gaussian function g (x ) = (2π)−n/2e −|x |2/2, x  ∈ Rn.

This normalization gives g (x) = |x |2

g (x) = 1.

Page 137: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 137/196

This normalization gives  g (x )  |x | g (x ) 1.Using Cauchy’s integral formula for analytic functions we prove g (ξ) = (2π)n/2g (2πξ). The Fourier inversion formula holds.

Write g (x ) = −ng (x /), an approximate identity.

We have g (ξ) = (2π)n/2

g (2πξ), lim→0 g (ξ) = 1.  φ(−x ) = 

e 2πi ξx  φ(ξ) d ξ = lim→0

 e 2πi ξx  φ(ξ) g (ξ) d ξ (dom. conv.)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 26 / 36

Fourier inversion formula on S 

  shifting: f  , g  ∈ L1(Rn) =⇒ 

f  g  = f g  (Fubini)

Define the Gaussian function g (x ) = (2π)−n/2e −|x |2/2, x  ∈ Rn.

This normalization gives g (x ) = |x |2

g (x ) = 1.

Page 138: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 138/196

This normalization gives  g ( )  | | g ( ) 1.Using Cauchy’s integral formula for analytic functions we prove g (ξ) = (2π)n/2g (2πξ). The Fourier inversion formula holds.

Write g (x ) = −ng (x /), an approximate identity.

We have g (ξ) = (2π)n/2

g (2πξ), lim→0 g (ξ) = 1.  φ(−x ) = 

e 2πi ξx  φ(ξ) d ξ = lim→0

 e 2πi ξx  φ(ξ) g (ξ) d ξ (dom. conv.)

= lim→0

 φ(· + x )(ξ)

 g (ξ) d ξ (FT of translation)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 26 / 36

Fourier inversion formula onS 

  shifting: f  , g  ∈ L1(Rn) =⇒ 

f  g  = f g  (Fubini)

Define the Gaussian function g (x ) = (2π)−n/2e −|x |2/2, x  ∈ Rn.

This normalization gives  g (x ) =  |x |2

g (x ) = 1.

Page 139: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 139/196

g g ( ) | | g ( )Using Cauchy’s integral formula for analytic functions we prove g (ξ) = (2π)n/2g (2πξ). The Fourier inversion formula holds.

Write g (x ) = −ng (x /), an approximate identity.

We have g (ξ) = (2π)n/2

g (2πξ), lim→0 g (ξ) = 1.  φ(−x ) = 

e 2πi ξx  φ(ξ) d ξ = lim→0

 e 2πi ξx  φ(ξ) g (ξ) d ξ (dom. conv.)

= lim→0

 φ(· + x )(ξ)

 g (ξ) d ξ (FT of translation)

= lim→0  φ(x  + y )  g (y ) dy  (  shifting)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 26 / 36

Fourier inversion formula on S 

  shifting: f  , g  ∈ L1(Rn) =⇒ 

f  g  = f g  (Fubini)

Define the Gaussian function g (x ) = (2π)−n/2e −|x |2/2, x  ∈ Rn.

This normalization gives  g (x ) =  |x |2

g (x ) = 1.

Page 140: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 140/196

g g ( ) | | g ( )Using Cauchy’s integral formula for analytic functions we prove g (ξ) = (2π)n/2g (2πξ). The Fourier inversion formula holds.

Write g (x ) = −ng (x /), an approximate identity.

We have g (ξ) = (2π)n/2

g (2πξ), lim→0 g (ξ) = 1.  φ(−x ) = 

e 2πi ξx  φ(ξ) d ξ = lim→0

 e 2πi ξx  φ(ξ) g (ξ) d ξ (dom. conv.)

= lim→0

 φ(· + x )(ξ)

 g (ξ) d ξ (FT of translation)

= lim→0  φ(x  + y )  g (y ) dy  (  shifting)

= lim→0 φ(x  + y )g (−y ) dy  (FT inversion for g ).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 26 / 36

Fourier inversion formula on S 

  shifting: f  , g  ∈ L1(Rn) =⇒ 

f  g  = f g  (Fubini)

Define the Gaussian function g (x ) = (2π)−n/2e −|x |2/2, x  ∈ Rn.

