electromagnetic analysis of microwave cavities for dark ... · electromagnetic analysis of...

115
Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29 March 2014 Electromagnetic analysis of microwave cavities for dark-matter axion detectors Benito Gimeno (1) , Daniel González-Iglesias (1) , Juan Pastor Graells (1) , Ángel San Blas Oltra (2) , José Manuel Catalá (3) ,Vicente E. Boria (3) , Jordi Gil (4) , Carlos P. Vicente (4) (1) University of Valencia, Spain (2) University Miguel Hernández of Elche (Alicante), Spain (3) Technical University of Valencia, Spain (4) AURORASAT, S.L., Valencia, Spain 1

Upload: others

Post on 18-May-2020

24 views

Category:

Documents


0 download

TRANSCRIPT

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29 March 2014

Electromagnetic analysis of microwave cavities for dark-matter axion detectors

Benito Gimeno(1), Daniel González-Iglesias (1), Juan Pastor Graells(1), Ángel San Blas Oltra(2), José Manuel Catalá(3),Vicente E. Boria(3)

, Jordi Gil(4), Carlos P. Vicente(4)

(1) University of Valencia, Spain (2) University Miguel Hernández of Elche (Alicante), Spain (3) Technical University of Valencia, Spain (4) AURORASAT, S.L., Valencia, Spain

1

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

INDEX

2

• Introduction

• The rectangular waveguide

• The empty rectangular cavity

• Excitation of microwave cavities: coupling

• The BI-RME method

• Examples

• Conclusions

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

INDEX

3

• Introduction

• The rectangular waveguide

• The empty rectangular cavity

• Excitation of microwave cavities: coupling

• The BI-RME method

• Examples

• Conclusions

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 4

Introduction

• During these days we have been talking about dark matter axions, now the question is: how to detect them? • Microwave resonators have been proposed in the literature for dark-matter axions detectors. • The objective of this talk is to review the most relevant feautures and performances of microwave cavities

from the theoretical perspective of the Classical Electrodynamics, in order to analyze their applications in the research field of axion detectors physics.

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

INDEX

5

• Introduction

• The rectangular waveguide

• The empty rectangular cavity

• Excitation of microwave cavities: coupling

• The BI-RME method

• Examples

• Conclusions

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 6

The rectangular waveguide

• The complete set of solenoidal modes of an empty rectangular cavity can be obtained short-circuiting both sides of a rectangular waveguide.

• The modes of a rectangular waveguide are wellknown:

x a

b

y

z

( )

( )

0

expcossin

expsincos

2,

0

2,

0

=

−=−=

==

z

zmnc

mnxTEy

zmnc

mnyTEx

E

zyb

nx

a

m

a

m

k

jBHZE

zyb

nx

a

m

b

n

k

jBHZE

γπππωµ

γπππωµ

( )

( )

( )zyb

nx

a

mBH

zyb

nx

a

m

b

n

kBH

zyb

nx

a

m

a

m

kBH

zmnz

zmnc

zmny

zmnc

zmnx

γππ

γπππγ

γπππγ

=

=

=

expcoscos

expsincos

expcossin

2,

2,

TEz modes:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 7

The rectangular waveguide

TMz modes:

( )

( )

( )zyb

nx

a

mAE

zyb

nx

a

m

b

n

kAE

zyb

nx

a

m

a

m

kAE

zmnz

zmnc

zmny

zmnc

zmnx

γππ

γπππγ

γπππγ

=

−=

−=

expsinsin

expcossin

expsincos

2,

2,

( ) ( )

( ) ( )

0

expsincos1

expcossin1

2,

00

2,

0

=

−==

=−=

z

zmnc

rmn

TM

xy

zmnc

rmn

TM

yx

H

zyb

nx

a

m

a

m

k

jtgjA

Z

EH

zyb

nx

a

m

b

n

k

jtgjA

Z

EH

γπππδεεωε

γπππδεωε

Relevant relationships of the rectangular waveguide (uniformly dielectric loaded):

22,

2zmnckk γ−=

22

,

+

=

b

n

a

mk mnc

ππ

zzmncz jkk βαγ +=−= 22,

( )δεεµω jtgk r −= 10022

εεδ

′′′

=tg

( ) ηγδεωε

γjkjtgj

Z z

r

zTM =

−=

10

ηγγ

ωµ

zzTE

jkjZ == 0

( )δεεµη

jtgr −=

10

0

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 8

The rectangular waveguide

Modal spectrum of a rectangular waveguide for different ratio b/a:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 9

