electron beam lithography in nanofabricationlc/5937_lecture_8.pdf · 2011. 4. 12. · • at very...

9
4/12/2011 1 Electron Beam Lithography in Nanofabrication Lee Chow Department of Physics University of Central Florida 4/7/2011 Lecture 8 2 Electron Solid Interaction Electron Beam Lithography Some Applications 4/7/2011 Lecture 8 3 Electron solid interaction Electron interactions with matter are complex. They can be classified into two categories: 1. Elastic scattering (a) Backscattering 2. Inelastic scattering (a) Cathodoluminescence (b) S.E. production (c) Auger electron (d) phonon excitation (e) X-ray production 4/7/2011 Lecture 8 4 The energy of the electron and the substrate used are the two major factors that determine the penetration depth of the electrons. Depend on the interactions between the produced particles and substrate, we can sample different region of the substrate. Electron solid interaction 4/7/2011 Lecture 8 5 Electron solid interaction 4/7/2011 Lecture 8 6 Comparison with high energy light ions

Upload: others

Post on 08-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electron Beam Lithography in Nanofabricationlc/5937_lecture_8.pdf · 2011. 4. 12. · • At very low energies, the electrons do not have a very efficient way of losing energy to

4/12/2011

1

Electron Beam Lithography in Nanofabrication

Lee Chow

Department of Physics

University of Central Florida4/7/2011 Lecture 8 2

Electron Solid Interaction

Electron Beam Lithography

Some Applications

4/7/2011 Lecture 8 3

Electron solid interaction

Electron interactions with matter are complex. They can be classified into two categories:1. Elastic scattering

(a) Backscattering

2. Inelastic scattering(a) Cathodoluminescence(b) S.E. production(c) Auger electron(d) phonon excitation(e) X-ray production

4/7/2011 Lecture 8 4

The energy of the electron and the substrate used are the two major factors that determine the penetration depth of the electrons. Depend on the interactions between the produced particles and substrate, we can sample different region of the substrate.

Electron solid interaction

4/7/2011 Lecture 8 5

Electron solid interaction

4/7/2011 Lecture 8 6

Comparison with high energy light ions

Page 2: Electron Beam Lithography in Nanofabricationlc/5937_lecture_8.pdf · 2011. 4. 12. · • At very low energies, the electrons do not have a very efficient way of losing energy to

4/12/2011

2

4/7/2011 Lecture 8 7

Comparison with X-ray and Ga ions

Photon Electron Ga ion

Energy 10 keV 10 keV 10 keV

Material Si Si Si

Depth 130 m 1 m 30 nm

4/7/2011 Lecture 8 8

Penetration depth of electron

Increases as energy of electron increasesDecreases as the Z value of substrate increases.

4/7/2011 Lecture 8 9

Elastic and inelastic scattering 

E0 = accelerating voltage (of electrons emitted from gun); usually 5-25 keV

(a) Elastic Interactions

•Backscattering of electrons (BSE)

(b) Inelastic Interactions

•Plasmon excitation (in metals, loosely bound outer-shell electrons are excited)

•Phonon excitation (lattice oscillations, i.e., heating)

•Secondary electron excitation (SE)

•Inner-shell ionization (Auger electrons, X-rays)

•Bremsstrahlung (continuum) x-ray generation

•Cathodoluminescence radiation (non-metal valence shell phenomenon)

4/7/2011 Lecture 8 10

Backscatter Electron Production

4/7/2011 Lecture 8 11

Secondary Electron Production

SE imaging: the signal is from the top 5 nm in metals, and the top 50 nm in insulators. Thus, fine scale surface features are imaged.

4/7/2011 Lecture 8 12

Energy spectrum of emitted electrons

(a) Regions I and II are backscattering electrons,Region III is secondary electron

(b) Dash line is measured and solid line is calculated.

