fresnel equations

31
7/23/2019 Fresnel Equations http://slidepdf.com/reader/full/fresnel-equations 1/31 23. Fresnel Equations EM Waves at boundaries Fresnel Equations: Reflection and Transmission Coefficients Brewster’s Angle Total Internal Reflection (TIR) Evanescent Waves The Complex Refractive Index Reflection from Metals

Upload: omisakin-adedayo

Post on 19-Feb-2018

285 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 1/31

23. Fresnel Equations

• EM Waves at boundaries

• Fresnel Equations:

Reflection and Transmission Coefficients

• Brewster’s Angle

• Total Internal Reflection (TIR)

• Evanescent Waves

• The Complex Refractive Index

• Reflection from Metals

Page 2: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 2/31

 

2 2

2 2

2 2 2

2 2 2

cos sin

cos sin

cos sin

c

:

os sin

 r

TE

 rTM 

 E   n r

 E  n

 E   n n r

 r reflection coef 

 E  n n

 ficient

θ θ

θ θ

θ θ

θ θ

 

= =

 

= =

 

2 2

2 2 2

2cos

cos sin

2 cos

cos s

:

in

 tTE

 tTM 

 t transmission coefficie

 E t

 E  n

 E   n t

 E

 n

 n

 t

 n

θ

θ θ

θ

θ θ

= =

 

= =

 

n

 

θ

E

E

t

E

r

θ

r

θ

t

n

 

We will derive the Fresnel equations

1

2

n

n

n

nn

incident 

d transmitte =≡

Page 3: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 3/31

EM Waves at an Interface

( )

( )

( )

: exp

: exp

: exp

oi

or 

i i i

r r 

t t 

t ot 

 Incident beam E i r t 

 Reflected beam E i r t 

Tran

 E 

 E 

smitted beam E i t   E    r 

ω 

ω 

ω 

⎡ ⎤= ⋅ −⎣ ⎦

⎡ ⎤= ⋅ −⎣ ⎦

⎡ ⎤= ⋅ −⎣ ⎦

rr   r r

r r

r

r

r

r

r

r

1 0

1 0

2 0

i

k n k 

k n k 

k n k 

=

=

=

r

r

r

 r

TE mode

n1

n2

iθ 

n1

n2

TM mode

Note the definition of the positive E-field directions in both cases.

n

 

n

 

i E r

r  E r

t  E r

ik r

r k r

t k r

oi E r

or  E 

r

ot  E r

Page 4: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 4/31

EM Waves at an Interface

( ), ,

 points

 

,

the tangential component must be equal on both sides of the inter 

 At the boundary between the two media the x y plane all waves must exist simultaneously

and .

Therefore for all time t and fo

 f 

all

ac

boundary r on th te

e

r    e in

r,rface

( )

( )

( )

exp

exp

exp

:

:

:

i oi i

r or 

i

t ot t  

 E E i r t 

 E E i r 

 Incident beam

 Reflected beam

Transmitted bea

k m

 E E i r t 

ω 

ω 

ω 

⎡ ⎤= ⋅ −⎣ ⎦

⎡ ⎤= ⋅ −⎣ ⎦

⎡ ⎤= ⋅ −⎣ ⎦

r r r

r r r

r r r

r

r

r

( ) ( ) ( )  : Phase matching at the boundary

,

!

:

i i r r t t  

the only way that this can be true over the entire interfac

k r t k r t k r t  

e and for all t is i

 Assuming that the wave amplitudes are constan

 f 

ω ω ω ⇒ ⋅ − = ⋅ − = ⋅ −r r rr r r

( ) ( ) ( )exp exp expoi i i or r r ot t  

i r t 

t n E i k r t n E i k r t n E i k  

n E n E n

r t 

 E 

ω ω ω ⎡ ⎤ ⎡ ⎤ ⎡ ⎤× ⋅ − + ×

× +

⋅ − = × ⋅ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

× = ×r r rr r r

r r r ) )

r r r ) ) )

 )n

 

n

 

i E r

r  E r

t  E r

ik 

r

r k 

r

t k r

oi E r

or  E r

ot  E r

r r

Page 5: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 5/31

EM Waves at an Interface

Normal

x

ik r

r k r

t k r

1 0n k 

2 0n k 

r r

1 0

1 0

2 0

i

k n k 

k n k 

k n k 

=

=

=

r

r

r

( ) ( ) ( )Phase matching condition:

i i r r t t  k r t k r t k r t  ω ω ω ⋅ − = ⋅ − = ⋅ −r r rr r r

 

(Frequency does not change at the boundary!)