The rectangular waveguide

The fundamental TEz10 mode:

( )( ) z

ctTEt

zzt

ct

zz

eyxa

senf

fBjzHZE

exxa

sena

BHk

H

exa

BH

⋅⋅

⋅⋅⋅

⋅⋅−=±⋅=

⋅⋅

⋅⋅

⋅⋅±=⋅∇⋅=

⋅⋅=

γ

γ

γ

πη

ππ

γγ

π

ˆˆx

ˆ

cos

2

ac 2=λ 2

1εµ ⋅⋅⋅

=a

fc

22

22 εµωπγ ⋅⋅−

=−=

akkc

riorioc

i εεµµωλπγ 2

22

⋅=

12

=

ff

Z

c

TE

η

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 10

The rectangular waveguide

Electromagnetic fields distribution of a rectangular waveguide with b=a/2:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 11

The rectangular waveguide

Electromagnetic fields distribution of a rectangular waveguide with b=a/2:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

INDEX

12

• Introduction

• The rectangular waveguide

• The empty rectangular cavity

• Excitation of microwave cavities: coupling

• The BI-RME method

• Examples

• Conclusions

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 13

The empty rectangular cavity

• The complete set of solenoidal modes of an empty rectangular cavity can

be obtained short-circuiting both sides of a rectangular waveguide:

Short-circuit 1

L

Short-circuit 2

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 14

The empty rectangular cavity

• The cavity modes can be easily constructed as the superposition of an

incident wave and a reflected wave:

( )( )zjzjt eeyxEE ββ ρ−= −,0

( )( ) ( )( )zjzjz

zjzjt eeyxHeeyxHH ββββ ρρ −++= −− ,, 00

TEz modes:

with ρ=1

0

sincossin

sinsincos

2,

0

2,

0

=

−=

=

z

mncmny

mncmnx

E

zL

py

b

nx

a

m

a

m

kBE

zL

py

b

nx

a

m

b

n

kBE

ππππωµ

ππππωµ

−=

=

=

zL

py

b

nx

a

mjBH

zL

py

b

nx

a

m

b

n

k

jBH

zL

py

b

nx

a

m

a

m

k

jBH

mnz

mnc

zmny

mnc

zmnx

πππ

ππππβ

ππππβ

sincoscos

cossincos

coscossin

2,

2,

m=0,1,2… ; n=0,1,2…; p=1,2,3… (the case m=n=0 is not allowed)

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 15

The empty rectangular cavity

( )( ) ( )( )zjzjz

zjzjt eeyxEeeyxEE ββββ ρρ ++−= −− ,, 00

( )( )zjzjt eeyxHH ββ ρ+= −,0

TMz modes:

=

−=

−=

zL

py

b

nx

a

mAE

zL

py

b

nx

a

m

b

n

kAE

zL

py

b

nx

a

m

a

m

kAE

mnz

mnc

zmny

mnc

zmnx

πππ

ππππβ

ππππβ

cossinsin

sincossin

sinsincos

2,

2,

0

cossincos

coscossin

2,

0

2,

0

=

−=

=

z

mnc

rmny

mnc

rmnx

H

zL

py

b

nx

a

m

a

m

k

jAH

zL

py

b

nx

a

m

b

n

k

jAH

ππππεωε

ππππεωε

with ρ=1

m=1,2,3… ; n=1,2,3…; p=0,1,2…

Relevant equations of the rectangular cavity (uniformly dielectric loaded):

( ) 22,00

2 1 zmncr kjtg βδεεµω +=−

+=

du Q

j

21ωω

δtgQd

1=

r

u

rr

zmncu L

p

b

n

a

mk

εωπππ

εεµεεµβ

ω 0

222

0000

22, 1

=

+

+

=

+=

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 16

The empty rectangular cavity

222

2

1

+

+

=

L

p

b

n

a

mf

mnpTEr µε

Short-circuit 1

L

Short-circuit 2

Example1: TEz10p modes

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 17

The empty rectangular cavity

Example2: Rectangular cavity in WR-340 a=86.36 mm, b=43.18 mm

p L (mm.)1 86.72 173.43 260.14 346.85 433.56 520.17 606.88 693.59 780.210 866.911 953.6

