efectul confinarii cuantice asupra structurii energetice a sistemelor cu dimensionalitate redusa...

23
EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials Physics, Bucharest-Magurele NATIONAL INSTITUTE OF MATERIALS PHYSICS BUCHAREST-MAGURELE

Upload: jody-brown

Post on 03-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

EFECTUL CONFINARII CUANTICE ASUPRA

STRUCTURII ENERGETICE A SISTEMELOR CU

DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea

National Institute of Materials Physics, Bucharest-Magurele

NATIONAL INSTITUTE OF MATERIALS PHYSICS BUCHAREST-MAGURELE

Page 2: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

CONTENT:

1. INTRODUCTION

2. 2D SYSTEMS

3. 1D SYSTEMS

4. 0D SYSTEMS

5. CONCLUSIONS

Page 3: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

1. INTRODUCTION

Low dimensional system (LDS) nanometric size on at least one direction.

Ratio between the number of atoms located at the surface/interface and the total number of atoms:

δ – system dimensionality; a – interatomic distance; d – (minimum) LDS size;

a ≈ 0.25 nm d0 = 3 nm, d1 = 2 nm, d2 = 1 nm.

daNNS 32

,5.0 NNS

Page 4: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

Surface/interface potential barrier

wall of a quantum well quantum confinement (QC) QC – ZERO ORDER EFFECT

nature of the material – first order effectinfinite quantum well = first approximation

Shape of the quantum well ratios between energies of consecutive levels choice of the shaperectangular quantum well = good approximation

Page 5: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

2. 2D SYSTEMS

Plane nanolayersHamiltonian splitting (exact): parallel part – Bloch-type 2D band structure; perpendicular part – infinite rectangular quantum well (IRQW) QC levels

.0,2

, 22

222

pp

dmkk yxn

Page 6: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

T = 0 K εn(kx, ky) = Ev; EQC0 = ? By convention, EQC0 ≡ 0.

QC levels located in the band gap!

.,

122

,

1

22

22

2

222

pyxs

n

yxn

kk

pdmdm

kk

Page 7: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

Application: quantum well solar cells (QWSC)

Matrix element of electric dipole interaction Hamiltonian:

0sinsin2

0

t

iffi dz

d

zp

d

zprEe

dH

12; pppEEppEE ifif

pi = 1 internal quantum efficiency: 42

22

20

2

2

14

sin4096

p

ip

c

e

r

Page 8: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

3. 1D SYSTEMS

Cylindrical nanowiresHamiltonian splitting (approximate): longitudinal part – Bloch-type 1D band structure; transversal part – infinite rectangular quantum well (IRQW) QC levels

xp,l – p-th non-null zero of cylindrical Bessel function Jl(x)

2,2

221 2

lpt

zn xdm

k

Page 9: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

T = 0 K εn(kz) = Ev; EQC0 = ? EQC0 ≡ 0.

QC levels located in the band gap!

,

22

,1

20,1

2,2

222

0,12

221

lpzs

n

lptt

zn

k

xxdm

xdm

k

l – orbital quantum number.

Page 10: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

Valence band = particle reservoir excitation transitions start from the fundamental level activation energy ratio

20,1

2',1'

20,1

2'',1''

xx

xxR

lp

lpnw

Thermal transition Δε = minimum;Electrical transition (eU >> kBT) Δl = 0;Optical transition Δl = ± 1.

Page 11: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

E E

Thermal excitation

Electrical excitation

Optical transition

E

ΔE = min Δl = 0 Δl = ± 1

l = 0

l = 1

l = 2

l = 2

l = 2l = 1

l = 1

l = 0

l = 0

Page 12: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

Application: nc-PS

a b

a – fresh sample; activation energy: E1 = 0.52 ± 0.03 eV

b – stabilized sample; activation energies:E1 = 0.55 ± 0.05 eV, E2 = 1.50 ± 0.30 eV;

E2/E1 = 2.727

E1 = ε1,0, E2 = ε2,0;ds = 3.22 ± 0.05 nm.

I – T characteristics Δl = 0.

