ESWW-11, Liege, Belgium, 21 November, 2014 Eugene Rozanov PMOD/WRC, Davos and IAC ETH, Zurich, Switzerland e.rozanov@pmodwrc.ch Modeling efforts towards

Download ESWW-11, Liege, Belgium, 21 November, 2014 Eugene Rozanov PMOD/WRC, Davos and IAC ETH, Zurich, Switzerland e.rozanov@pmodwrc.ch Modeling efforts towards

Post on 26-Dec-2015

213 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

<ul><li> Slide 1 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Eugene Rozanov PMOD/WRC, Davos and IAC ETH, Zurich, Switzerland e.rozanov@pmodwrc.ch Modeling efforts towards understanding the energetic particle effects in the atmosphere </li> <li> Slide 2 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Precipitating energetic particles Rodger and Clilverd, Nature, 2008 Electrons Low Energy: From plasma-sheat to auroral oval Medium to high Energy: From the Radiation Belts to subauroral areas Solar Protons: polar cap Galactic cosmic rays: From outside to everywhere Vertical distribution depends on particle energy </li> <li> Slide 3 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Processes Ionization Ion and neutral chemsitry Micro- physics GEC Transport Clouds Atmosphere, Climate Ozone chemistry Particle precipitation </li> <li> Slide 4 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Modeling of the ionization rates Input: Observed fluence and energy spectrum, geomagnetic field Method: Energy degradation scheme Jackman et al., 1980; P. Verronen Monte-Carlo models AIMOS, Wissing CRAC:CRII, Usoskin et al., 2010 Output: Ionization rates as a function of Pressure, location, solar activity, date </li> <li> Slide 5 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Semeniuk et al., 2011 Modeling of the ionization rates </li> <li> Slide 6 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Ion and neutral chemsitry: NO x production The process can be described adding five ions and relevan reactions to chemical scheme: O +, O 2 +, N +, N 2 +, NO + Five ions are not enough for layer D (&lt; 90 km) N 2 +e*=&gt;N + +N( 4 S)+2e N 2 +e*=&gt;N * +N(4S)+e N 2 +e*=&gt;N 2 + +2e N 2 + +O=&gt;NO + +N( 4 S) N 2 +N + =&gt;N 2 + +N( 4 S) N 2 + +e=&gt;N*+N( 4 S) NO + +e=&gt;N( 4 S)+O N + +O=&gt;O + +N( 4 S) N*+O 2 =&gt;NO+O </li> <li> Slide 7 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Ionization by particles below 90 km leads to the redistribution of NO y and enhancement of HO x Ion and neutral chemsitry: HO x production From Sinnhuber et al., 2012 </li> <li> Slide 8 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Ion and neutral chemsitry: Treatment in the models Above 90 km: 5-ion scheme WACCM, HAMMONIA NO x (ppbv) from MIPAS. HEPPA-2, Courtesy of B. Funke </li> <li> Slide 9 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Ion and neutral chemsitry: Treatment in the models Below 90 km: Complete ion chemsitry (50+ species) - SOCOL i Computationally expensive Parameterizations of NO x and HO x production Porter et al., 1976; Solomon et al., 1981 0.7 N *, 0.55 N( 4 S) and 2 HO x per ion pair; widely applied below 90 km (WACCM, HAMMONIA, EMAC, SOCOL...) </li> <li> Slide 10 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 NO x and HO x production Widely used parameterization (0.7 N * + 0.55 N( 4 S) + up to 2 HOx per Ion Pair) against complete ion chemistry CCM SOCOL (Egorova et al., 2011) </li> <li> Slide 11 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Ion and neutral chemsitry: Treatment in the models Below 90 km: Verronen and Lehman, 2013 LUT, includes HNO 3 production Nieder et al., 2014 (LUT) LUT </li> <li> Slide 12 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Transport, HEPPA-2 project </li> <li> Slide 13 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Baumgartner et al, 2009 Treatment of the auroral electrons in low top CCMs (EMAC, SOCOL) </li> <li> Slide 14 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Effects of the solar protons Observed and modeled NO y enhancement during October 2003 SPE, 7090 o N, Funke et al., 2011 MMM MIPAS </li> <li> Slide 15 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Ozone depletion by NOx and HOx Nitrogen: NO + O 3 NO 2 + O 2 NO 2 + O NO + O 2 ========================== O 3 + O 2O 2 Hydrogen: OH + O 3 HO 2 + O 2 HO 2 + O OH + O 2 ========================== O 3 + O 2O 2 From D. Lary </li> <li> Slide 16 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Effects of the solar protons Observed and modeled O 3 depletion after the October 2003 SPE, 7090 o N, Funke et al., 2011 MMM MIPAS </li> <li> Slide 17 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Effects of EPP on NO x NO x, (%) due to EPP averaged over 60 o -90 o S </li> <li> Slide 18 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 EP influence on ozone climatology Ozone change by EPP, 70-90 o N, CCM SOCOL v2.0, Rozanov et al., 2012 </li> <li> Slide 19 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 January Polar AER LBL code Cooling rate due to polar ozone depletion </li> <li> Slide 20 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Downward propagating response or top-down route Kodera and Kuroda, (2002) EPP cooling and O 3 decrease Hadley sell shift and... ( J.Haigh) Thomson &amp; Wallace (1998) Solar UV heating and O 3 increase </li> <li> Slide 21 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 EP influence on surface air temperature DJF, SOCOL v2.0, all EP Rozanov et al., 2012 DJF composite High Ap- Low Ap SAT from ERA-40 JGR, 2009 DJF, UIUC CCM, RE Rozanov et al., 2005 NDJ composite High D1- Low D1 from GISS Maliniemi et al., 2013 </li> <li> Slide 22 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 The Deep Solar Minimum 2008 Long phase (780 days) without sunspots similar to 1913 Solar activity not predictable A long term prospective ? </li> <li> Slide 23 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Evolution of the solar modulation potential from 10 Be record (proxy for SSI) Abreu et al., 2010 </li> <li> Slide 24 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 The effects of Ap decrease on NO y Rozanov et al., 2012 </li> <li> Slide 25 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 From Calisto et al., 2013 Ozone changes after strong SPE (Carrington-like, August, 2020) </li> <li> Slide 26 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 SAT after strong SPE (Carrington-like, August, 2020) January, SAT, from Calisto et al., 2013 </li> <li> Slide 27 </li> <li> ESWW-11, Liege, Belgium, 21 November, 2014 Conclusions The progress in the modelling and understanding of the EP effects is evident: The set of parameterizations for the treatment of EP effects in differnt models is available; The magnitude of the EP influence is comparable with solar UV; First time ever EP are included in the forcing set of CCMI Challenges: Parameterization for relativistic and middle energy electrons Downward propagation of NOx from the lower thermosphere (HEPPA-2) Climate response, understanding mechanisms behind top-down signal propagation Projection of EP fluxes and spectrum behavior for future grand minimum of the solar activity </li> </ul>