GHzL

p

af

pTEr 45.21

2

122

10=

+

=

µε

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 18

The empty rectangular cavity

• The time-average electric and magnetic energies stored by each mode of a

microwave cavity are given by:

which can be calculated for both family of rectangular modes:

∫ ∫cc V

rV

re dVEdVEEW

200

44

εεεε=⋅= ∗ ∫ ∫

cc VVm dVHdVHHW2

00

44

µµ=⋅= ∗

nmmnc

umnre

abL

k

BW εεµωεε

84 2,

20

220=

+=

2,

220 1

84 mnc

znmmnm k

abLBW

βεεµ

≠=

=0,1

0,2

p

ppε

+=

2,

220 1

84 mnc

zpmn

re k

abLAW

βεεεp

mnc

rumnm

abL

k

AW εεεωµ

84 2,

220

220=

≠=

=0,1

0,2

p

ppε

TMz modes:

TEz modes:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 19

The empty rectangular cavity

• The power dissipated within a microwave cavity considering losses in the

metallic walls as well as in a uniform lossy dielectric filling the cavity are

given by:

δεωεεωεσ tgre 00 =′′= ∫cV

ed dSEP

2

2

σ= ∫

cSs dSH

RP

2

tan0 2

=

• The quality factor of a microwave cavity is defined as follows:

ud

med P

WWQ

ωω

ω=

+=

δσεεω

tgQ

e

rud

10 ==

uPP

WWQ

d

meu

ωω

ω=

++

=0 dcu QQQ

111+=

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

INDEX

20

• Introduction

• The rectangular waveguide

• The empty rectangular cavity

• Excitation of microwave cavities: coupling

• The BI-RME method

• Examples

• Conclusions

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

Excitation of microwave cavities: coupling

21

• An empty microwave cavity has to be feeded with an external component in

order to excite an electromagnetic field within the cavity. • There are different mechanisms to excite a microwave cavity: - Waveguide Iris (holes performed on one cavity wall):

Magnetic (a) and electric (b) coupling apertures

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 22

Excitation of microwave cavities: coupling

Example1: Inductive band-pass filter implemented in rectangular waveguide for LMDS technology at 28 GHz

Courtesy of ESTEC-ESA

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 23

Excitation of microwave cavities: coupling

Example2: Dual-mode band-pass filter implemented in circular waveguide with elliptical irises for space telecommunications applications

Frequency Adjustment

Dual-mode Coupling

Input/Output Couplings

Inter-Cavity Couplings

B. Gimeno, M. Guglielmi, “Full Wave Network Representation for Rectangular, Circular, and Elliptical to Elliptical Waveguide Junctions”, IEEE Transactions on Microwave Theory and Techniques , vol. 45, no. 3, pp. 376-384, March 1997

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 24

Excitation of microwave cavities: coupling

Manufactured prototype (courtesy by ESA-ESTEC): ESA PATENT: “Alternative implementation for dual-mode filters in circular

waveguide”, reference number: 9606337, EU-USA-Canada

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 25

Excitation of microwave cavities: coupling

Electrical response: comparison between theory (left) and experiment (right)

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 26

Excitation of microwave cavities: coupling

Example3: Coupled-Cavities band-pas filter with tuneable response for space telecommunications applications

Manufactured Prototype

Courtesy of ESTEC-ESA

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 27

Excitation of microwave cavities: coupling

Comparison between theory (up) and experiment (down)

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 28

Excitation of microwave cavities: coupling

Example4: Cuasi-inductive band-pass filter with rounded corners for space telecommunications applications

Cut Planes

Pieces to be manufactured

Design Parameters: li , ti (High Efficiency) Low Losses: Location of Cut Planes

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 29

Excitation of microwave cavities: coupling

Detailed View of a Piece

Assembling Process

of the Pieces

Prototype Pieces

Courtesy of ESTEC-ESA

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 30

Excitation of microwave cavities: coupling

Comparison between theory and experiment

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 31

Excitation of microwave cavities: coupling

- Electric probe: Coaxial probe inserted in the cavity

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 32

Excitation of microwave cavities: coupling

Example1: Connector between a coaxial transmission line and a rectangular waveguide

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 33

Excitation of microwave cavities: coupling

Example2: Inductive band-pass filter excited with a coaxial connector

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 34

Excitation of microwave cavities: coupling

Example3: Analysis of comb-line diplexers excited with coaxial connectors for space telecommunication subsystems