This normalization gives  g (x ) =  |x |2

g (x ) = 1.

Page 141: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 141/196

g g ( ) | | g ( )Using Cauchy’s integral formula for analytic functions we prove g (ξ) = (2π)n/2g (2πξ). The Fourier inversion formula holds.

Write g (x ) = −ng (x /), an approximate identity.

We have g (ξ) = (2π)n/2

g (2πξ), lim→0 g (ξ) = 1.  φ(−x ) = 

e 2πi ξx  φ(ξ) d ξ = lim→0

 e 2πi ξx  φ(ξ) g (ξ) d ξ (dom. conv.)

= lim→0

 φ(· + x )(ξ)

 g (ξ) d ξ (FT of translation)

= lim→0  φ(x  + y )  g (y ) dy  (  shifting)

= lim→0 φ(x  + y )g (−y ) dy  (FT inversion for g ).

= φ(x ) (g  is an approximate identity)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 26 / 36

FT on L

2

(R

n

)

Preservation of inner product:

 φψ =

 φ

 ψ, for φ, ψ ∈ S 

Fourier inversion implies  ψ = ψ. Use shifting.

Page 142: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 142/196

Fourier inversion implies ψ ψ. Use  shifting.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 27 / 36

Page 143: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 143/196

FT on L

2

(Rn

)

Preservation of inner product:

 φψ =

 φ

 ψ, for φ, ψ ∈ S 

Fourier inversion implies  ψ = ψ. Use  shifting.

Page 144: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 144/196

p ψ ψ g

Parseval: f   ∈ S : f  2 = f  

2.

S  dense in L2(Rn): FT extends to L2 and f   →

 f   is an isometry on L2.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 27 / 36

FT onL2

(Rn

)

Preservation of inner product:

 φψ =

 φ

 ψ, for φ, ψ ∈ S 

Fourier inversion implies  ψ = ψ. Use  shifting.

Page 145: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 145/196

p ψ ψ g

Parseval: f   ∈ S : f  2 = f  

2.

S  dense in L2(Rn): FT extends to L2 and f   →

 f   is an isometry on L2.

By interpolation FT is defined on Lp , 1 ≤ p  ≤ 2, and satisfies theHausdorff-Young inequality:

 f  q 

≤ C p f  p ,1

p +

1

q = 1.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 27 / 36

Tempered distributions

Tempered distributions: S  is the space of continuous linearfunctionals on S .

Page 146: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 146/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 28 / 36

Tempered distributions

Tempered distributions: S  is the space of continuous linearfunctionals on S .

FT defined on S : for u  ∈ S  we define u (φ) = u ( φ), for φ ∈ S .

Page 147: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 147/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 28 / 36

Tempered distributions

Tempered distributions: S  is the space of continuous linearfunctionals on S .

FT defined on S : for u  ∈ S  we define u (φ) = u ( φ), for φ ∈ S .

Fourier inversion for S : u (φ(x )) =  u (φ(−x )).

Page 148: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 148/196

(φ( )) (φ( ))

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 28 / 36

Tempered distributions

Tempered distributions: S  is the space of continuous linearfunctionals on S .

FT defined on S : for u  ∈ S  we define u (φ) = u ( φ), for φ ∈ S .

Fourier inversion for S : u (φ(x )) =  u (φ(−x )).

Page 149: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 149/196

(φ( )) (φ( ))

u  → u  is an isomorphism on S 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 28 / 36

Tempered distributions

Tempered distributions: S  is the space of continuous linearfunctionals on S .

FT defined on S : for u  ∈ S  we define u (φ) = u ( φ), for φ ∈ S .

Fourier inversion for S : u (φ(x )) =  u (φ(−x )).

Page 150: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 150/196

( ( )) ( ( ))

u  → u  is an isomorphism on S 

1 ≤ p  ≤ ∞ : Lp  ⊆ S . If  f   ∈ Lp  this mapping is in S :

φ →  f  φ

Also S ⊆ S .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 28 / 36

Tempered distributions

Tempered distributions: S  is the space of continuous linearfunctionals on S .

FT defined on S : for u  ∈ S  we define u (φ) = u ( φ), for φ ∈ S .

Fourier inversion for S : u (φ(x )) =  u (φ(−x )).

