eecs 141 – s02 advanced logic...

19
1 Digital Integrated Circuits © J. Rabaey 2000 Logic EECS 141 – S02 Advanced Logic Styles Digital Integrated Circuits © J. Rabaey 2000 Logic Previous Lecture l Optimization of CMOS Logic Gates l 5 Design Techniques » Transistor sizing » Transistor ordering » Logic transformations » Buffer insertion » Swing reduction

Upload: others

Post on 22-May-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

1

Digital Integrated Circuits © J. Rabaey 2000Logic

EECS 141 – S02Advanced Logic Styles

Digital Integrated Circuits © J. Rabaey 2000Logic

Previous Lecture

l Optimization of CMOS Logic Gatesl 5 Design Techniques

» Transistor sizing» Transistor ordering» Logic transformations» Buffer insertion» Swing reduction

Page 2: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

2

Digital Integrated Circuits © J. Rabaey 2000Logic

Today’s Lecture

l Transistor sizing in complex logic gatesl Alternative static logic families

Digital Integrated Circuits © J. Rabaey 2000Logic

Midterm 1

l Total: 30l Mean: 18.9l Median: 19.5l Stdev: 5.8l Max: 28.5

Good job!

Page 3: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

3

Digital Integrated Circuits © J. Rabaey 2000Logic

Sizing Logic Paths for Speed

l Frequently, input capacitance of a logic path is constrained

l Logic has to drive some capacitancel Example: ALU load in Intel’s microprocessors

is 0.5pFl How do we size the ALU datapath to achieve

maximum speed?l We have already solved this for the inverter

chain – can we generalize it for any type of logic?

Digital Integrated Circuits © J. Rabaey 2000Logic

Buffer Example

∑=

+=

N

i

ip

ftDelay

10 1

γ

Minimum delay is when fi ’s are equal(each stage bears the same effort)

CL

In Out

1 2 N

Page 4: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

4

Digital Integrated Circuits © J. Rabaey 2000Logic

Optimum Effort per Stage

Ff N =ˆWhen each stage bears the same effort:

N Ff =ˆ

NNFftpD N

+=

+= ∑ γγ

/1

10

ˆMinimum path delay

Digital Integrated Circuits © J. Rabaey 2000Logic

Delay in a Logic Gate

)(0 γgf

ptDelay p +=

p = Electrical effort: ratio of intrinsic delay of complex gateand inverter (function of gate topology and layout)

g = Logical effort: How much worse is a complex gate atproducing output current (compared to an inverter)

Page 5: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

5

Digital Integrated Circuits © J. Rabaey 2000Logic

Electrical Effort

Estimates of intrinsic delay factors of various logic types assuming simple layout styles, and a fixed PMOS/NMOS ratio.

Digital Integrated Circuits © J. Rabaey 2000Logic

Logical EffortLogical effort is the ratio of input capacitance of a gate to the inputcapacitance of an inverter with the same output current

g = 1 g = 4/3 g = 5/3

B

A

A BF

VDDVDD

A B

A

B

F

VDD

A

A

F

1

2 2 2

2

21 1

4

4

Inverter 2-input NAND 2-input NOR

Page 6: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

6

Digital Integrated Circuits © J. Rabaey 2000Logic

Logical Effort of Gates

Logic efforts of common logic gates, assuming a PMOS/NMOS ratio of 2.

Digital Integrated Circuits © J. Rabaey 2000Logic

Logical Effort of Gates

1 2 3 4 5Fanout f

1

2

3

4

5

IntrinsicDelay

EffortDelayInv

erte r: g

=1; p =1

2-inp

u t NAN

D: g=4

/3; p=

2

Nor

mal

ized

Dela

y

Page 7: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

7

Digital Integrated Circuits © J. Rabaey 2000Logic

Delay Through Combinational Block

Digital Integrated Circuits © J. Rabaey 2000Logic

Example: Optimize Path

H = 40/9G = 20/9F = 2f =x =y =

From David Harris

Page 8: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

8

Digital Integrated Circuits © J. Rabaey 2000Logic

Alternative Logic Styles

l Static CMOS is robust and reliablel But

» Large (2N transistors)» Slow (large capacitance)

l Hence … A quest for alternative logic styles that are smaller, faster, or lower-power.

Digital Integrated Circuits © J. Rabaey 2000Logic

Ratioed Logic

VDD

VSS

PDNIn1In2In3

F

RLLoad

VDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

FVSS

PDN

Resistive DepletionLoad

PMOSLoad

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

VT < 0

Goal: to reduce the number of devices over complementary CMOS

Page 9: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

9

Digital Integrated Circuits © J. Rabaey 2000Logic

Ratioed Logic

VD D

VSS

PDN

In1

In2

In3

F

RLLoadResistive

N transistors + Load

• VOH = VDD

• VOL = RPN

RPN + RL

• Assymetrical response

• Static power consumption

• tpL= 0.69 RLCL

Digital Integrated Circuits © J. Rabaey 2000Logic

Active Loads

VDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

F

VSS

PDN

DepletionLoad

PMOSLoad

depletion load NMOS pseudo-NMOS

VT < 0

Page 10: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

10

Digital Integrated Circuits © J. Rabaey 2000Logic

Load Lines of Ratioed Gates

0.0 1.0 2.0 3.0 4.0 5.0Vout (V)

0

0.25

0.5

0.75

1

I L(N

orm

aliz

ed)

Resistive load

Pseudo-NMOS

Depletion load

Current source

Digital Integrated Circuits © J. Rabaey 2000Logic

Pseudo-NMOS

VD D

A B C D

FCL

VOH = VDD (similar to complementary CMOS)

kn VDD VTn–( )VOLVOL

2

2-------------–

kp

2------ VDD VTp–( )

2=

VOL VDD VT–( ) 1 1kpkn------–– (assumingthatVT VTn VTp )= = =

SMALLER AREA & LOAD BUT STATIC POWER DISSIPATION!!!