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 35

Excitation of microwave cavities: coupling

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 36

Excitation of microwave cavities: coupling

- Magnetic current loop: current loop contacting the metallic surface of the cavity

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 37

Excitation of microwave cavities: coupling

Examples: There are a lot of different kind of current loops used in microwave circuits

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

INDEX

38

• Introduction

• The rectangular waveguide

• The empty rectangular cavity

• Excitation of microwave cavities: coupling

• The BI-RME method

• Examples

• Conclusions

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

39

• BI-RME: Boundary-Integral Resonant Mode Expansion • Method developed at University of Pavia (Italy) by Prof. Giuseppe

Conciauro, Prof. Marco Bressan, and Prof. Paolo Arcioni: G. Conciauro, M. Guglielmi, R. Sorrentino, Advanced Modal Analysis, Wiley, 2000 • During last 20 years it has been applied to the rigorous and efficient modal

analysis of uniform arbitrarily-shaped waveguides (BI-RME 2D), and cavities including metallic and dielectric objects with arbitrary shape (BI-RME 3D).

• There are more than 50 articles published in international journals and

transactions directly related with BI-RME applications.

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

40

• Both versions of the BI-RME method transform an integral equation of Fredholm of first kind into an algebraic eigenvalue problem which is numerically solved with standard diagonalization subrutines.

• Example of BI-RME 2D: computation of the full modal spectrum of a ridge rectangular waveguide. The cutoff frequencies (eigenvalues) and the electromagnetic fields (eigenvectors) are computed for a set of modes.

S. Cogollos, S. Marini, V. E. Boria, P. Soto, A. Vidal, H. Esteban, J. V. Morro, B. Gimeno, ‘Efficient Modal Analysis of Arbitrarily Shaped Waveguides Composed of Linear, Circular, and Elliptical Arcs Using the BI-RME Method’, IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 12, pp. 2378-2390, Dec. 2003

TE10 TM11

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

41

• Example1 of BI-RME 3D: computation of the full modal spectrum of a rectangular microwave cavity loaded with a metallic cylindrical ‘mushroom’. The resonant frequencies (eigenvalues) and the electromagnetic fields (eigenvectors) are computed for a set of modes.

F. Mira, M. Bressan, G. Conciauro, B. Gimeno, V. E. Boria, ‘Fast S-Domain Modeling of Rectangular Waveguides With Radially Symmetric Metal Insets’, IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1294-1303, April 2005

a=30.00mm b=15.00mm c=20.00mm dt=4.00mm di=8.00mm de=12.00mm hi=7.00mm he=10.00mm ht=10.00mm

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

42

First mode Second mode

Third mode Fourth mode

Electric field lines and surface current density lines have been plotted.

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

43

• Example2 of BI-RME 3D: frequency response computation of a junction between a coaxial line with a rectangular waveguide.

Á. A. San Blas, F. Mira, V. E. Boria, B. Gimeno, M. Bressan, P. Arcioni, ‘On the Fast and Rigorous Analysis of Compensated Waveguide Junctions using Off-Centered Partial-Height Metallic Posts’, IEEE Trans. Microwave Theory Tech., vol. 55, no. 1, pp. 168-175, Jan. 2007

CPU time: 151.6 s (500 frequency poinys ) and 16 min (25 frequency points) with HFS

Dimensions (mm)

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

44

• Example3 of BI-RME 3D: calculation of the resonant modes of the

ELETTRA accelerating cavity placed in Stanford Linear Accelerator

(USA).

P. Arcioni, M. Bressan, L.Perregrini, ‘A New Boundary Integral Approach to the Determination of the Resonant Modes of Arbitraily Shaped Cavities’, IEEE Trans. Microwave Theory Tech., vol. 43, no. 8, pp. 1848-1855, Aug. 1995

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

45

• BI-RME 3D technique is applied in two steps:

(1) Calculation of the full set of resonant modes of the closed cavity

(2) Calculation of the coupling between the closed cavity and the input/ouput waveguide ports.

• (1) Calculation of the full set of resonant modes of the closed cavity:

- We have an empty microwave closed cavity constructed with a metallic wall:

In principle we will consider lossless conductor walls.

V

S

n

µ0, ε0

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

46

- Maxwell equations (expressed in frequency domain) gobern the electromagnetic

fields existing within the cavity, ρ and J being the time-harmonic electric sources

(representing a metallic inset inside the cavity):

- The total electromagnetic field inside the cavity can be expressed as a

superposition of solenoidal and irrotational modes:

where En, Fn, Hn and Gn are the expansion coefficients.