Page 151: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 151/196

u  → u  is an isomorphism on S 

1 ≤ p  ≤ ∞ : Lp  ⊆ S . If  f   ∈ Lp  this mapping is in S :

φ →  f  φ

Also S ⊆ S .

Tempered measures:

 (1 + |x |)−k d |µ|(x ) < ∞, for some k  ∈ N.

These are in S .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 28 / 36

Page 152: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 152/196

Tempered distributions

Tempered distributions: S  is the space of continuous linearfunctionals on S .

FT defined on S : for u  ∈ S  we define u (φ) = u ( φ), for φ ∈ S .

Fourier inversion for S : u (φ(x )) =  u (φ(−x )).

Page 153: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 153/196

u  → u  is an isomorphism on S 

1 ≤ p  ≤ ∞ : Lp  ⊆ S . If  f   ∈ Lp  this mapping is in S :

φ →  f  φ

Also S ⊆ S .

Tempered measures:

 (1 + |x |)−k d |µ|(x ) < ∞, for some k  ∈ N.

These are in S .Differentiation defined as: (∂ αu )(φ) = (−1)|α|u (∂ αφ).

FT of  Lp  functions or tempered measures defined in S 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 28 / 36

Examples of tempered distributions and their FT

u  = δ0,

u  = 1

Page 154: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 154/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 29 / 36

Examples of tempered distributions and their FT

u  = δ0,

u  = 1

u  = D α

δ0. To find its FT

( ) ( )() ( )| | ( ) ( )| | ( ( ) ( ))

Page 155: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 155/196

 D αδ0(φ) = (D αδ0)( φ) = (−1)|α|δ0(D α φ) = (−1)|α|δ0((−x )αφ(x ))

= (−1)|α|

 δ0((−x )αφ(x )) =

 x αφ(x )

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 29 / 36

Examples of tempered distributions and their FT

u  = δ0,

u  = 1

u  = D α

δ0. To find its FT

D δ (φ) (Dαδ )(φ) ( )|α|δ (Dαφ) ( )|α|δ ( ( ) φ( ))

Page 156: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 156/196

 D αδ0(φ) = (D αδ0)( φ) = (−1)|α|δ0(D α φ) = (−1)|α|δ0((−x )αφ(x ))

= (−1)|α|

 δ0((−x )αφ(x )) =

 x αφ(x )

So D αδ0 = x α.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 29 / 36

Examples of tempered distributions and their FT

u  = δ0,

u  = 1

u  = D α

δ0. To find its FT

D δ (φ) (Dαδ )(φ) ( 1)|α|δ (Dαφ) ( 1)|α|δ ( ( ) φ( ))

Page 157: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 157/196

 D αδ0(φ) = (D αδ0)( φ) = (−1)|α|δ0(D α φ) = (−1)|α|δ0((−x )αφ(x ))

= (−1)|α|

 δ0((−x )αφ(x )) =

 x αφ(x )

So D αδ0 = x α.

u  = x α, u  = D αδ0

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 29 / 36

Examples of tempered distributions and their FT

u  = δ0,

u  = 1

u  = D 

α

δ0. To find its FT

Dαδ (φ) (Dαδ )(φ) ( 1)|α|δ (Dαφ) ( 1)|α|δ ( ( )αφ( ))

Page 158: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 158/196

 D αδ0(φ) = (D αδ0)( φ) = (−1)|α|δ0(D α φ) = (−1)|α|δ0((−x )αφ(x ))

= (−1)|α|

 δ0((−x )αφ(x )) =

 x αφ(x )

So D αδ0 = x α.

u  = x α, u  = D αδ0

u  =

J  j =1 a j δp  j ,

u (ξ) =

J  j =1 a j e 2πip  j ξ.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 29 / 36

Examples of tempered distributions and their FT

u  = δ0,

u  = 1

u  = D 

α

δ0. To find its FT

Dαδ (φ) (Dαδ )(φ) ( 1)|α|δ (Dαφ) ( 1)|α|δ ( ( )αφ( ))

Page 159: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 159/196

 D αδ0(φ) = (D αδ0)( φ) = (−1)|α|δ0(D α φ) = (−1)|α|δ0((−x )αφ(x ))

= (−1)|α|

 δ0((−x )αφ(x )) =

 x αφ(x )

So D αδ0 = x α.

u  = x α, u  = D αδ0

u  =

J  j =1 a j δp  j ,

u (ξ) =

J  j =1 a j e 2πip  j ξ.

