ellmann konya presentation2012

33
Prof. Artu Ellmann Native of Estonia MSc degree at the Moscow State University of Geodesy & Cartography (1986-1993) Work in industry and Estonian National Land Board (1993- 2000) 2000-2004 PhD studies (supervisor prof Lars Sjöberg) at the Royal Institute of Technology, Stockholm 2004-2006 Post-doctorate research (supervisor prof. Petr Vanicek) at the University of New Brunswick, Canada 2006….present Tallinn University of Technology, Estonia, Head of Chair of Geodesy

Upload: hueseyin-demir

Post on 26-Oct-2014

35 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Ellmann Konya Presentation2012

Prof. Artu Ellmann • Native of Estonia

• MSc degree at the Moscow State University of Geodesy & Cartography (1986-1993)

• Work in industry and Estonian National Land Board (1993-2000)

• 2000-2004 PhD studies (supervisor prof Lars Sjöberg) at the Royal Institute of Technology, Stockholm

• 2004-2006 Post-doctorate research (supervisor prof. Petr Vanicek) at the University of New Brunswick, Canada

• 2006….present Tallinn University of Technology, Estonia, Head of Chair of Geodesy

Page 2: Ellmann Konya Presentation2012

Research interests: geodetic networks, gravity field and geoid modelling

Geoid models so far:

• Estonia,

• Baltic countries,

• Canada,

• Taiwan,

• Australia,

• Brazil (Amazon area),

• Konya basin

Page 3: Ellmann Konya Presentation2012

Stokes-Helmert method of the gravity field modelling

by

Artu Ellmann

in Selcuk University, Konya, May 17, 2012

Page 4: Ellmann Konya Presentation2012

• Formulation of the appropriate BVP • Determination of the boundary values • Rigorous treatment of topoeffects + DWC • Global geopotential models •Modified Stokes’s formula for regional geoid modelling •Stochastic and deterministic modifications • Selection of the modification limits • Conclusions

Outline

Page 5: Ellmann Konya Presentation2012

Recapitulation - anomalous g-quantities

• Disturbing potential: T (r,) = W(r,) – U(r,)

• Gravity disturbance

• Gravity anomaly

If the disturbing potential T can be determined, then all other quantities can be derived from T , incl. geoid

(… and vice versa!)

.

, 1 2, , ,

g

g e gspherapprox

T r Tg g r r T r T

n n r r

.

, , ,, ,

' spherapprox

W r U r T rg g r r

n n r

0

( , )( )

gT rN

Page 6: Ellmann Konya Presentation2012

6

Harmonicity of T and Boundary Value

Problems in potential theory

2 2 2

2 2 20ext

T T TT

x y z

2 2 2

int 2 2 204

T T TT G

x y z

2 2 2

2 2 2x y z

Laplacian operator

External potential (for a domain outside of masses) is a

harmonic function, i.e.

Internal (inside of masses) potential is a NOT harmonic

function, i.e.

A boundary value problem is finding the

harmonic functions (i.e. solutions

satisfying the partial diffferential

equations, such as Laplace's equation)

Page 7: Ellmann Konya Presentation2012

An example • Given the boundary values (on some boundary)

the corresponding harmonic function needs to be found/solved

• In physical geodesy - given the gravity anomaly or disturbance values on the geoid (reference surface of the disturbing potential!) the shape of the geoid needs to (and can!) be determined

• To satisfty the harmonicity condition of T all the external (with respect to the geoid) masses (e.g. atmosphere, topography) need to be (mathematically!) removed!!!

Page 8: Ellmann Konya Presentation2012

8

Boundary value problems in geodesy

Given 0 (outside geoid)

Sought ??? (outside geoid)

T

Given T N onthe geoid

T

Given 0 (outside geoid)

Given

Sought ??? outside geoid

T

Tg on the geoid

n

T on the geoid and

(1) Dirichlet

(2) Neumann

(3) mixed

Given 0 (outside geoid)

2Given

Sought ??? outside geoid

T

TT g onthe geoid

n R

T onthe geoid and

Page 9: Ellmann Konya Presentation2012

9

Ideal world

2 , 0T r

3lim ,r T r O r

,gg r ,gg r ,gg r

Geoid

Real world

2 , 4 ,T r G r

,tg r

,tg r

,tg r ,tg r

Unknown function Region of interest

0, , , , , .gT r W r U r r r

0

,gT r

N(Ω)