0,

i t 

i r 

 At r this results in

t t t ω ω ω 

ω ω ω 

=

= =

⇒   = =

r

, ,

, , 

,

and .

, .i r 

i r t 

i r 

k r constant  

the equation for a plane perpendicular to k 

k k and k are coplanar in the plane of incidence

r ⇒ ⋅

=→

r r

r

r

r

r r

  (Phases on the boundary does not change

,

!)

0

i r t 

 At t this

k r 

results i

k k 

n

r r ⋅ ==

=⇒   ⋅ ⋅r r rr r r

n

 

n

 

i E r

r  E r

t  E 

r

ik r

r k r

t k 

r

r r

Page 6: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 6/31

EM Waves at an Interface

co

0,

,

sin si

ns

n

,

sin

ta

s

n

n

t

i

i r i i r r  

i

ii r 

r    i r i

 At t 

Considering the relation for the incident and reflected beams

k r k r k r k r  

Since the incident and reflected beams are in t 

k r k r  

he same medium

nk k 

k r 

c

θ θ 

ω θ θ    θ θ 

=

⋅ = ⋅ ⇒ =

= = ⇒ = ⇒

⋅ = ⋅ =

=

⋅ =

r rr r

r r rr r r

: law of reflection

,

sin sin

sin sin : law of refractio

,

n

i t i

i i t 

i t t 

i t t    t i

Considering the relation for the incident and transmitted beams

k r k r k r k r  

 But the incident and transmitted beams are in different media

n nk k 

c c

n n

θ θ 

ω θ 

ω θ =

⋅ = ⋅ ⇒ =

= = ⇒

r rr r

iθ 

r θ 

t θ 

Normal

x

ik r

r k r

t k r

1 0n k 

2 0n k 

r r

n

 

θ

ι

θ

r

θ

t

n

 

x

i E r

r  E 

r

t  E 

r

ik r

r k r

t k r

Page 7: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 7/31

Development of the Fresnel Equations

cos co

' ,

s co

:

s

i r t 

i i r r t t  

 E E E 

 B B B

From Maxwell s EM field theory

we have the boundary conditions at the interface

Th   tangential

components of both E and B are equal on

both sides o

e above co

 f the i

nditions imply that th

 for the T 

e

 E case

θ θ θ 

+ =

− =

r r

0

cos cos

.

,

c

:

os

.

i i r r t t  

i t 

i r t 

We have also

assumed that as is true for  

most dielectric materia

nterface

 E E E 

 B

For the TM mod 

 B B

e

ls

θ θ θ 

μ μ μ 

+ =

− + = −

≅ ≅

TE-case

TM-case

Page 8: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 8/31

Development of the Fresnel Equations

1

1 1

1

2

2

1

:

cos cos

:

cos cos c

  v

s

 

c

o

os

i i r 

i r t 

i

r t t 

i

i r r t t  

c Recall that E B B

n

 Let n refractive index of incident mediumn refractive index of refracting me

For the TM m

diu

For the TE mod 

nE  B

c

ode

 E E 

e

 E E E 

n E n E E  

n

m

n

 E 

n E E 

θ θ 

θ θ θ 

θ 

=⎛ ⎞

= = ⇒⎜ ⎟⎝ ⎠

==

+

+

=

+

=

=

2r t n E = −

TE-case

TM-case

n1

n2

n1

n2

Page 9: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 9/31

Development of the Fresnel Equations

2

1

sin sin

cos cos:cos cos

cos cos:

cos co

:

s

cos

i t r T 

i t 

 E 

i i t 

i t r TM 

i i t 

 from each set of e

n E TE case r  E n

n E TM ca

quations

and solving for the refle

 Eliminating

ction coefficient we obtain

wher 

 E 

nne

We know t 

se r  E 

n

a

n

n

n

h

θ 

θ θ 

θ 

θ 

θ θ 

θ θ 

θ 

θ −= =+

− += =

=

=

+

22 2 2

2

sin1 sin 1 sini

t t in n n

n

θ θ θ = − = − = −

TE-case

TM-case

n1

n2

n1

n2

Page 10: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 10/31

TE-case

TM-case

n1

n2

n1

n2

Now we have derived the Fresnel Equations

2 2

2 2

2 2 2

2 2 2

 

cos sin

cos si

  :

:

:

:

n

cos sin

cos sin

i ir TE 

i i i

i ir TM 

i i i

Substituting we obtain t    reflection coefficiehe Fresnel equa   nts r 

n E r 

 E    n

n n E r  E    n

transmission c

tions for 

TE case

TM case

For the

oeffici n t 

n

e t 

θ θ 

θ θ 

θ θ 

θ θ 

− −= =

+ −

− + −= =+ −

2 2

2 2 2

2coscos sin

2 cos

: 1

:

cos sin

  1

:

:

TE TE  

TM T 

t iTE 

i i i

t iTM 

i

 M 

i i

 E case

TM ca

 E t  E 

TE t r  

TM n

n

 E nt 

 E    n

nse

θ θ θ 

θ 

θ θ 

= =+ −

= =

+

= −

+ −

=

1

2n

nn ≡

These just mean the boundary conditions.

:

:

i r t 

i r t 

For the TE case E E E 

For the TM mode B B B

+ =

− + = −

Page 11: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 11/31

Power : Reflectance (R) and Transmittance (T)

.

 

1

,

,

:

:

t r 

i i

i r t 

 R and T are the ratios of reflected and transmit 

The quantities

The ratios

respectively to

ted powers

PP R T 

P P

 R T 

r and t are ratios of electric field amplitudes

From conservation of ener 

the incident power 

P P P

We can

gy

= =

= += + ⇒

2

1 0

2

0 00

:

  cos cos

 

cos cos cos

1

cos

 

1c

22

i i i r r r t t t  

i i r r  

i i r r t  

i i r r t  

i

t t 

i

express the power in each of the fie

n terms of the product of an irradiance and area

P I A P I A P I A

 I 

lds

 I A I A I A

 But n c

 I I 

 I n c

 I A I I A

 E 

 A

 E 

θ θ θ 

ε 

θ θ θ 

ε 

=⇒

=

+

=

+

= = =

+

= 2 2

1 0 0 2 0 0

2 2 2 2

0 2 0 0

2 22

0 02 2

0 0

0

2 2 2 2

0 1 0 0 0

1 1os cos cos

2 2

cos cos  1

cos

cos cos

cos

co

s

s

co

i

r t t t  

i i

r r t t  

r t t r t t  

i i i i

i

i i

i

n cE n cE  

 E n E E E 

 E E  R r T n

n R T  E 

 E 

n E E 

n E 

 E 

θ ε θ ε θ  

θ θ 

θ 

θ θ 

θ θ 

θ 

⎛ ⎞ ⎛ ⎞

=

= +

⎛ ⎞⇒ = + = + = +⎜ ⎟

⎝ ⎠

= = =⎜ ⎟ ⎜⎝ ⎝ ⇒  ⎠ ⎠

2

t ⎟

2

2

cos

cos*cos

cos

*

t ntt nT 

r rr  R

i

i

t ⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

=⎟⎟ ⎠

 ⎞

⎜⎜⎝ 

⎛ 

=

==

θ 

θ 

θ 

θ 

2

2

coscos _ 

cos cos

out out out  out out  

in in in in in

n E  I Power ratio

 I    n E 

θ θ 

θ    θ 

⎛ ⎞= = ⎜ ⎟

⎜ ⎟⎝ ⎠

 A

Page 12: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 12/31

23-2. External and Internal Reflection

( )