Poisson Summation Formula (PSF): u  = k ∈Zn δk , u  = u 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 29 / 36

Proof of the Poisson Summation Formula

φ ∈ S . Define g (x ) =

k ∈Zn φ(x  + k ).

Page 160: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 160/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 30 / 36

Proof of the Poisson Summation Formula

φ ∈ S . Define g (x ) =

k ∈Zn φ(x  + k ).

g  has Zn as a period lattice: g (x  + k ) = g (x ), x  ∈ Rn, k  ∈ Zn.

Page 161: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 161/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 30 / 36

Proof of the Poisson Summation Formula

φ ∈ S . Define g (x ) =

k ∈Zn φ(x  + k ).

g  has Zn as a period lattice: g (x  + k ) = g (x ), x  ∈ Rn, k  ∈ Zn.

The periodization g  may be viewed as g  : Tn

→ C.

Page 162: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 162/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 30 / 36

Proof of the Poisson Summation Formula

φ ∈ S . Define g (x ) =

k ∈Zn φ(x  + k ).

g  has Zn as a period lattice: g (x  + k ) = g (x ), x  ∈ Rn, k  ∈ Zn.

The periodization g  may be viewed as g  : Tn

→ C.FT of  g  lives on Tn = Zn. The Fourier coefficients are

Page 163: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 163/196

g

 g (k ) =

 Tn m∈Zn

φ(x  + m)e −2πikx dx  =

φ(k ).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 30 / 36

Page 164: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 164/196

Proof of the Poisson Summation Formula

φ ∈ S . Define g (x ) =

k ∈Zn φ(x  + k ).

g  has Zn as a period lattice: g (x  + k ) = g (x ), x  ∈ Rn, k  ∈ Zn.

The periodization g  may be viewed as g  : Tn

→ C.FT of  g  lives on Tn = Zn. The Fourier coefficients are

Page 165: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 165/196

 g (k ) =

 Tn m∈Zn

φ(x  + m)e −2πikx dx  =

φ(k ).

From decay of  φ follows that the FS of  g (x ) converges absolutely anduniformly and

g (x ) =

k ∈Zn φ(k )e 2πikx .

x  = 0 gives the PSF:

k ∈Zn φ(k ) =

k ∈Znφ(k ).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 30 / 36

FT behavior under linear transformation

Suppose T  : Rn → Rn is a non-singular linear operator. u  ∈ S ,v  = u ◦ T .

Page 166: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 166/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 31 / 36

FT behavior under linear transformation

Suppose T  : Rn → Rn is a non-singular linear operator. u  ∈ S ,v  = u ◦ T .

Change of variables formula for integration implies

1 T−

Page 167: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 167/196

 v  =|det T |

 u ◦ T −.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 31 / 36

Page 168: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 168/196

FT behavior under linear transformation

Suppose T  : Rn → Rn is a non-singular linear operator. u  ∈ S ,v  = u ◦ T .

Change of variables formula for integration implies

1 T−

Page 169: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 169/196

 v  =|det T |

 u ◦ T  .

WriteRn

=H 

⊕H ⊥

,H 

a linear subspace.Projection onto subspace defined by

(πH f  )(h) :=

 H 

f  (h + x ) dx , (h ∈ H ).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 31 / 36

Page 170: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 170/196

Analyticity of the FT

Compact support: f   : R→ C, f   ∈ L1(R), f  (x ) = 0 for |x | > R .

Page 171: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 171/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 32 / 36

Analyticity of the FT

Compact support: f   : R→ C, f   ∈ L1(R), f  (x ) = 0 for |x | > R .FT defined by

 f  (ξ) =

 Rf  (x )e −2πi ξx dx .

Page 172: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 172/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 32 / 36

Analyticity of the FT

Compact support: f   : R→ C, f   ∈ L1(R), f  (x ) = 0 for |x | > R .FT defined by

 f  (ξ) =

 R

f  (x )e −2πi ξx dx .

