スパース正則化項をともなう マルコフ確率場における確率伝...

17
18 November, 2010 NC201011 (Sendai1 スパース正則化項をともなう マルコフ確率場における確率伝搬法 東北大学大学院情報科学研究科 田中和之 http://www.smapip.is.tohoku.ac.jp/~kazu/ Collaborators D. M. Titterington (University of Glasgow, UK)

Upload: others

Post on 01-Feb-2021

12 views

Category:

Documents


0 download

TRANSCRIPT

  • 18 November, 2010 NC201011 (Sendai) 1

    スパース正則化項をともなうマルコフ確率場における確率伝搬法

    東北大学大学院情報科学研究科

    田中和之

    http://www.smapip.is.tohoku.ac.jp/~kazu/

    CollaboratorsD. M. Titterington (University of Glasgow, UK)

  • 18 November, 2010 NC201011 (Sendai) 2

    MRF and Belief Propagation

    Matthias W. Seeger (2008): J. Machine Learning ResearchBayesian Inference and Optimal Design for the Sparse Linear Model

    Variational Bayes and Expectation Propagation

    Is it possible to extend the belief propagation to the MRF with Sparsity?

    Tanaka and Morita (1995): Physics Letter ABelief Propagation for MRF in Image Processing

    Cluster Variation Method =Generalized Belief Propagation

    Geman and Geman (1986): IEEE Transactions on PAMIImage Processing by Markov Random Fields (MRF)

  • 18 November, 2010 NC201011 (Sendai) 3

    What is Sparsity?

    =

    N

    MNMM

    N

    N

    M

    f

    ff

    BBB

    BBBBBB

    h

    hh

    2

    1

    21

    22221

    12211

    2

    1

    Mg

    gg

    2

    1

    ),0( 2σN

    Bayesian Inference

    Nf

    ff

    2

    1

    Number of Parameters N > Number of Equations M

    −−−∝== pfBfggGfF γ

    σ2

    221exp}|Pr{

    Optimization Problemp

    E fBfggf γσ

    −−−=222

    1)|(

    Compressed Sensing

    The case of p=0 or p=1is good for compressed sensing.!!

  • 18 November, 2010 NC201011 (Sendai) 4

    Probabilistic model in the present talk

    −−−−−∝== ∑∑∑

    ∈∈∈ VEV ii

    jiji

    iii fffgf ||)(2

    1)(2

    1exp}|Pr{},{

    222 γασ

    gGfF

    Bayesian Inference for Image Restoration

    ||

    2

    1

    Vg

    gg

    ),0( 2σN

    ||

    2

    1

    Vf

    ff

    SmoothingData Dominant Sparsity

    −−−∝==

    pfBfggGfF γ

    σ 2221exp}|Pr{

    Bayesian Inference for Compressed Sensing

    }Pr{ fF =

  • 18 November, 2010 5 NC201011 (Sendai)

    Image Restoration by Gaussian MRF Model (γ=0)

    Original Image

    MSE:305

    MSE: 675 MSE: 447MSE: 260

    MSE: 1401

    Degraded Image

    Lowpass Filter Median Filter

    Exact

    Wiener Filter

    ( )2ˆ||

    1MSE ∑∈

    −=VV i

    ii ff

    Belief Propagation

    MSE:328

    プレゼンタープレゼンテーションのノートFinally, we show only the results for the gray-level image restoration. For each numerical experiments, the loopy belief propagation ca give us better results than the ones by conventional filters.

  • Conventional Belief Propagation

    18 November, 2010 NC201011 (Sendai) 6

    ( ) ( ) ( )( ) ( )

    = ∏∏

    ∈∈ EV },{

    ,1ji jjii

    jiij

    iii fWfW

    ffWfW

    ZP f

    −−−≡ ||)(

    21exp)( 22 iiiii fgffW γσ

    −−−−−=

    ===

    ∑∑∑∈∈∈ VEV i

    iji

    jii

    ii fffgfZ

    P

    ||)(21)(

    21exp1

    )(}|Pr{

    },{

    222 γασ

    fgGfF

    −−−−−−−−≡ ||||)(

    21)(

    21)(

    21exp),( 222

    22 jijijjiijiij ffffgfgfffW γγασσ

  • Conventional Belief Propagation

    18 November, 2010 NC201011 (Sendai) 7

    [ ] ( )( ) 0ln)( ≥

    ≡ ∫ ff

    ff dPQQPQD

    KL Divergence

    ∫ ∫ ∫+∞

    ∞−

    +∞

    ∞− +−≡ ||1121||21 ),,,()( ViiVii dfdfdfdfdffffQfQ

    ( ) ( ) ( )( ) ( )

    ≅ ∏∏

    ∈∈ EV },{

    ,

    ji jjii

    jiij

    iii fQfQ

    ffQfQQ f

    ( ) ( ) ( )( ) ( )