EMA: ε ~ d – 2 df = 3.31 ± 0.03 nm;LCAO: ε ~ d – α, α = 1.02 df = 3.40 ± 0.03 nm.

Page 13: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

Application: nc-PS I – λ characteristics Δl = ± 1.

No. 1 2 3 4 F 5 6 7 8

λ (nm) 504 574 629 717 761 827 873 932 1025

E (eV) 2.46 2.16 1.97 1.73 1.63 1.50 1.42 1.33 1.21

1

2

34

5 6

78

1

23

F5

7

1 V 20 V

Page 14: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

nc-PS No. Eexp (eV) Transition

PTspectral maxima

1 2.46 (2, 1) (3, 2)

2 2.16 (0, 0) (2, 1)

3 1.97 (1, 1) (3, 0)

4 1.74 (0, 2) (2, 1)

5 1.50 (0, 2) (1, 3)

6 1.42 –

7 1.33 (0, 1) (2, 0)

8 1.21 (0, 1) (1, 2)

PL 1 1.89(1, 1) (2, 2)(1, 1) (3, 0)

TDDC1 0.55 (0, 0) (1, 0)

2 1.50 (0, 0) (2, 0)

QC transitions identified in nc-PS:

1exp theorr EE , |σr| ≤ 5 %.

Page 15: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

4. 0D SYSTEMS

Spherical nanodots – quantum dots d ≤ 5 nm no more bands groups of energy levels = quasibands

xp,l – p-th non-null zero of spherical Bessel function jl(x)

2,2

220 2

lpxdm

Page 16: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

T = 0 K ε(0) = Ev; EQC0 = ? EQC0 ≡ 0.

QC levels located in the quasiband gap!

l – orbital quantum number.

lpVlp Exxdm

xdm

,12

0,12

,2

222

0,12

220 22

Page 17: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

EMA: ε ~ d – 2

LCAO: ε ~ d – α, α = 1.39

m* ≈ m0e for quantum dots

mmd

amm e0

Page 18: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

No more proper VB = no more particle reservoir excitation transitions: from the last occupied level to the next one selection rules

Thermal transition Δε = minimum;Electrical transition (eU >> kBT) Δl = 0;Optical transition Δl = ± 1.

21,

21','

21','

21'',''

plpl

plplqd

xx

xxR

Page 19: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

E E E

Thermal excitation

Electrical excitation

Optical transitionΔE = minim Δl = 0 Δl = ± 1

l = 0

l = 1

l = 2

l = 2

l = 2l = 1

l = 1

l = 0

l = 0

Page 20: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

Application: Si – SiO2

1

2 34 64 % nc-Si

No. 1 2 3 4

λ (nm) 415 436 571 479

E (eV) 2.99 2.85 2.71 2.59

PL spectrogram Δl = ± 1I – T characteristics Δl = 0

E1 = 0.22 ± 0.02 eVE2 = 0.32 ± 0.02 eVE3 = 0.44 ± 0.02 eV

Page 21: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

Si – SiO2 No. Eexp (eV) Transition

PL(d = 4,92 nm)

1 2,99 (1, 2) → (6, 1)

2 2,85 (0, 1) → (5, 2)

3 2,71 (1, 1) → (6, 0)

4 2,59 (1, 1) → (5, 2)

TDDC(d = 5,28 nm)

1 0,22 (0, 1) (1, 1)

2 0,32 (1, 1) (2, 1)

3 0,44 (2, 1) (3, 1)

QC transitions identified in Si – SiO2

|σr| < 3 %

Page 22: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

5. CONCLUSIONS

Differences between model and experiment due to: size distribution; shape distribution; finite depth of the quantum well.

Allmost ALL the energies measured in electrical transport, phototransport and photoluminescence transitions between QC levels.

Different quantum selection rules different energy levels.

Page 23: EFECTUL CONFINARII CUANTICE ASUPRA STRUCTURII ENERGETICE A SISTEMELOR CU DIMENSIONALITATE REDUSA Magdalena Lidia Ciurea National Institute of Materials

THANK YOU FOR YOUR ATTENTION!