microwave cavities - courses.physics.illinois.edu · agenda •waves in waveguides •standing...

31
Microwave cavities Physics 401, Fall 2015 Eugene V. Colla

Upload: ngokhuong

Post on 25-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Microwave

cavitiesPhysics 401, Fall 2015

Eugene V. Colla

Agenda

• Waves in waveguides

• Standing waves and resonance

• Setup

• Experiment with microwave cavity

• Comments on Bragg diffraction experiment

11/2/2015 2

Maxwell’s

Equations uniform plane wave traveling

in z-direction H ┴ E

wave equation

general form of solution

propagation speed

E vs H

( )

0

i t kz

xE E e

Y

X

zEx

Hy

0D

0B

BE

t

DH

t

2 2

2 2 2

1x x

z v

E

t

E

( , )z

z zE z t f t g t

v v

Z

xyH E

yx

E ZH

1v

11/2/2015 3

Y

X

Z

( )

0sin

i t kz

y xE E k x e

X

Y

Zi

Ey=Ey(x) at Zi

Z

Y

Xi

Ey=Ey(z) at xi

v

a

b

11/2/2015 4

11/2/2015 5

( )

0sin

i t kz

y xE E k x e

( )

0sin

i t kz

y xE E k x e

+

=

L

L=n*l/2

Ey

Z

Z

X

Y

X

H-field

Z

X

YEy=Ey(z)

Ey=Ey(x or z)

11/2/2015 6

2 2 2

2 2

0mnp

m n pv

a b c

2

0v -phase velocity

TE101 mode: m=1, n=0, p=1

2 2

2 2 2

101 0

1 1v

a c

a

bc

11/2/2015 7

I coupling loop

coaxial wave guide

cavity

inner conductor

outer

conductor

Y

Z

X

MR

CLL0line

R

C

L

Z0

Impedance of

wave guide

11/2/2015 8

H

Z0

Impedance of

wave guide

0

0

0

0

0

0

, 1

1

: coupling coefficient

Maximum power transfer:

Z 1

1 ,

2

quality factor without external load

L

L

L

LQ

R Z

QLQ

RZ

Z

R

Q Q

coupling loop

coaxial wave guide cavity

inner conductor

outer

conductor

Y

Z

X

11/2/20159

Gunn diode

MW oscillator11/2/2015 10

Resonance Cavity

A

11/2/2015 11

Use detector to find distance between minimums in the slotted

line (wave guide)

Slotted linedetector

TunerOpen

end

11/2/2015 12

Use detector to find distance between minimums in the slotted line

(wave guide). Distance between consequent minima correspond l/2

0 2 4 6 8 10 12 14 16 180

10

20

30

40

50E

(mV

)

x (cm)

l/2

11/2/2015 13

Movable plunger (c direction)

Use plunger to change the dimension of the

cavity in z-direction and search for maxima in

power stored using the cavity detector. Identify

TE101 and TE102.

cavity

11/2/2015 14

11/2/2015 15

2 2

2 2 2

102 0

1 2v

a c

2 2

0

102

1 2

2

vf

a c

Df

f0

0 ~ 450f

Qf

D

11/2/2015 16

By moving the plunger we

changing the resonance

frequency of the cavity1st position of the

plunger

2nd position of

the plunger

Frequency of the oscillator

11/2/2015 17

11/2/2015 18

1. Oscilloscope should run in X-Y mode

2. To plot the I(f) dependence you have to download both Ch1 and Ch2 data

3. Use triangular waveform as a voltage applied to modulation input of the

oscillator

4. Use a proper time scale setting on the scope which could estimated from

scanning frequency

5. Apply the calibration equation to calculate the frequency of the oscillator

from the modulation voltage

mod0.03706 2.9349f V

G

11/2/2015 19

Voltage tunable

oscillator ZX95-3250a-

S+ from

FM Calibration for microwave oscillator

11/2/2015 20

11/2/2015 21

11/2/2015 22

By changing of the coupling between oscillator and cavity we can control

the quality factor of the cavity resonance but in the same time we changing

the power delivered to the cavity

While in resonance: turn orientation of the

input loop from the vertical direction in 10o

steps to 360o.

Read cavity detector.

DetectorB field

11/2/2015 23

0 50 100 150 200 250 300 350

0

2

4

6

8

10

12

I (m

A)

grad)

Experimental result.

Fitted to

𝑨 (cos(+ ))𝒏 + 𝑨𝟎

11/2/2015 24

Presence of dielectric reduces length of cavity at a given resonance

frequency ω0.

This effect grows with the electric field strength Ey.

(0) Without dielectric the cavity length at resonace is c0.

(1) Place dielectric into cavity and move in 0.5cm steps, li.

(2) At each place tune plunger to resonance and record ci.

(3) Plot ∆ci=|c0-ci| versus li : this measures now Ey vs l!

11/2/2015 25

Z

X

Y

TE102

Courtesy of P. Debevec

11/2/2015 26

2 2

0 3 3 2 22

abc a cQ

b a c ac a c

Quality factor (TE101 mode) of unloaded cavity can be calculated as:

a

bc

is the skin depth at frequency 0

2 /

– resistivity of the cavity material

r0≈04x107

2711/2/2015

a

bc

2 / For red brass =6x10-8m

≈4x107

2.25x10-6m a=7.22cm, b=3.42 cm, c=6.91cm (TE101)

2 2

0 3 3 2 22

abc a cQ

b a c ac a c

Q0~7700

11/2/2015 28

11/2/2015 29

q’=900-q

11/2/2015 30

0 10 20 30 40 50 60 70 80 900

2

4

(100)

(110)(111)

(200)(210) (211) (220)(300)

I (

A)

(degree)

Matthew Stupca

Longxiang Zhang

?

11/2/2015 31

?

Second order reflection

Lloyd’s

mirror effect