Page 3: Electron Beam Lithography in Nanofabricationlc/5937_lecture_8.pdf · 2011. 4. 12. · • At very low energies, the electrons do not have a very efficient way of losing energy to

4/12/2011

3

4/7/2011 Lecture 8 13

Cathodoluminescence of ZnO

Sn doped

Al doped

4/7/2011 Lecture 8 14

Cathodoluminescence of ZnO

Sn doped ZnO nanorod

SEM image CL image

4/7/2011 Lecture 8 15

X-ray Generation

4/7/2011 Lecture 8 16

Characteristic X-ray emission

4/7/2011 Lecture 8 17

Electron range in solids( 2 keV >E > 40 keV)

Please note that there are several versions of the above equation. A simple version is given next. 

4/7/2011 Lecture 8 18

Range of electrons in Solids

68.1)( oEK

mR

K = 0.064 = density (g/cm3)Eo = Energy in (keV)

Page 4: Electron Beam Lithography in Nanofabricationlc/5937_lecture_8.pdf · 2011. 4. 12. · • At very low energies, the electrons do not have a very efficient way of losing energy to

4/12/2011

4

4/7/2011 Lecture 8 19

Mean free path of electron in solid(Between 1 eV to 1000 eV)

4/7/2011 Lecture 8 20

• At very low energies, the electrons do not have a very efficient way of losing energy to the crystal lattice, so the mean free path is long.

• At intermediate energies (on the order of 50 eV), the incident electrons can very easily lose energy by creating electronic excitations or ionization events in the solid, and the mean free path is very short.

• At very high energies, the electrons are moving so fast that they literally "zip by" the other atoms so fast that the electrons of the stationary atoms do not have time to respond.

4/7/2011 Lecture 8 21

Electron Beam Lithography

• Types of EBL

1. Electron Beam Direct Write

2. Electron Projection Lithography

4/7/2011 Lecture 8 22

oThroughput of direct writing is very low : research tool or low pattern density manufacturingoProjection stepper (EPL) is in development stage only (primarily by Nikon).oMask making is the biggest challenge for the projection methodoBack-scattering and secondary electron result in proximity effect –reduce resolution with dense patterns.oOperates in high vacuum (10-6 –10-10 torr) –slow and expensive

Issues needed to be resolved

4/7/2011 Lecture 8 23

• The advantages of electron lithography are: (1) Generation of micron and submicron resist geometries (2) Highly automated and precisely controlled.(3) Greater depth of focus (4) Direct patterning without a mask

• The biggest disadvantage of electron lithography is its low throughput (approximately 5 wafers / hour at less than 0.1 µ resolution). Therefore, electron lithography is primarily used in the production of photomasksand in situations that require small number of custom circuits.

Advantages and disadvantages of EBL

4/7/2011 Lecture 8 24

Electron Beam Direct Write• An electron gun or electron 

source that supplies the electrons. 

• An electron column that 'shapes' and focuses the electron beam. 

• A mechanical stage that positions the wafer under the electron beam. 

• A wafer handling system that automatically feeds wafers to the system and unloads them after processing. 

• A computer system that controls the equipment. 

Page 5: Electron Beam Lithography in Nanofabricationlc/5937_lecture_8.pdf · 2011. 4. 12. · • At very low energies, the electrons do not have a very efficient way of losing energy to

4/12/2011

5

4/7/2011 Lecture 8 25

Specifications of a real Instrument

Raith150

• Beam size ≤ 2nm @ 20 keV

• Beam energy 100eV ‐ 30 keV

• Minimum line width 20 nm

• Import file format GDSII, DXF, CIF, ASCII, BMP 

4/7/2011 Lecture 8 26

Comparison of three different systems

4/7/2011 Lecture 8 27

Electron beam resists

1. Important parameters

2. Types of resist

3. Resist limitations

4/7/2011 Lecture 8 28

EBL resists

Types of resist• Positive resist Polymethyl

methacrylate (PMMA)

• Negative resist

Important parameters Resolution (nm) Sensitivity (C/cm^2)