2 1

2 2

2 1

,

 

/ 1 sin 0  are always real

TE TM 

n n n nr 

n n

θ 

>

= > ⇒ − ≥

 rTE

 t

n=1.50

Brewster’s angle (or, polarizing angle)(No reflection of TM mode)( ) 1

:

tan0TM p   p

 f  No   or tht    e TM case

n

e

r whenθ θ    θ    −=⇒ = =

External Reflection

, 0TE TM r    >

, 0TE TM r    <

, 0TE TM 

t    >2 2

2

2 2

2

2

2 2 2

cos sin

c

cos sin 

co os sins sin

i ii

TM 

i

i

TE 

i   ii

n nr 

n

nr 

nn

θ θ 

θ 

θ θ 

θ    θ θ 

− + −=

+ −

− −=

+ −

,  If 0 then there are no phase changes after reflection.TE TM r ⇒ >

,

, , ,

  If 0 then there are always ( 180 ) phase changes. 

TE TM 

TE TM TE TE M  

i

TM T 

er r r π 

π ⇒ < =→ = =−

o

[ ]2 1/ 1n n n= >

 rTM 

Page 13: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 13/31

( )2 2

,

,

, ,

,  If sin 0, =1,

=1

 

(- ~ ) phase change may occur after reflect

 

ion

!TE T TE TM 

TE TM 

i i

TE TM TE  

 M 

TM 

 BUT r are compn r 

r r e e

lex

φ φ 

θ 

φ π π 

⇒ − <

→ = =

→ +

( )1tan

: 0

 p

TM 

 No   Brewster's angle n

 for the TM 

e

case

θ    −=

=

critical angle

Internal Reflection

2 2

2

2 2

2

2

2 2 2

cos sin

c

cos sin 

co os sins sin

i ii

TM 

i

i

TE 

i   ii

n nr 

n

nr 

nn

θ θ 

θ 

θ θ 

θ    θ θ 

− + −=

+ −

− −=

+ −

, 0TE TM 

r    >

, 0TE TM 

r    <

Total internal reflection (TIR) when θ > θ c

TIR region

( ) ( )21

2 2

2 1

2 2

/ 1

  sin 0, , sin 0

n n n

n o

n n

r nθ θ 

⇒ = <

⇒ − > − <

>

( )2 2

,

2 1

  If sin 0, =1

  sin ( / )

TE TM 

c

n r 

n n n

θ 

θ 

⇒ − =

→ = =

( )2 2

,

,

,

  If sin 0, are always real

If 0 then there are no phase changes after reflection.

  If 0 then there are ( 180 ) phase changes.

TE TM 

TE TM 

TE TM 

n r 

θ 

π 

⇒ − >

→ >

→ < =  o

[ ]2 1/ 1n n n= <

Page 14: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 14/31

Derivation of Brewster’s Angle

( )

4 2 2 2

2 2 2

4 2 2 2

1

2 2 2

2 2 2 2

c

( ) :

cos sin

  cos s

os sin0

cos sin

  1.50, 56.

in

  ( 1) os si

tan

n 0

31

 p

 p p

 p p

TM p

 p p

 p

 p

 p p

 p p

 Brewster's angle for polarizing ang

n nr 

n n

For n

le

n n

n n

n n c

n

θ 

θ θ 

θ θ 

θ θ θ 

θ 

θ 

θ 

θ 

θ 

θ 

⇒ = −

− +

− + −= =

⎡ ⎤= − − =⎣

+

= =

=

°

externalreflectioninternal

reflection

θ p   θ p

θ c

R

External & Internal reflections, but TM-polarization only

1: sin   nnc   <=θ 

 or nnn p 11 : tan   <>=θ 

TE & TM polarizations, but Internal reflection only

Brewster ‘s angle :

Critical angle :

TETM

Page 15: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 15/31

Total Internal Reflection (TIR)