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

47

- The normalized modal vectors are clasified in 4 groups:

Solenoidal electric modes (resonant modes):

Irrotational electric modes (non-resonant modes):

Boundary condition on the cavity surface:

Boundary condition on the cavity surface:

, on the cavity surface

PHYSICAL RESONANCES

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

48

Solenoidal magnetic modes (resonant modes):

Irrotational magnetic modes (non-resonant modes):

Boundary condition on the cavity surface:

Boundary condition on the cavity surface:

- Solenoidal electric and magnetic modes satisfy these reciprocal equations:

, on the cavity surface

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

49

- The normalized modal vectors satisfy the following orthonormalization

relationships:

As a direct consequence, the expansion coeffients can be obtained as follows,

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

50

- Next step is to expand the curl of the electric (magnetic) field as a magnetic-like

(electric-like) field function. After inserting these results in Maxwell equations we find:

which allows to obtain the expansion coefficients and Gm = 0.

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

51

- By combining the previous equations we find:

Therefore, the expressions of both electric scalar potential and magnetic vector

potential are written as

and

ELECTRIC SCALAR GREEN’S FUNCTION

IN THE COULOMB GAUGE

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

52

MAGNETIC DIADIC GREEN’S FUNCTION

IN THE COULOMB GAUGE

A dyadic expression is a second-order contravariant cartesian tensor defined in R3

which can be formulated in terms of a matrix:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

53

- It can be easily demonstrated that the electric scalar potential in the Coulomb gauge

satisfies the Poisson differential equation:

As a consequence, the electric scalar Green’s function satisfies the following

differential equation:

whose solution can be splitted in a singular term and a regular one:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

54

From a computational point of view, this electric scalar Green function is not easy to

be calculated in a rectangular cavity (κ2 = κx2 + κy

2 + κz2):

This infinite serie converges very slowly !!

( )( ) ( ) ( ) ( ) ( ) ( )

∑∞

= κ

′κ′κ′κκκκ=′

1p,n,m2

zyxzyx zsinysinxsinzsinysinxsin

abc

8,g rr

0,E+00

1,E-03

2,E-03

3,E-03

4,E-03

5,E-03

6,E-03

7,E-03

8,E-03

9,E-03

1,E-02

0 10000 20000 30000 40000 5000

Numero di iterazioni

U.A

.

3,5E-03

3,6E-03

3,7E-03

3,8E-03

3,9E-03

4,0E-03

4,1E-03

4,2E-03

4,3E-03

4,4E-03

4,5E-03

50000 52000 54000 56000

Numero di iterazioni

U.A

.

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

55

Ewald technique has to be used for an efficient computation of the infinite series:

P.P. Ewald, Ann der Physik, vol. 64, 1921

3D Gaussians distributions are added and substracted in order to improve convergence series

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

x

y

a

b

Images technique is used as an alternative

representation of the series

= +

ϕ 1 ϕ 2

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

56

Both series have to be treated in a very different way:

Solution in spectral domain

Solution in spatial domain

The argument of the serie exponentially vanishs when κ is increased

The argument of the series vanishs controled by the

erfc function (which tends to zero when R tends to • )

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

57

Exponential convergence for both series:

40 terms for ϕ 1 and 80 terms for ϕ 2

Efficient computacional efficiency: CPU time of 0.06 seconds for the same

accuracy than in the previous case

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

58

- It can also be easily demonstrated that the magnetic vector potential in the Coulomb gauge satisfies this differential equation:

As a consequence, the magnetic diadic Green’s function satisfies the following differential equation:

whose solution can be splitted in a singular term and a regular one (this is not trivial !!):

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

59

- Finally, electric and magnetic fields inside the cavity can be expressed in terms of integrals containing the aforementioned Green’s functions: where η=(µ0/ε0)1/2 is the free space characteristic impedance. Inserting expansions of both Green’s functions we find,

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

60

- Calculation of the resonant modes of the cavity is performed by imposing that the tangential component of the electric field is zero on the surface of the metallic obstacles contained in the cavity: This homogeneous system admits non-trivial solutions only for particular values of k, which are the resonant wavenumbers of the cavity. The surface current density J is the unknown function of this integral equation of Fredholm of first kind, and it has to be expanded as:

where wn and vn are a complete set of solenoidal and non-solenoidal vectorial basis functions defined on the surface of the metallic object, respectivelly.