    = ∏∏

    ∈∈ EV },{

    ,1ji jjii

    jiij

    iii fWfW

    ffWfW

    ZP f

    ∫ ∫ ∫+∞

    ∞−

    +∞

    ∞− +−+−≡ ||111121||21 ),,,(),( VjjiiVjiij dfdfdfdfdfdfdffffQffQ

    )},{( ),( and )( )(for Equtions Integral usSimultaneo EV ∈∀∈∀ jiffQifQ jiijii

  • Extended Belief Propagation

    18 November, 2010 NC201011 (Sendai) 8

    ( ) ( ) ( )( ) ( )

    = ∏∏

    ∈∈ EV },{~~,~1

    ji jjii

    jiij

    iii fWfW

    ffWfW

    ZP f

    −−−−−−≡ 222

    22 )(2

    1)(2

    1)(2

    1exp),(~ jijjiijiij ffgfgfffW ασσ

    −−−≡ ||)(

    21exp)( 22 iiiii fgffW ασ

    −−−−−=

    ===

    ∑∑∑∈∈∈ VEV i

    iji

    jii

    ii fffgfZ

    P

    ||)(21)(

    21exp1

    )(}|Pr{

    },{

    222 γασ

    fgGfF

    −−≡ 22 )(2

    1exp)(~ iiii gffW σ

  • Extended Belief Propagation

    18 November, 2010 NC201011 (Sendai) 9

    [ ] ( )( ) 0ln)( ≥

    ≡ ∫ ff

    ff dPQQPQD

    KL Divergence

    ∫ ∫ ∫+∞

    ∞−

    +∞

    ∞− +−≡ ||1121||21 ),,,()( VV dfdfdfdfdffffQfQ iiii

    ( ) ( ) ( )( ) ( )

    ≅ ∏∏

    ∈∈ EV },{~~,~

    ji jjii

    jiij

    iii fQfQ

    ffQfQQ f

    ( ) ( ) ( )( ) ( )

    = ∏∏

    ∈∈ EV },{~~,~1

    ji jjii

    jiij

    iii fWfW

    ffWfW

    ZP f

    −−∝ 2)(

    21exp)(~ ii

    iiii mfV

    fQ

    −−

    −−−∝

    jj

    ii

    jjji

    ijiiiiiijiij mf

    mfVVVV

    mfmf,ffQ1

    ),(21exp)(~

    Average Varianceff dQfm ii )(∫≡ ff dQmfV iiii )()( 2∫ −≡

    Covarianceff dQmfmfV jjiiij )())((∫ −−≡

  • Extended Belief Propagation

    ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )∫ ∫

    ∫∞+

    ∞−

    ∞+

    ∞− →→→→

    +∞

    ∞− →→→→

    → =211111151141132112

    11111151141132112221

    ,

    ,

    dfdffMfMfMfMffW

    dffMfMfMfMffWfM

    1

    3

    4 2

    5

    13→M

    14→M

    15→M

    21→M

    14 2 7

    ∫+∞

    ∞− 1df

    2

    8

    1 7

    6

    =

    Message Passing Rule of Belief Propagation

    18 November, 2010 10NC201011 (Sendai)

    1 2

    3 8

    5 6

    2

    111→M

    −−

    −−−∝

    jj

    ii

    jjji

    ijiiiiiijii mf

    mfVVVV

    mfmfffQ1

    ),(21exp),(~

    −−∝ →→→

    2)(21exp)( ijiijiij ffM µλ

    −−∝ 2)(

    21exp)(~ ii

    iiii mfV

    fQ

    プレゼンタープレゼンテーションのノートThe reducibility conditions can be rewritten as the following fixed point equations. This fixed point equations is corresponding to the extremum condition of the Bethe free energy. And the fixed point equations can be numerically solved by using the natural iteration. The algorithm is corresponding to the loopy belief propagation.

  • Extended Belief Propagation

    ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )

    Φ←∫

    ∫∞+

    ∞− →→→→−

    ∞+

    ∞− →→→→−

    111511411311211||

    111511411311211||

    21

    1

    111 ~

    ~

    )(0

    0

    dffMfMfMfMfWe

    dffMfMfMfMfWeff

    fMi

    i

    f

    f

    α

    α

    1

    3

    4 2

    5

    13→M

    14→M

    15→M

    21→M ∫∞+

    ∞−

    12

    1

    1 dfff

    1

    3

    4 2

    5

    =

    Message Passing Rule of Belief Propagation

    18 November, 2010 11NC201011 (Sendai)

    1

    111→M

    −−∝ →→→

    2)(21exp)( ijiijiij ffM µλ

    1

    ∫∞+

    ∞−

    12

    1

    1 dfff

    )( 11 fQMessage Passing Rules include computations of error functions

    −−∝ 211 )(2

    1exp)(~ iiii

    mfV

    fQ

    1

    3

    4 7

    6

    プレゼンタープレゼンテーションのノートThe reducibility conditions can be rewritten as the following fixed point equations. This fixed point equations is corresponding to the extremum condition of the Bethe free energy. And the fixed point equations can be numerically solved by using the natural iteration. The algorithm is corresponding to the loopy belief propagation.