Page 10: Ellmann Konya Presentation2012

Reduction of external masses

Ho()

g(rt,)

Geoid

() = Ho()

Terrain

Helmert’s second condensation method

, ,

, , ,

t ct

h FA t ctV r V r

g r g r g r A Ar r

Page 11: Ellmann Konya Presentation2012

Helmertization of the disturbing potential

, , , , , ,h t ct a caT r T r V r V r V r V r

Conversion of free-air anomaly to Helmert anomaly

, , , ,, ,

2 2, , , ,

t ct a ca

h FA

t ct a ca

g n

V r V r V r V rg r g r

r r

V r V r V r V rr r

, ,1, ,

,

t

t t

T r rg r T r

n r n

Fundamental gravimetric equation

2 , 0hT r

2 , 0h

gr g r r r Harmonic!!!

Page 12: Ellmann Konya Presentation2012

Real space Helmert space

geoid

co-geoid

ellipsoid

topography

HO (HO)h

N Nh

PITE < 2 m

,h

tg r ,FA

tg r

Do

wn

war

d c

on

tin

uat

ion

,h

gg r

,hD g r

Page 13: Ellmann Konya Presentation2012

“Spherical” topographic effects

2, 4 /tA r G H O H R

Spherical

3, 4 /t

gV r G RH O H R

H

1, 4 /t

gV r G RH O H R

, 0gA r

Planar

,t

tV r

,t

gV r H

, 2tA r G H

, 2gA r G H

Disqualifies for the harmonization of the Earth gravity field!!!

Rigorous estimation of the far-zone contribution

Page 14: Ellmann Konya Presentation2012

14

The real world is even more complicated…

Excesses and deficiencies of the topographical

masses (with respect to the Bouguer shell)

Page 15: Ellmann Konya Presentation2012

Evaluation of the direct topographic effect (by 3D + 2D integration)

O

O

O

O

O

2O O2

O

o 2

1R

2

oR

1R

2

R

, R 14πG 1

R 3 R

, , ,G d d

, , ,G d d

t

t

t

t

tr r

H

r H

r r

H

r

r r

V r H HH

r r

l r rr r

r

l r rr r

r

O

O

2O O2

O

o 2

13 3

o

( )

13 3

( )

, 14πG 1

R 3 R

, , ,RG d

3

, , ,RRG d

3

t

t

t

ct

tr r

t t

r r

t

r r

V r H HRH

r r

l rr r

r

l rr

r

Con

den

se

d m

asses

Topogr.

masses

AT

TR

AC

TIO

N o

f

Page 16: Ellmann Konya Presentation2012

16

Numerical estimation of topographical effects –

closer to the computation point finer integration

elements are needed.

Page 17: Ellmann Konya Presentation2012

Final expression of the direct topogr. effect

O O

O

1 13 3'

2

o o

( ) ( )

1'

2

( )

, ,,

, , , , , ,( ) ( ')G d d G d

3

, , ,+G ( ') d d G

t t

t

t ct

t tt

t

R Ht

R H

r r r r

R H

R

r r

V r V rA r

r

l r r l r Rr rr r

r r

l r rr r

r

O

13 3

( )

, , ,( )( ') d

3t

t

r r

l r Rr R

r

, , , ,, ,

2 2, , , ,

t ct a ca

h FA

t ct a ca

g n

V r V r V r V rg r g r

r r

V r V r V r V rr r

Expression of the Helmert

gravity anomaly

Page 18: Ellmann Konya Presentation2012

R2d´

(r,)

r l

R

Unit sphere, r = 1

Initial surface

(radius R)

18

Downward continuation of harmonic Helmert gravity anomaly

Poisson’s formula – upward

continuation of a harmonic function

(Helmert anomaly)

Downward continuation is an inverse

problem!!!

O

2 2 2

3, ,

4

h hR r Rg r g R d

r l

Page 19: Ellmann Konya Presentation2012

Conclusions (1)

• Rigorously, geoid determination by Stokes’ formula holds

only on a spherical boundary, assuming also the masses

outside the geoid to be absent.