Page 11: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

11

Digital Integrated Circuits © J. Rabaey 2000Logic

Pseudo-NMOS NAND Gate

VDD

GND

Digital Integrated Circuits © J. Rabaey 2000Logic

Improved Loads

A B C D

F

CL

M1M2 M1 >> M2Enable

VDD

Adaptive Load

Page 12: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

12

Digital Integrated Circuits © J. Rabaey 2000Logic

Improved Loads (2)

VDD

VSS

PDN1

Out

VDD

VSS

PDN2

Out

AABB

M1 M2

Dual Cascode Voltage Switch Logic (DCVSL)

Digital Integrated Circuits © J. Rabaey 2000Logic

Example

B

A A

B B B

Out

Out

XOR-NXOR gate

Page 13: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

13

Digital Integrated Circuits © J. Rabaey 2000Logic

Pass-Transistor Logic

Inpu

ts Switch

Network

OutOut

A

B

B

B

• N transistors• No static consumption

Digital Integrated Circuits © J. Rabaey 2000Logic

NMOS-only switch

A = 2.5 V

B

C = 2.5V

CL

A = 2.5 V

C = 2.5 V

BM2

M1

Mn

Threshold voltage loss causesstatic power consumption

VB does not pull up to 2.5V, but 2.5V -VTN

Page 14: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

14

Digital Integrated Circuits © J. Rabaey 2000Logic

(1) NMOS Only Logic: Level Restoring Transistor

M2

M1

Mn

Mr

OutA

B

VDDVDDLevel Restorer

X

• Advantage: Full Swing

• Disadvantage: More Complex, Larger Capacitance

• Other approaches: reduced threshold NMOS

Digital Integrated Circuits © J. Rabaey 2000Logic

Level Restoring Transistor

(a) Output node (b) Intermediate node X

0 2 4 6t (nsec)

-1.0

1.0

3.0

5.0

Vou

t (V

)

0 2 4t (nsec)

-1.0

1.0

3.0

5.0

VX

with

without

VB

with

without

6

Page 15: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

15

Digital Integrated Circuits © J. Rabaey 2000Logic

Solution 2: Single Transistor Pass Gate with VT=0

Out

VDD

VDD

2.5V

VDD

0V 2.5V

0V

WATCH OUT FOR LEAKAGE CURRENTS

Digital Integrated Circuits © J. Rabaey 2000Logic

Complimentary Pass Transistor Logic

A

B

A

B

B B B B

A

B

A

B

F=AB

F=AB

F=A+B

F=A+B

B B

A

A

A

A

F=A⊕Β Ý

F=A⊕ ΒÝ

OR/NOR EXOR/NEXORAND/NAND

F

F

Pass-TransistorNetwork

Pass-TransistorNetwork

AABB

AABB

Inverse

(a)

(b)

Page 16: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

16

Digital Integrated Circuits © J. Rabaey 2000Logic

4 Input NAND in CPL

Digital Integrated Circuits © J. Rabaey 2000Logic

Solution 3: Transmission Gate

A B

C

C

A B

C

C

B

CL

C = 0 V

A = 2.5 V

C = 2.5 V

Page 17: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

17

Digital Integrated Circuits © J. Rabaey 2000Logic

Resistance of Transmission Gate

Vout

0 V

2.5 V

2.5 VRn

Rp

0.0 1.0 2.00

10

20

30

Vout, V

Res

ista

nce,

ohm

s

Rn

Rp

Rn || Rp

Digital Integrated Circuits © J. Rabaey 2000Logic

Pass-Transistor Based Multiplexer

AM2

M1

B

S

S

S F

VDD

GND

VDD

In1 In2S S

S S

Page 18: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

18

Digital Integrated Circuits © J. Rabaey 2000Logic

Transmission Gate XOR

A

B

F

B

A

B

BM1

M2

M3/M4

Digital Integrated Circuits © J. Rabaey 2000Logic

Delay in Transmission Gate Networks

V1 Vi-1

C

2.5 2.5

0 0

Vi V i+1

CC

2.5

0

V n-1 V n

CC

2.5

0

In

V1 Vi V i+1

C

V n-1 V n

CC

In

ReqR eq Req Req

CC

(a)

(b)

C

R eq R eq

C C

R eq

C C

Req Req

C C

Req

C

In

m

(c)

Page 19: EECS 141 – S02 Advanced Logic Stylesbwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s02/Lectures/Lecture13-PTL.pdf1 Digital Integrated Circuits Logic © J. Rabaey 2000 EECS 141 –

19

Digital Integrated Circuits © J. Rabaey 2000Logic

Delay Optimization

Digital Integrated Circuits © J. Rabaey 2000Logic

Transmission Gate Full Adder

A

B

P

Ci

VDD A

A A

VDD

Ci

A

P

AB

VDD

VDD

Ci

Ci

Co

S

Ci

P

P

P

P

P

Sum Generation

Carry Generation

Setup