dyhrman lecture partbv2 - home - evolution and...

57
From genome to biome: Tracking the metabolism and microbiome of a keystone N 2 fixer Coexis>ng in a sea of compe>>on: Leveraging transcriptome data to iden>fy the physiological ecology of phytoplankton from key groups Vigne&es Genome enabled Transcriptome enabled

Upload: duongtuyen

Post on 20-Aug-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

• From  genome  to  biome:  Tracking  themetabolism  and  microbiome  of  a  keystoneN2  fixer

• Co-­‐exis>ng  in  a  sea  of  compe>>on:Leveraging  transcriptome  data  to  iden>fythe  physiological  ecology  of  phytoplanktonfrom  key  groups

Vigne&es

Genome  -­‐  enabled

Transcriptome  -­‐  enabled

Page 2: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Fe ZnB12

NO3-­‐

PO4-­‐

SiO42-­‐

Light

Preda7on

Nutrients

Complex  community  dynamics  driven  in  part  by  resources

Page 3: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Culture  and  field  based  approaches  to  physiological  ecology

Genome and transcriptome-enabled advances allowing to querycells in their environment in a species specific way

Page 4: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Key  themes

• Our focus is on groups that arguably serve a“keystone” role in the marine ecosystem

• Biogeochemical drivers of physiology:– What are the mechanistic underpinnings of resource

utilization and how does resource utilization vary overtime?

• Eco-evolutionary traits:– Are there functional group traits that drive the structure

and function of the NPSG?

• Metabolic plasticity and diversity:– How do diversity and metabolism influence the

physiogical ecology of a keystone group?

Hap

toph

ytes

Dia

tom

sD

inof

lage

llate

s

Harriet Alexander

Page 5: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Physiological  ecology  -­‐  a  tale  of  two  diatoms  in  Narraganse&Bay

• Do  closely  related  diatoms  have  the  same  expressed  metaboliccapacity?

• Is  this  metabolic  profile  consistent  over  >me?• Are  the  resource  responses  the  same  between  species,  or  is  there

evidence  of  resource  par>>oning  of  niche  space?

Skeletonema T.  rotula

Page 6: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol
Page 7: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Collect  samplesfrom  NB  Bay Isolate  mRNA AAAAAA

AAAAAAAAAAAA

AAAAAA

Submit  samplesto  sequencingcenter

Sequence  usingRNAseq  and  mapreads  to  genomes

Sampling  and  pipeline

Stringent  mapping

Target  60  million100  bp  paired-­‐end  reads

Removed  reads  withambiguous  mapping

Thalassiosira  rotulaSkeletonema  costatumand  …  rest  of  MMETSP~400  transcriptomes

48hr  incuba>onat  day  S3

>5µm

MMETSP  =  Marine  Microbial  Eukaryo>c  Transcriptome  Project

Page 8: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Reference  Database

Read  Mapping  andCoun7ng

Quality  Control

Metatranscriptome  Data  Pipeline  -­‐  the  gory  details  ….

Data  Crea7on

Extract  RNA

Sequence  RNA:(Illumina  60M100bp  PE)

Each  read  file  =  15-­‐25GbEach  sample  =  30-­‐50Gb

Trimmoma7c:

Remove  lowquality  reads

Bow7e2:Map  sequences  to

referencetranscriptomes

Select  referencetranscriptomes

CD-­‐HIT-­‐EST:Cluster  at

98%  iden>tyby  species

Bow7e2-­‐build:Create

database  formapping

Re-­‐annotate?

Renamecon>gs  andconcatenate

Custom  Script:Create  ar>ficial

GFF  file

Samtools:Sort  and  convertmapped  file  to

accessible    format

HT-­‐Seq/RSEM:Count  reads  by

gene

RawSequnceFile.fastq

TrimmedSequnces.fastq

RawCounts.tab

FastQC:Assess  library

quality

MappedSequences.bam

MappedGenesSorted.sam

Ref.gff

Ref.fa

8

Page 9: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Collect  samplesfrom  NB  Bay Isolate  mRNA AAAAAA

AAAAAAAAAAAA

AAAAAA

Submit  samplesto  sequencingcenter

Sequence  usingRNAseq  and  mapreads  to  genomes

Sampling  and  pipeline

Stringent  mapping

Target  60  million100  bp  paired-­‐end  reads

Removed  reads  withambiguous  mapping

Thalassiosira  rotulaSkeletonema  costatumand  …  rest  of  MMETSP~400  transcriptomes

48hr  incuba>onat  day  S3

>5µm

Local  isolates  provide  the  most  robust  read  mapping  (15Xincrease  for  local  isolate  rela>ve  to  species  in  database)  -­‐  liclemapping  (<<1%)  to  diatoms  not  present  in  this  system

Page 10: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Taxonomic  distribu7on  of  reads