• This necessitates for some correction terms (for the Earth’s

ellipticity, downward continuation, the contribution of

topographic and atmospheric masses).

• Helmert (topographically corrected) gravity anomalies are

appropriate boundary values for geoid modelling in regions

with significant topographical masses

Page 20: Ellmann Konya Presentation2012

20 40 60 80 100 120 140 160 180-5

0

5

10

15

20

25

30

KAUGUS [kaarekraadides °]

ST

OK

ES

'I F

UN

KT

SIO

ON

I V

ÄÄ

RT

US

Stokes’s solution to the mixed BVP

00 0

,, ' '

4, '

g hT r R

N g R d PITES

Combination of a high-degree reference field and EGM

Requires global coverage of gravity data

020

2

, ' '4

2

2

'

1

,M

h h

n

n

Mh

n

n

LRN g R g d

RPITE g

S

n

Near and far-zone contributions 0

R

S() (0,0,0)

R g(R,´)

d´=d´d´cos´

N()

Page 21: Ellmann Konya Presentation2012

The quality of the reference EGM is important in the regional geoid modelling!

0

2 20

2, ' , ' '

4 2 1

Mh h

n n

n

Mh L

n

R RN g R S dg

ng

Due to availability, quality, and type of data, the accuracy of a global EGM vary regionally. Hence, the performance of any EGM needs to be validated in a regional scale.

where

22 0

( , , ) ( 1) { cos sin } (cos )

n n

nm nm nm

n m

GM ag r n C m S m P

r r

Modified Stokes’s: combination of regional terrestrial data and a reference EGM

Page 22: Ellmann Konya Presentation2012

SPHERICAL-HARMONIC COEFFICIENTS of the Earth Gravitational Model

nmC

2 0 -0.484165371736E-03 0.000000000000E+00 0.35610635E-10 0.00000000E+00

2 1 -0.186987635955E-09 0.119528012031E-08 0.10000000E-29 0.10000000E-29

2 2 0.243914352398E-05 -0.140016683654E-05 0.53739154E-10 0.54353269E-10

3 0 0.957254173792E-06 0.000000000000E+00 0.18094237E-10 0.00000000E+00

3 1 0.202998882184E-05 0.248513158716E-06 0.13965165E-09 0.13645882E-09

3 2 0.904627768605E-06 -0.619025944205E-06 0.10962329E-09 0.11182866E-09

3 3 0.721072657057E-06 0.141435626958E-05 0.95156281E-10 0.93285090E-10

4 0 0.539873863789E-06 0.000000000000E+00 0.10423678E-09 0.00000000E+00

4 1 -0.536321616971E-06 -0.473440265853E-06 0.85674404E-10 0.82408489E-10

4 2 0.350694105785E-06 0.662671572540E-06 0.16000186E-09 0.16390576E-09

4 3 0.990771803829E-06 -0.200928369177E-06 0.84657802E-10 0.82662506E-10

4 4 -0.188560802735E-06 0.308853169333E-06 0.87315359E-10 0.87852819E-10

5 0 0.685323475630E-07 0.000000000000E+00 0.54383090E-10 0.00000000E+00

5 1 -0.621012128528E-07 -0.944226127525E-07 0.27996887E-09 0.28082882E-09

5 2 0.652438297612E-06 -0.323349612668E-06 0.23747375E-09 0.24356998E-09

5 3 -0.451955406071E-06 -0.214847190624E-06 0.17111636E-09 0.16810647E-09

5 4 -0.295301647654E-06 0.496658876769E-07 0.11981266E-09 0.11849793E-09

5 5 0.174971983203E-06 -0.669384278219E-06 0.11642563E-09 0.11590031E-09

nmSn m nmC nmS

Altogether 4.7 million coefficients EGM08

Page 23: Ellmann Konya Presentation2012

23

Space-borne mapping of the Earth’s gravity field

SPUTNIK 1957

• LAGEOS

• CHAMP (2000)

• GRACE (2005)

• GOCE (2009)

Page 24: Ellmann Konya Presentation2012

Modification of Stokes Formula (Molodensky et al. 1960)

( )4

RN S gd

Sir Gabriel Stokes, 1849

02

ˆ ˆ( )4 2

ML

n n

n

R RN S gd b g

0

2 1( ) ( ) (cos )

2

LL

k k

k

kS S s P

modif. coef.