Allow ξ ∈ C, ξ = s  + it  in the formula.

f ( )

 f ( ) 2πtx 2πisx d

Page 173: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 173/196

 f  (s  + it ) =

f  (x )e 2πtx e −2πisx dx 

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 32 / 36

Analyticity of the FT

Compact support: f   : R→ C, f   ∈ L1(R), f  (x ) = 0 for |x | > R .FT defined by

 f  (ξ) =

 R

f  (x )e −2πi ξx dx .

Allow ξ ∈ C, ξ = s  + it  in the formula.

f ( i )

 f ( ) 2πtx 2πisx d

Page 174: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 174/196

 f  (s  + it ) =

f  (x )e 2πtx e −2πisx dx 

Compact support implies f  (x )e 2πtx  ∈ L1(R), so integral is defined.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 32 / 36

Analyticity of the FT

Compact support: f   : R→ C, f   ∈ L1(R), f  (x ) = 0 for |x | > R .FT defined by

 f  (ξ) =

 R

f  (x )e −2πi ξx dx .

Allow ξ ∈ C, ξ = s  + it  in the formula.

f ( + it)

 f ( ) 2πtx −2πisx d

Page 175: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 175/196

 f  (s  + it ) =

f  (x )e 2πtx e  2πisx dx 

Compact support implies f  (x )e 2πtx  ∈ L1(R), so integral is defined.Since e −2πix ξ is analytic for all ξ ∈ C, so is f  (ξ).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 32 / 36

Analyticity of the FT

Compact support: f   : R→ C, f   ∈ L1(R), f  (x ) = 0 for |x | > R .FT defined by

 f  (ξ) =

 R

f  (x )e −2πi ξx dx .

Allow ξ ∈ C, ξ = s  + it  in the formula.

f ( + it)

 f ( ) 2πtx −2πisx d

Page 176: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 176/196

 f  (s  + it ) =

f  (x )e 2πtx e  2πisx dx 

Compact support implies f  (x )e 2πtx  ∈ L1(R), so integral is defined.Since e −2πix ξ is analytic for all ξ ∈ C, so is f  (ξ).Paley–Wiener: f   ∈ L2(R). The following are equivalent:(a) f   is the restriction on R of a function F  holomorphic in the strip{z  : |z | < a} which satisfies

 |F (x  + iy )|2 dx  ≤ C , (|y | < a)

(b) e a|ξ| f  (ξ) ∈ L2(R).

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 32 / 36

Application: the Steinhaus tiling problem

Question of  Steinhaus: Is there E  ⊆ R2 such that no matter howtranslated and rotated it always contains exactly one point withinteger coordinates?

Page 177: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 177/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 33 / 36

Application: the Steinhaus tiling problem

Question of  Steinhaus: Is there E  ⊆ R2 such that no matter howtranslated and rotated it always contains exactly one point withinteger coordinates?

Two versions: E  is required to be measurable or not

Page 178: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 178/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 33 / 36

Application: the Steinhaus tiling problem

Question of  Steinhaus: Is there E  ⊆ R2 such that no matter howtranslated and rotated it always contains exactly one point withinteger coordinates?

Two versions:E 

is required to be measurable or notNon-measurable version was answered in the affirmative by Jackson

and Mauldin a few years ago.

Page 179: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 179/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 33 / 36

Application: the Steinhaus tiling problem

Question of  Steinhaus: Is there E  ⊆ R2 such that no matter howtranslated and rotated it always contains exactly one point withinteger coordinates?

Two versions:E 

is required to be measurable or notNon-measurable version was answered in the affirmative by Jackson

and Mauldin a few years ago.

Page 180: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 180/196

Measurable version remains open.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 33 / 36

Application: the Steinhaus tiling problem

Question of  Steinhaus: Is there E  ⊆ R2 such that no matter howtranslated and rotated it always contains exactly one point withinteger coordinates?

Two versions:E 

is required to be measurable or notNon-measurable version was answered in the affirmative by Jackson

and Mauldin a few years ago.

Page 181: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 181/196

Measurable version remains open.