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

61

By inserting the current expansion into the definition of am coefficients we find this algebraic linear system: where [a], [q] and [i] are unknown vectors and [K]=diagκ1, κ2…κM; the [a] coefficients are defined as and [R] ,[S] are square matrices defined as:

m = 1,2,3…M

(*)

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

62

Using the Method of Moments with Galerkin technique (the expansion basis functions are used to dot-multiplying both sides of the integral equation) we find: where

(**)

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

63

The last equation allows to obtain Inserting this vector into (*) and (**) we find where

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

64

It can be demostrated that both matrices [A] and [B] are symmetric and definite positive, so the solution of the previous matricial equation has positive real eigenvalues, representing the solution of the problem. Electric and magnetic fields within the cavity can be calculated as:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

65

- Calculation of the Q-factor of each resonant mode can be easily computed in this scenario:

- Calculation of the Q-factor of each resonant mode can be easily computed in this scenario:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

66

- For the selection of the expansion vectorial functions we have used the Rao-Wilton-Glisson (RWG) vectorial basis functions defined on triangular patches:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

67

In this case, these RWG basis functions have to be rewritten in terms of solenoidal and non-solenoidal vectorial basis functions:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

68

In the case of complex structures, we have to use a commercial software for the discretization procedure of the obstacle surface in triangules: These codes provide the cartesian coordinates of the vertexes of the triangles.

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

69

• (2) Calculation of the coupling between the closed cavity and the input/ouput waveguide ports.

- We have a microwave cavity (constructed with a metallic wall) connected to several input/output ports:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

70

- The formalim is similar to the previos case, but now the tangential electric and magnetic fields exsiting on the input/output waveguide ports are treated as ficticiuos magnetic currents (and charges):

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

71

The magnetic scalar and dyadic Green’s functions are described as follows:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

72

The surface magnetic current defined on the input/output waveguide ports is expressed as follows: where the electric and magnetic normalized modal vector functions of each waveguide port are defined with the following equations: is the modal characteristic impedance (and admittance).

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

73

- By imposing the boundary conditions of the tangential electromagnetic field on the surface of the metallic insets, as well as on the input/output waveguide ports, we can obtain the polar expansion of the generalized admittance matrix of the cavity:

where:

For the resonant modes computation

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

74

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

The BI-RME method

75

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

INDEX

76

• Introduction

• The rectangular waveguide

• The empty rectangular cavity

• Excitation of microwave cavities: coupling

• The BI-RME method

• Examples

• Conclusions

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 77

Examples

• Calculations presented throughout this presentation has been computed

with a CAD (Computer Aided Design) tool developed by European Space

Agency (ESA/ESTEC) and the spin-off company AURORASAT, S.L.

- This software allows the electromagnetic and (automatic) design of complex

microwave circuits based on the connections of different canonical and non-canonical

waveguides and cavities used in space telecommunicactions subsystems.

- It also contains different modules for the simulations of high-power non-linear

phenomena existing in such components under high-power excitation, as multipactor

and corona effects.

- web mail address: www.fest3d.com

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 78

Examples

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 79

Examples

• We are going to analyze the coupling between four different probes and a

rectangular cavity based on a standard WR-90 rectangular waveguide:

a = 22.86 mm, b = 10.16 mm, d = 1 m; conductivity of Cu at 20 C: σ = 5.96 .107 S/m

d

a

b

µ0, ε0

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 80

Examples

• This rectangular resonator supports 703 solenoidal modes in the frequency

range of the input coaxial waveguide:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 81

Examples

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 82

Examples

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 83

Examples

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 84

Examples

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 85

Examples

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 86

Examples

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 87

Examples

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 88

Examples

• Example1: Simple electric probe exciting a rectangular cavity

WR-90: a=22.86 mm, b=10.16 mm

d = 1m b a

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 89

Examples

INPUT COAXIAL WAVEGUIDE: ri=0.635 mm, ro=2.11, εr=2.08; Z0=50 Ω

h=b/3=3.387 mm

b

2 ri

2 r0

h

d

d=λg/4=39.707 mm

βΤΕ10=2π/λg

βΤΕ10=((ω/c)2-(π/a) 2)1/2

ω=2π f

f = 10 GHz

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 90

Examples

Wide frequency band simulations of the simple electric probe:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 91