How to

minimize?

Errors

* Truncation (cap)

*Terrestrial data

* GGM coefficents

Page 25: Ellmann Konya Presentation2012

Deterministic and stochastic

modifications

Truncation bias only Truncation bias

Errors of terrestrial data

Errors of geopotential model

Philosophical dilemma – either one uses (possibly doubtful)

error models, or these are completely neglected…

02 2

2ˆ ˆ ˆ( )

4 1

M ML

n n

n n

RN S g g d c g

n

Wong and Gore (1969)

Vanicek and Kleusberg (1987) Wenzel 1983 (EGG97 computations)

Sjöberg (1984, 1991, 2003)

Page 26: Ellmann Konya Presentation2012

Stochastic (LS) modifications Deterministic modifications Para-

meters Biased Optimum Unbiased Wong-Gore Vaníček-Kleusberg Simple

sn = 2

, 2,3... .L

kn n k

n

a s h k L

2

1n

2

1nt

n

0

bn = sn L

n n n

n n

Q s c

c dc

L

n nQ s

L

n nQ s Qn

0

2

2

ˆ ˆ( )4

ML

n n

n

RN S gd c b g

2

22 2 2 2 2 * * * 2

2

2 2

1 2( )

4 1

ML L

n n n n n n n n nNn n

m E N N d c b dc c b Q s c Q sn

Complete gravity anomaly instead of residual anomaly

GLOBAL MEAN SQUARE ERROR OF THE GEOID ESTIMATOR

*

2

2 2

2ˆ ˆ

1

ML T S

n n n n n n n

n n

N c Q s g c b gn

Spectral form of geoid estimator with data errors....

2

2

1n

n

N c gn

Page 27: Ellmann Konya Presentation2012

Modified Stokes’s function

1 2 3 4 5 60

50

100

150

200

250

Modif. Stokes function across 6° integr. cap

Spherical distance [°]

Un

itle

ss v

alu

e o

f (m

od

ifie

d)

Sto

ke

s fu

nctio

n

Stokes's original functionModified Stokes's

2

2 1( ) (cos )

1n

n

nS P

n

2 2

2 1 2 1(co( ) s ) (cos )

1 2

L

n n n

n n

L n nP s PS

n

2

1ns

n

LS parameters sk vary, and depend on:

Local gravity data quality

Selected radius of the integration cap

Characteristics of a GGM (noise, modif. degree)

Deterministic parameters are

a priori defined, e.g. Truncation bias smaller when SL() passes

through zero at the integration cap edge!

2

1ns

n

Page 28: Ellmann Konya Presentation2012

• Integration is often limited to a few hundred kilometres, implying thus that a relatively high modification degree should counterbalance this

• On the other hand, the EGM error grows with increasing degree, which provides a rationale for choosing a compromise modification limit.

• The improved accuracy of recent EGM-s allows the user to safely increase the modification degree (up to 100 or even beyond, with GOCE M=250).

Selection of modification limits

Page 29: Ellmann Konya Presentation2012

Conclusions – based on geoid modelling results

• The numerical tests involved five different modification methods

• the discrepancies between any pair of the geoid models remain within 9 cm (in the target area).

• The deviations among the recent geopotential models are more crucial than the numerical discrepancies among the tested modification methods.

• The accuracy of the five tested methods is the same to the accuracy of the control (GPS-levelling) points

• LS methods provide more superior accuracy than that of deterministic methods

Page 30: Ellmann Konya Presentation2012

Thanks for your attention!

Page 31: Ellmann Konya Presentation2012

Back-up slides

Page 32: Ellmann Konya Presentation2012
Page 33: Ellmann Konya Presentation2012

• This new EGM08 takes advantage of updated satellite, terrestrial gravity, elevation and altimetry data,

• The project is sponsored by the National Geospatial-Intelligence Agency (formerly NIMA, DMA) of the USA.

• The resolution of the EGM08 is ~5´ arc-minutes (corresponding to 9 km, i.e. to the degree of 2160),

• The EGM08 accuracy is expected to be superior (but not entirely errorless) over earlier EGM-s. •In addition to the geodetic applications the EGM08 will also contribute to other geosciences

Earth Gravitational Model EGM08