Equivalent form (R θ is rotation by θ):

k ∈Z2

1R θE (t  + k ) = 1, (0 ≤ θ < 2π, t  ∈ R2). (5)

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 33 / 36

Application: the Steinhaus tiling problem

Question of  Steinhaus: Is there E  ⊆ R2 such that no matter howtranslated and rotated it always contains exactly one point withinteger coordinates?

Two versions: E  is required to be measurable or not

Non-measurable version was answered in the affirmative by Jackson

and Mauldin a few years ago.

M bl i i

Page 182: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 182/196

Measurable version remains open.

Equivalent form (R θ is rotation by θ):

k ∈Z2

1R θE (t  + k ) = 1, (0 ≤ θ < 2π, t  ∈ R2). (5)

We prove: there is no bounded measurable Steinhaus set.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 33 / 36

Application: the Steinhaus tiling problem

Question of  Steinhaus: Is there E  ⊆ R2 such that no matter howtranslated and rotated it always contains exactly one point withinteger coordinates?

Two versions: E  is required to be measurable or not

Non-measurable version was answered in the affirmative by Jackson

and Mauldin a few years ago.

M bl i i

Page 183: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 183/196

Measurable version remains open.

Equivalent form (R θ is rotation by θ):

k ∈Z2

1R θE (t  + k ) = 1, (0 ≤ θ < 2π, t  ∈ R2). (5)

We prove: there is no bounded measurable Steinhaus set.

Integrating (5) for t  ∈ [0, 1]2 we obtain |E | = 1.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 33 / 36

Application: the Steinhaus tiling problem

Question of  Steinhaus: Is there E  ⊆ R2 such that no matter howtranslated and rotated it always contains exactly one point withinteger coordinates?

Two versions: E  is required to be measurable or not

Non-measurable version was answered in the affirmative by Jackson

and Mauldin a few years ago.

M bl i i

Page 184: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 184/196

Measurable version remains open.

Equivalent form (R θ is rotation by θ):

k ∈Z2

1R θE (t  + k ) = 1, (0 ≤ θ < 2π, t  ∈ R2). (5)

We prove: there is no bounded measurable Steinhaus set.

Integrating (5) for t  ∈ [0, 1]2 we obtain |E | = 1.

LHS of (5) is the Z2-periodization of 1R θE . Hence 1R θE (k ) = 0,k  ∈ Z2 \ {0}.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 33 / 36

Application: the Steinhaus tiling problem

Question of  Steinhaus: Is there E  ⊆ R2 such that no matter howtranslated and rotated it always contains exactly one point withinteger coordinates?

Two versions: E  is required to be measurable or not

Non-measurable version was answered in the affirmative by Jackson

and Mauldin a few years ago.

M bl i i

Page 185: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 185/196

Measurable version remains open.

Equivalent form (R θ is rotation by θ):

k ∈Z2

1R θE (t  + k ) = 1, (0 ≤ θ < 2π, t  ∈ R2). (5)

We prove: there is no bounded measurable Steinhaus set.

Integrating (5) for t  ∈ [0, 1]2 we obtain |E | = 1.

LHS of (5) is the Z2-periodization of 1R θE . Hence 1R θE (k ) = 0,k  ∈ Z2 \ {0}. 1E (ξ) = 0, whenever ξ on a circle through a lattice point

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 33 / 36

The circles on which 1E  must vanish

Page 186: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 186/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 34 / 36

Application: the Steinhaus tiling problem: conclusion

Consider the projection f   of 1E  on R.E  bounded =⇒ f   has compact support, say in [−B , B ].

Page 187: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 187/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 35 / 36

Application: the Steinhaus tiling problem: conclusion

Consider the projection f   of 1E  on R.E  bounded =⇒ f   has compact support, say in [−B , B ].

For ξ ∈ R we have f  (ξ) = 1E (ξ, 0), hence

 f  m2 + n2

= 0 (m n) ∈ Z2 \ {0}

Page 188: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 188/196

f  

m + n

= 0, (m, n) ∈ Z \ {0}.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 35 / 36

Application: the Steinhaus tiling problem: conclusion

Consider the projection f   of 1E  on R.E  bounded =⇒ f   has compact support, say in [−B , B ].

For ξ ∈ R we have f  (ξ) = 1E (ξ, 0), hence

 f  m2 + n2

= 0, (m, n) ∈ Z2 \ {0}.