2

1

1 , ,

and for both (TE and TM) cases.

sin t

  : 1

1

otal internal r 

* 1

 

eflection( )

 

cos

 

r TE 

i

c

n Internal reflection n

n

r R r 

r is a complex

call

numb

eFor n TI  d 

e

 E r  E 

 Rθ θ    −

= <

= = =

=

=

=

2 2

2 2

2 2 2

2 2 2

sincos sin

cos sin

cos sin

i i

i i

i ir TM 

i i i

i   nn

n n E r 

 E    n

i

i   n

i

θ θ θ θ 

θ θ 

θ θ 

− −+ −

− + −= =

+ −

internalreflection

R

θ c

Complex value

R = 1

Page 16: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 16/31

 rTEn=1.50

, 0TE TM 

r    >

, 0TE TM r    <

, 0TE TM 

t    >

23-3. Phase changes on reflection

,

,

,

 18

  ,

,0

) 0

0

.0 (

TE T 

TE TM 

TE TM 

 M the phase

r is always a real numb

the

er for ex

 phase sh

shift is fo

ift is

ternal reflection

then

an   for r 

π 

° >

° = <

TE TM

Phase shift after External Reflection

For TE case, π phase shift for all incident angles For TM case, π phase shift for θ < θp

No phase shift for θ > θp

External Reflection External Reflection

External reflection

 rTM 

Page 17: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 17/31

cθ θ  >:

Complex value

In TIR region

Phase shift after Internal Reflection Internal reflection

1

  0 for sin  is complex in TIR region where

TE TE  

TE c

TE c

i i

TE TE  

r nr 

r r e eφ φ 

θ θ θ θ 

⇒ > < =⇒ >

→ = =

For TM case, no phase shift for θ < θp

π phase shift for θp < θ < θc

 TM(θ) phase shift for θ > θc

For TE case, no phase shift for θ < θ

c

 TE(θ) phase shift for θ > θc

TIR TIR

1

  0 for tan  0 for

TM 

TM p

TM p c

i

TM TM TM TM  

r nr 

r r e r  φ 

θ θ θ θ θ 

φ π 

⇒ > < =⇒ < < <

→ = − = → =

  is complex in TIR region where

TM TM  

TM c

i i

TM TM  

r r e eφ φ 

θ θ ⇒ >

→ = =

Page 18: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 18/31

2

  :

cos sin sintan

cos sin2

 

( )

 

s

 

co

ii i

i

c   TI When then and for both the TE and TM cases has the form

a ib i e br e e

a ib i

 R case r is complex

e a

α α φ 

α 

α α α φ α α 

α 

θ θ 

α α 

−−

+

− −= = = =

== =   −= ⇒+ +

2 2

2 2

2 2

2

1

2 2

2

cos sin:

cos sin

cos sin

sintan t

  ( ).

sin2tan

co

an2 cos

 s

 

i ir TE 

i i i

i i

iT 

i

 E 

TE 

i

is the phase shift on total internal reflection TIR

n

i n E TE case r 

 E    i n

a b n

n

 A simi

φ 

θ θ 

θ θ 

θ θ 

θ φ 

θ 

θ φ α 

θ 

− −= =

+ −

= = −−⎛ ⎞

⎛ ⎞−⎜ ⎟= −⎜ ⎟

⇒ = − =⎜⎝ ⎠

⎝ ⎠

2 2

1

2

sin2tan

cos

:

i

TM 

i

lar analysis for the TM case giv

n

es

nθ φ π 

θ 

−  ⎛ ⎞−⎜ ⎟= −⎜ ⎟

⎝ ⎠

Internal reflection

: i cθ θ >

: i cθ θ >

TIR(Complex r )