4/7/2011 Lecture 8 29

PMMA is an excellent e-beam resist

4/7/2011 Lecture 8 30

Page 6: Electron Beam Lithography in Nanofabricationlc/5937_lecture_8.pdf · 2011. 4. 12. · • At very low energies, the electrons do not have a very efficient way of losing energy to

4/12/2011

6

4/7/2011 Lecture 8 31 4/7/2011 Lecture 8 32

Common Resists for e‐beam

• Positive resists– ZEP520A

+ good etch resistance

+ fast

+ good resolution (~ 10nm)

- expensive ($3/mL)

– PMMA+ cheap ($1/mL)

+ good for liftoff

+ high resolution (< 10nm)

- poor etch resistance

- slow

• Negative resist– XR‐1541  (HSQ)

+ good etch resistance (HSQ is basically SiO2)

+ excellent resolution (6.5nm)

- slow

- expensive ($4/mL)

– ma‐N 2403 (Novolak)+ good etch resistance

+ optical DUV exposable

+ faster than HSQ

± moderately priced ($2/mL)

- poor adhesion to quartz

4/7/2011 Lecture 8 33

Resist Comparison

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

no

rmal

ized

res

ist

thic

knes

s

100 1000 800 600 500 400 300 200 2000 3000

dose (uC/cm2)

HSQ

PMMA

ZEP

resist200 480 1280

4/7/2011 Lecture 8 34

Metal Liftoff

evaporate metal ontopatterned resist

strip resist

4/7/2011 35

Forward Scattering (α)

• as electrons enter resist, they experience small angle scattering, effectively broadening the initial beam diameter

• forward scattering is minimized by using the thinnest possible resist and highest accelerating voltage

5.1)/(9.0 btf VRd

df = effective beam diameter (nm)Rt = resist thickness (nm)Vb = acceleration voltage (kV)

4/7/2011 36

Backscattering (β)

• as electrons pass thru resist and enter substrate, many will undergo large angle scattering events

• these electrons may return back into the resist at a significant distance from the incident beam, causing additional resist exposure → this is called the proximity effect

Page 7: Electron Beam Lithography in Nanofabricationlc/5937_lecture_8.pdf · 2011. 4. 12. · • At very low energies, the electrons do not have a very efficient way of losing energy to

4/12/2011

7

4/7/2011 37

Effect of electron energy

Source: SPIE Handbook of Microlithography, Section 2.3 Electron‐Solid Interactions

4/7/2011 38

Simulated Electron Energy Profile

Source: SPIE Handbook of Microlithography, Section 2.3 Electron‐Solid Interactions

4/7/2011 39

Proximity Effect Correction by Shape Modulation

original CAD pattern

simulated doseprofile

calculated shape modification to achieve desired

line

4/7/2011 40

Dose Dependencies

pattern size

pattern density

required dose

required dose

resist thickness required dose

acceleration voltage required dose

substrate AMU required dose

4/7/2011 Lecture 8 41

Applications of EBL

4/7/2011 Lecture 8 42

Gratings used in distributed Feedback Lasers.

Page 8: Electron Beam Lithography in Nanofabricationlc/5937_lecture_8.pdf · 2011. 4. 12. · • At very low energies, the electrons do not have a very efficient way of losing energy to

4/12/2011

8

4/7/2011 Lecture 8 43

Micro-ring resonators

4/7/2011 Lecture 8 44

Nanofluidic Channels

4/7/2011 Lecture 8 45

Polygon/Array of Dots

4/7/2011 Lecture 8 46

Multiple Pattern Arrays

4/7/2011 Lecture 8 47

Fine Line Structure

4/7/2011 Lecture 8 48

Electron Beam Lithography at UCF

Page 9: Electron Beam Lithography in Nanofabricationlc/5937_lecture_8.pdf · 2011. 4. 12. · • At very low energies, the electrons do not have a very efficient way of losing energy to

4/12/2011

9

4/7/2011 Lecture 8 49

Electron Beam Lithography at UCF

4/7/2011 Lecture 8 50