Page 189: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 189/196

f  

m + n

0, (m, n) ∈ Z \ {0}.

Landau: The number of integers up to x  which are sums of twosquares is ∼ Cx / log1/2 x .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 35 / 36

Application: the Steinhaus tiling problem: conclusion

Consider the projection f   of 1E  on R.E  bounded =⇒ f   has compact support, say in [−B , B ].

For ξ ∈ R we have f  (ξ) = 1E (ξ, 0), hence

 f  m2 + n2

= 0, (m, n) ∈ Z2 \ {0}.

Page 190: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 190/196

f  

m + n

0, (m, n) ∈ Z \ {0}.

Landau: The number of integers up to x  which are sums of twosquares is ∼ Cx / log1/2 x .

Hence f   has almost R 2 zeros from 0 to R .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 35 / 36

Application: the Steinhaus tiling problem: conclusion

Consider the projection f   of 1E  on R.E  bounded =⇒ f   has compact support, say in [−B , B ].

For ξ ∈ R we have f  (ξ) = 1E (ξ, 0), hence

 f   

m2 + n2

= 0, (m, n) ∈ Z2 \ {0}.

Page 191: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 191/196

+

, ( , ) ∈ \ { }

Landau: The number of integers up to x  which are sums of twosquares is ∼ Cx / log1/2 x .

Hence f   has almost R 2 zeros from 0 to R .

supp f   ⊆ [−B , B ] implies f  (z )

≤ f  1e 2πB |z |, z  ∈ C

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 35 / 36

Application: the Steinhaus tiling problem: conclusion

Consider the projection f   of 1E  on R.E  bounded =⇒ f   has compact support, say in [−B , B ].

For ξ ∈ R we have f  (ξ) = 1E (ξ, 0), hence

 f   

m2 + n2

= 0, (m, n) ∈ Z2 \ {0}.

Page 192: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 192/196

, ( , ) \ { }

Landau: The number of integers up to x  which are sums of twosquares is ∼ Cx / log1/2 x .

Hence f   has almost R 2 zeros from 0 to R .

supp f   ⊆ [−B , B ] implies f  (z )

≤ f  1e 2πB |z |, z  ∈ C

But such a function can only have O (R ) zeros from 0 to R .

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 35 / 36

Zeros of entire functions of exponential type

Jensen’s formula: F  analytic in the disk {|z | ≤ R }, z k  are the zerosof  F  in that disk. Then

log R |z k |

=  1

0log F (Re 2πi θ) d θ.

Page 193: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 193/196

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 36 / 36

Zeros of entire functions of exponential type

Jensen’s formula: F  analytic in the disk {|z | ≤ R }, z k  are the zerosof  F  in that disk. Then

log R |z k |

=  1

0log F (Re 2πi θ) d θ.

Page 194: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 194/196

It follows

#k  : |z k | ≤ R e  ≤  1

0log F (Re 2πi θ) d θ

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 36 / 36

Zeros of entire functions of exponential type

Jensen’s formula: F  analytic in the disk {|z | ≤ R }, z k  are the zerosof  F  in that disk. Then

log R |z k |

=  1

0log F (Re 2πi θ) d θ.

Page 195: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 195/196

It follows

#k  : |z k | ≤ R e  ≤  1

0log F (Re 2πi θ) d θ

Suppose |F (z )| ≤ Ae B |z |. Then RHS above is ≤ BR  + log A.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 36 / 36

Zeros of entire functions of exponential type

Jensen’s formula: F  analytic in the disk {|z | ≤ R }, z k  are the zerosof  F  in that disk. Then

log R |z k |

=  1

0log F (Re 2πi θ) d θ.

I f ll

Page 196: Ft Appl Talk

8/3/2019 Ft Appl Talk

http://slidepdf.com/reader/full/ft-appl-talk 196/196

It follows

#k  : |z k | ≤ R e  ≤  1

0log F (Re 2πi θ) d θ

Suppose |F (z )| ≤ Ae B |z |. Then RHS above is ≤ BR  + log A.

Such a function F  can therefore have only O (R ) zeros in the disk{|z | ≤ R }.

Mihalis Kolountzakis (U. of Crete) FT and applications January 2006 36 / 36