Phase shifts on total Internal Reflection for both TE- and TM-cases

Page 19: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 19/31

2 2

1

2

2 2

1

sin2tan

cos

sin2tan

cos

i

TM 

i

TE 

n

n

n

θ φ π 

θ 

θ φ 

θ 

⎛ ⎞−⎜ ⎟= −⎜ ⎟

⎝ ⎠⎛ ⎞−⎜ ⎟= −⎜ ⎟⎝ ⎠

Internal reflection

Complex value

Therefore, after TIR is ………..,TE TM r 

,TE TM r 

,TE TM φ 

2 2

2 2

2 2 2

2 2 2

cos sin

cos sin

cos sin

cos sin

i ir TE 

i i i

i ir TM 

i i i

n E r 

 E    n

n n

i

i

in n

i

 E r 

 E 

θ θ 

θ θ 

θ θ 

θ θ 

− −= =+ −

− + −= =

+ −

( )cincident    θ θ    >caseTIR For

Page 20: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 20/31

Internal reflectionTIR(Complex r )

Summary of Phase Shifts on Internal Reflection

'

 p

'

 p c

2 2

1c2

0 <

 

( 180 ) <

sin2 tan <cos

TM 

i   nn

θ θ 

φ π θ θ θ  

θ π θ θ θ 

⎧⎪⎪⎪⎪

= = <⎨⎪

⎛ ⎞−⎪ ⎜ ⎟−⎪   ⎜ ⎟

⎪   ⎝ ⎠⎩

o

o

 p

 p c

c

0 <

  <

0

TM TE  

θ θ 

φ φ φ    π θ θ θ  

θ θ 

⎧=⎪Δ = −   = <⎨⎪

> <⎩

o

o

c

2 2

1c

0 <

sin2 tan >cos

TE    i   n

θ θ 

φ    θ  θ θ θ 

⎧⎪⎪ ⎛ ⎞=

  −⎨ ⎜ ⎟−⎪ ⎜ ⎟⎪   ⎝ ⎠⎩

o

φ Δ

TM φ 

TE φ 

Page 21: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 21/31

Fresnel Rhomb

Linearly polarized light (45o)

Circularly

Polarizedlight

3  53 1.5

4

 After two consequentive TIRs,

3

  2

 2

 

TM TE i

TM TE  

TM TE  

 Note near when n

Quarter wave retarder 

π φ φ θ 

π 

φ φ π 

φ φ φ 

− = = =

→ − =

→ Δ = − =

→ −

o

φ ΔTM φ 

TE φ 

Page 22: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 22/31

Linearlypolarized light

(45o)

CircularlyPolarized

light

  69 ???2

 2

 

TM TE i

TM TE  

 Note near when n

Quarter wave retarder 

π φ φ θ 

π φ φ φ 

− = = =

→ Δ = − =

→ −

oφ ΔTM φ 

TE φ 

Quarter-wave retardation after TIR

n

Page 23: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 23/31

23-5. Evanescent Waves at an Interface

( )

( )

( )

( )

: exp

: exp

: exp

  exp

  si

:

n

i oi i i

r or r r  

t ot t t  

t ot t t  

t t t 

 Incident beam E E i k r t 

 Reflected beam E E i k r t 

Transmitted beam E E 

For the transmitted 

i k 

bea

r t 

 E E i k r 

m

r k 

ω 

ω 

ω 

ω 

θ 

⎡ ⎤= ⋅ −⎣ ⎦

⎡ ⎤= ⋅ −⎣ ⎦

⎡ ⎤= ⋅ −

⎣ ⎦

⎡ ⎤= ⋅ −⎣ ⎦

⋅ =

rr r r

rr r r

rr r r

r r

r r   )( ) ( )

( )

2

22

cos

  sin cos

sin, cos 1 sin 1

, :

 

sin

sinc

 ( )

  os 1it 

t t 

t t t 

it t 

iWhen n

 x k z x x zz

k x z

 But n

th

i a purely imaginary numbe

total internal reflection

en

n

θ 

θ 

θ θ 

θ 

θ θ 

θ 

θ 

+ ⋅ +

= +

=

= −

− −

=

>

 ) ) )

Page 24: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 24/31

Evanescent Waves at an Interface

( )