  • Extended Belief Propagation

    1

    3

    4 2

    5

    13→M

    14→M

    15→M

    21→M

    14 2 7

    Message Passing Rule of Belief Propagation

    18 November, 2010 12NC201011 (Sendai)

    1 2

    3 8

    5 6

    111→M

    )(~ ii fQ

    −−∝ →→→

    2)(21exp)( ijiijiij ffM µλ

    1

    3

    4 2

    51

    1

    3

    4 2

    51

    )( ii fQ),(~

    jii ffQ

    1

    3

    4 2

    5

    13→M

    14→M

    15→M

    21→M

    111→M

    Approximate Marginal Probability in Belief Propagation

    Computation Time O(|V|)

    プレゼンタープレゼンテーションのノートThe reducibility conditions can be rewritten as the following fixed point equations. This fixed point equations is corresponding to the extremum condition of the Bethe free energy. And the fixed point equations can be numerically solved by using the natural iteration. The algorithm is corresponding to the loopy belief propagation.

  • Interpretation of Expectation Propagation for Sparse MRF

    Matthias Seeger: Bayesian Inference and Optimal Design for the Sparse Linear Model, Journal of Machine Learning Research vol.9, pp.759-813, 2008.

    18 November, 2010 NC201011 (Sendai) 13

    Thomas Minka: Expectation Propagation for Approximate Bayesian Inference, Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp.362–369, 2001.

  • Interpretation of Expectation Propagation for Sparse MRF

    18 November, 2010 NC201011 (Sendai) 14

    ( ) ( )( )

    = ∏

    ∈Vi ii

    ii

    fWfWW

    ZP ~)(

    ~1 ff

    −−−−≡ ∑∑

    ∈∈ EV },{

    222 )(2

    1)(2

    1exp)(~ji

    jii

    ii ffgffW ασ

    −−−≡ ||)(

    21exp)( 22 iiiii fgffW γσ

    −−−−−=

    ===

    ∑∑∑∈∈∈ VEV i

    iji

    jii

    ii fffgfZ

    P

    ||)(21)(

    21exp1

    )(}|Pr{

    },{

    222 γασ

    fgGfF

    −−≡ 22 )(2

    1exp)(~ iiii gffW σ

  • Interpretation of Expectation Propagation for Sparse MRF

    18 November, 2010 NC201011 (Sendai) 15

    [ ] ( )( ) 0ln)( ≥

    ≡ ∫ ff

    ff dPQQPQD

    KL Divergence

    ∫ ∫ ∫+∞

    ∞−

    +∞

    ∞− +−≡ ||1121||21 ),,,()( VV dfdfdfdfdffffQfQ iiii

    ( ) ( ) ( )( )

    ≅ ∏

    ∈Vi ii

    ii

    fQfQQQ ~

    ~ ff

    −−∝ 2)(

    21exp)(~ ii

    iiii mfV

    fQ

    −−−∝ − )()(

    21exp)(~ 1T mfVmffQ

    Average Varianceff dQfm ii )(∫≡ ff dQmfV iiii )()( 2∫ −≡

    Covarianceff dQmfmfV jjiiij )())((∫ −−≡

    ( ) ( )( )

    = ∏

    ∈Vi ii

    ii

    fWfWW

    ZP ~)(

    ~1 ff

    This scheme corresponds to Adaptive TAP (Manfred Opper) for Sparse MRF.

  • −−−∝ − )()(

    21exp)(~ 1 mfVmffQ

    Interpretation of Expectation Propagation for Sparse MRF

    18 November, 2010 NC201011 (Sendai) 16

    We have to compute inverse matrices of |V|x|V| matrices

    Computation Time O(|V|3)

    Message Passing Rule of Expectation Propagation

    |V|-Dimensional Gaussian Distribution

    )( ii fQ

    )( ii fQ

  • 18 November, 2010 NC201011 (Sendai) 17

    SummaryFormulation of Extended Belief Propagation (EBP) for Sparse Markov Random Fields.Interpretation of Expectation Propagation (EP) by means of Extended Belief Propagation.

    Future ProblemsHyperparameter Estimation by means of EM algorithm with Extended Belief Propagation.Comparison of EBP with EP.Perturbative Analysis from GMRF to Sparse MRF based on Plefka Expansion. Application of EBP to Compressed Sensing.

    スパース正則化項をともなう�マルコフ確率場における確率伝搬法 MRF and Belief PropagationWhat is Sparsity?Probabilistic model in the present talkImage Restoration by Gaussian MRF Model (g=0)Conventional Belief PropagationConventional Belief PropagationExtended Belief PropagationExtended Belief PropagationExtended Belief PropagationExtended Belief PropagationExtended Belief PropagationInterpretation of Expectation Propagation for Sparse MRFInterpretation of Expectation Propagation for Sparse MRFInterpretation of Expectation Propagation for Sparse MRFInterpretation �of Expectation Propagation for Sparse MRFSummary