Examples

Identification of the most relevant ‘detected’ resonances of the simple electric probe:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 92

Examples

Identification of the most relevant ‘detected’ resonances of the simple electric probe in the bandwidth of the rectangular waveguide (WR-90):

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 93

Examples

• Example2: Mushroom electric probe exciting a rectangular cavity

WR-90: a=22.86 mm, b=10.16 mm

d = 1m b a

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 94

Examples

INPUT COAXIAL WAVEGUIDE: ri=0.635 mm, ro=2.11, εr=2.08; Z0=50 Ω

2 ri

2 r0

b

h1

d

h2

2g

h1=h2=(b/3)/2=1.694 mm h=h1+h2=b/3=3.387mm

g=2ri=1.27 mm

d=λg/4=39.707 mm

βΤΕ10=2π/λg

βΤΕ10=((ω/c)2-(π/a) 2)1/2

ω=2π f

f = 10 GHz

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 95

Examples

Wide frequency band simulations of the mushroom electric probe:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 96

Examples

Identification of the most relevant ‘detected’ resonances of the mushroom electric probe:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 97

Examples

Identification of the most relevant ‘detected’ resonances of the mushroom electric probe in the bandwidth of the rectangular waveguide (WR-90):

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 98

Examples

• Example3: Vertical current loop exciting a rectangular cavity

a

WR-90: a=22.86 mm, b=10.16 mm

b d = 1m

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 99

Examples

INPUT COAXIAL WAVEGUIDE: ri=0.635 mm, ro=2.11, εr=2.08; Z0=50 Ω

2 ri

2 r0

60 mm

3 mm

b

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 100

Examples

Wide frequency band simulations of the vertical current loop:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 101

Examples

Identification of the most relevant ‘detected’ resonances of the vertical current loop:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 102

Examples

Identification of the most relevant ‘detected’ resonances of the vertical current loop in the bandwidth of the rectangular waveguide (WR-90):

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 103

Examples

• Example4: Horizontal current loop exciting a rectangular cavity

WR-90: a=22.86 mm, b=10.16 mm

d = 1m

a

b

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 104

Examples

INPUT COAXIAL WAVEGUIDE: ri=0.635 mm, ro=2.11, εr=2.08; Z0=50 Ω

2 ri

2 r0

50 mm

7 mm

a

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 105

Examples

Wide frequency band simulations of the horizontal current loop:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 106

Examples

Identification of the most relevant ‘detected’ resonances of the horizontal current loop:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 107

Examples

Identification of the most relevant ‘detected’ resonances of the horizontal current loop in the bandwidth of the rectangular waveguide (WR-90):

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 108

Examples

• Example5: Magnetic probe with vertical post exciting a rectangular cavity

WR-90: a=22.86 mm, b=10.16 mm

d = 1m

a

b

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 109

Examples

INPUT COAXIAL WAVEGUIDE: ri=0.635 mm, ro=2.11, εr=2.08; Z0=50 Ω

d

h=9.0 mm

g=1.5 mm

d=λg/4=39.707 mm

βΤΕ10=2π/λg

βΤΕ10=((ω/c)2-(π/a) 2)1/2

ω=2π f

f = 10 GHz

b 2 ri

2 r0

h

2g

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 110

Examples

Wide frequency band simulations of the magnetic probe with vertical post:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 111

Examples

Identification of the most relevant ‘detected’ resonances of the magnetic probe with vertical post:

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 112

Examples

Identification of the most relevant ‘detected’ resonances of the magnetic probe with vertical post around the bandwidth of the rectangular waveguide (WR-90):

the electrical conducticity of the metallic walls has been modified

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

INDEX

113

• Introduction

• The rectangular waveguide

• The empty rectangular cavity

• Excitation of microwave cavities: coupling

• The BI-RME method

• Examples

• Conclusions

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014 114

Conclusions

• We have presented and overview of rectangular waveguides and cavities,

presenting the most relevant relationships and concepts.

• A summary of the most important techniques to feed empty microwave

cavities has been summarized.

• BI-RME 3D formulation has been introduced, showing the most relevant

issues of the theory.

• Several coaxial probes have been explored for rectangular cavity

excitation.

Laboratorio Subterráneo de Canfranc (Huesca), 27-28-29, March 2014

Thanks a lot for your attention.

115

WE ARE OPEN TO COOPERATE WITH ALL OF YOU.