2

2 2

  sin

sin1

,

:

sin

:

sin sin21 1

:

t t t 

it 

i

i

iwith an TIR condition n

i z

For the transmitted beam

we can write the phase factor as

k r k x

n

 Defining the coefficient 

k n n

We can write the transmitted wa s

n

v

 E 

e a

θ 

α 

θ θ π α 

λ 

θ 

θ ⎛ ⎞⋅ = +⎜ ⎟

⎜ ⎟⎝ ⎠

=

− −

=

=

>

r r

( )0

sine p

.

xx  pe   t t t    z

amplitude will decay rapid The evanescent wave

as it penetrates into the lower refractive ind 

ly

k x E i t 

ex med 

n

ium

θ ω    α 

⎡ ⎤⎛ ⎞−   −⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦

Note that the incident and reflection waves

form a standing wave in x direction

n2

n1

n1 > n2 h

( )0

sinexp expt t 

t t 

k x E E i t z

n

θ ω α 

⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦

x

z

2

2

1

sin2 1

t ot 

i

 E E 

e

h

n

λ 

α    θ π 

⎛ ⎞= ⇒   = =⎟

⎝ ⎠ −

⎜Penetration depth:

Page 25: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 25/31

Frustrated TIR

Tp = fraction of intensitytransmitted across gap

Zhu et al., “Variable Transmission OutputCoupler and Tuner for Ring Laser Systems,” Appl. Opt. 24, 3610-3614 (1985).

d

n1=n2=1.517

1.65

d/λ

Page 26: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 26/31

Frustrated Total Internal Reflectance

Zhu et al., “Variable Transmission OutputCoupler and Tuner for Ring Laser Systems,” Appl. Opt. 24, 3610-3614 (1985).

Pellin-Broca prism

d = 1 ~ λ: changing the reflectanceRotation: changing the wavelength resonant at θB

d

Page 27: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 27/31

23-6. Complex Refractive Index

2 2 2

0

0

  ( ) :

1

1

2 R I R I 

 R I For a material with conductivity

n i n n i n

n i n i n

n

σ 

ε ω σ 

σ 

ε ω 

⎛ 

⎛ ⎞

= + = −

 ⎞= + = +⎜ ⎟

⎝ ⎠

+⎜ ⎟⎝ ⎠%

%

2

0

2

0

2 2

2 4 2

0 0

2

0

2

022

:

1 2

1 02 2

:

1 1

2

1 1 42

42

2 2

 R

 I 

 I 

 R I R I 

 I I I 

 I 

 I 

Solving for the real and imaginary components we obtain

n n n n

n n nn

From the quadratic solution we obt 

n

n

n

ain

n

σ 

ε ω 

σ σ 

ε ω ε ω  

σ 

ε 

σ 

ε 

σ 

ω 

ω 

ε ω 

− = = ⇒

⎛ ⎞ ⎛ ⎞⇒ − = ⇒ − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞± +

=

⎛ ⎞+ +   ⎜ ⎟

⎝ ⎜⎝ 

=⇒

⎟ ⎠

=

. I We need to take the positive root because n is a real number 

Page 28: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 28/31

Complex Refractive Index

( )

( ) ( )

( )

0

0

0

exp

ˆexp

eˆ xexp  p Rk 

 R k 

 I 

 I 

Substituting our expression for the complex refractive index back into

our expression for the electric field we obtain

 E E i k r t 

 E i n i n u r t c

 E   n

i u r t  c

n

cω 

ω 

ω 

ω 

ω 

⎡ ⎤= ⋅ −⎣

⎧ ⎫⎡ ⎤⋅ −   −

⎧ ⎫⎡ ⎤= + ⋅ −⎨ ⎬⎢ ⎥

⎨ ⎬⎢ ⎥⎣ ⎦

⎣ ⎦⎭

=⎭

rr

r

r r

r r

r

( )

.

.

ˆ

/

 R

The first exponential term is oscillatory

The EM wave propagates w

u r 

The second exponential has a r 

ith a ve

eal arg

locity of 

ument (absor .

n c

bed)

⎡ ⎤⋅⎢ ⎥⎣ ⎦

r

Page 29: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 29/31

Complex Refractive Index

( )* *

0 0

0

.

.

ˆ2exp

ˆ2exp

 I k 

 I k 

The second term leads to absorption of the beam in metals due to inducing

a current in the medium This causes the irradiance to decrease as the wave

 propagates through the medium

n u r  I EE E E c

n u I I 

ω 

ω 

⋅⎡ ⎤≡ = −⎢ ⎥⎣ ⎦

= −

r

r r r r

( )( )0

ˆexp

2 4:

 I I 

r  I u r 

c

The absorption coefficient is defined   n n

c

ω π α 

α 

λ 

⋅⎡ ⎤= − ⋅⎡

= =

⎤⎢ ⎥   ⎣ ⎦⎣ ⎦

rr

( )   ( )0ˆex ˆexp p   I 

k    k  R   n

un

i u r c

r t c

 E E    ω   ω ⎧ ⎫⎡ ⎤

⋅ −⎨ ⎬⎢ ⎥⎡ ⎤

− ⋅=⎣ ⎦⎩

  ⎢ ⎥⎣ ⎦⎭

rr r r

Page 30: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 30/31

23-7. Reflection from Metals

2 2

2 2

2 2 2

2 2 2

cos sin:

cos sin

cos sin:

cos sin

:

i ir TE 

i i i

i ir TM 

i i i

 Reflection from metals is analyzed 

 E TE case r 

 E 

n E TM cas

by substituting the complex refractive index n i

e r  E    n

n the Fresnel

n

n

equa

ub

ti

n

n

n

o s

s

θ θ 

θ θ 

θ θ 

θ θ 

− −= =

+ −

− + −= =

+ −

%

%

%%

%

%   %

( )   ( )

( )   ( )

( )   ( )   ( )   ( )

( )   ( )   ( )   ( )

2 2 2

2 2 2

2 2 2 2 2

2 2 2 2 2

:

cos sin 2:

cos sin 2

2 cos sin 2:

2 cos sin 2

i R I i R I  r 

i i R I i R I  

 R I R I i R I i R I r 

i R I R I i R

 R I 

 I i R I 

TE case

TM case

tituting we obtain

n n i n n E r 

 E  n n i n n

n n i n n n n i n n E r 

 E  n n i n n n n

n n i

i n n

n

θ θ 

θ θ 

θ θ 

θ θ 

− − − += =

+ − − +

⎡ ⎤− − + + − − +⎣ ⎦= =⎡ ⎤− + + − +

=

+

−⎦

%

Reflectance

θ i

Page 31: Fresnel Equations

7/23/2019 Fresnel Equations

http://slidepdf.com/reader/full/fresnel-equations 31/31

Reflection from Metals at normal incidence (θi=0)

( )

( )

( )( )

( )( )

( )

( )

2 2

2 2

*

2 2

2 2

 

1 1 1 2 

1 1

1

1

  1

1

1

2

 R I 

 R I R I    R R I 

 R I R I R R

 R I 

 R I 

 I 

 R I 

The is given by

 R r r 

n i n n i n   n n n

n i n n i n n n n

 power refl

n i n

r  n i

ectance R

n

n n

 R n n

=⎡ ⎤ ⎡ ⎤− − − +   ⎛ ⎞− + +

= =⎢ ⎥ ⎢ ⎥   ⎜ ⎟+ − + + + + +⎝ ⎠

− +

= +

− −

= + −

+

⎣ ⎣ ⎦

2 2

2 2

2 2 2

2 2 2

cos sin 1

1cos sin

cos sin 1

1cos sin

i i

TE 

i i

i i

TM 

i i

nr 

n

n   n

n

n

nr 

nn   n

θ θ 

θ θ 

θ θ 

θ θ 

− −   −= =

++ −

− + −   −= =

++ −

%

%

%   %   %

%

%

%   %

%

, 0 :i At normal incidence   θ   = °  At normal incidence(from Hecht, page 113)

 

visible