S 1- 5

Skeletonema

S 1- 5

Alexander  et  al.  2015  PNAS

Page 11: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

C entral carbohydrate metabolismRibosom e

Carbon f ixationOther carbohydrate metabolism

Spliceosom eATP synthesis

Aminoacy l tR NAPurine metabolism

RNA processingBranched-chain amino ac id metabolism

Cysteine and m ethionine metabolismC ofactor and vitamin biosynthesis

Methane metabolismMetabolic capacity

Proteasom eUbiquitin system

Protein processingPhotosynthesis

Lysine metabolismRNA polymerase

Pyrimidine metabolismFatty ac id metabolism

Lipid metabolismAromatic amino ac id metabolismArginine and proline metabolism

Nitrogen metabolismSulfur metabolism

Terpenoid backbone biosynthesisSerine and threonine metabolism

Repair systemNucleotide sugar

Glycan metabolismPolyam ine biosynthesis

Glycosaminoglycan metabolismOther terpenoid biosynthesis

Replicat ion systemSterol biosynthesis

Histidine metabolismABC-2 type and other transport systems

Bacterial sec ret ion systemDNA polymerase

Sugar metabolismPhosphate and amino acid transport systemPheny lpropanoid and flavonoid biosynthesis

Saccharide and polyol t ransport systemAlkaloid and other secondary m etabolite biosynthesis

Other amino ac id metabolismTw o-component regulatory system

Mineral and organic ion transport systemMetallic cat ion and vitam in B12 transport system 1 0-5

1 0-4

1 0-3

1 0-2

1 0-1

S 1 S2 S3 S4 S5 S1 S2 S3 S4 S5S. costatum T. ro tula

Branched-chain amino ac id metabolism

Pe

rce

nt o

f KE

GG

An

no

tated

Re

ad

sKEGG Module

Expressed  metabolic  capacity

Quan>ta>ve  Metabolic  Fingerprint(QMF)

       Plas>c  responses  over  >me

       Unique  responses  between  diatom        genera

Skeletonema

Alexander  et  al.  2015  PNAS

Page 12: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

QMF  highlights  the  metabolic  traits  and  tradeoffs

Skeletonema

Page 13: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Variability  in  expressed  metabolic  capacity  for  N  and  P

Skeletonema

Alexander  et  al.  2015  PNAS

Page 14: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Transcripts  are  choreographed  with  proteins  and  ac7vi7es  inthe  model  diatom  Thalassiosira  pseudonana

Dyhrman  et  al.  2012  PLoS  ONE

+P -P

GDP

Page 15: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Transcripts  are  choreographed  with  proteins  and  ac7vi7es  inthe  model  diatom  Thalassiosira  pseudonana

Dyhrman  et  al.  2012  PLoS  ONE

+P -P

NPT

Inc uptake

Page 16: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Variability  in  expressed  metabolic  capacity  for  N  and  P

Skeletonema

Alexander  et  al.  2015  PNAS

Page 17: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Iden7fying  the  resource  responsive  gene  set

• Resource  responsive?  Sta>s>callyiden>fy  resource  responsive  set  (-­‐Nv.  +N;  -­‐P  v.  +P)

• Stable?  Sta>s>cally  iden>fy  stablereference  genes  (no  change  overincuba>ons)

• Normalize  to  reference  genes(SGNC)

+P -PVS -N+N VSP-­‐responsive

genesN-­‐responsive

genes

• Incuba>ons  performed  with  shiled  N:P  ra>o  to  provide  context  for  insitu  signals

Alexander  et  al.  2012  Front.  Micro.

Page 18: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Resource  responsive  genes  iden7fied  in  situ

• Resource  responsive  sets  are  dis>nct  fromeach  other  and  enriched  in  pathways  of  Nand  P  metabolism  (e.g.  urease,phosphatase,  phosphate  transport  etc.)

• Can  assign  regula>on  pacerns  to  novelgene  families

• But  how  do  we  compare  signals  betweenspecies? Alexander  et  al.  2015  PNAS

Page 19: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Propor7onalize  the  resource  responsive  gene  set

(SGNC-­‐P)  –  (SGNC+P  )

(SGNCfield)  –  (SGNC+P)STDP    =

(SGNC-­‐N)  –  (SGNC+N)

(SGNCfield)  –  (SGNC+N)STDN    =

Standardized  transcrip7onaldifferen7a7on  scores

STDP  ≈  1    -­‐PSTDP  ≈  0    +P

STDN  ≈  1    -­‐NSTDN  ≈  0    +N

Alexander  et  al.  2015  PNAS

+P -PVS -N+N VSP-­‐responsive

genesN-­‐responsive

genes

Page 20: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

STDP

High  N  or  Low  P

Low  N  or  High  P

-­‐P

+P

-­‐N+N

STDP

Visualizing  resource  responsive  signals  in  the  field

STDN

Alexander  et  al.  2015  PNAS

Page 21: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

STDP

S2High  N  or  Low  P

Low  N  or  High  P

-­‐P

+P

-­‐N+N

STDP

T.  rotulaSkeletonema

Up  in  -­‐P

Up  in  -­‐N

Visualizing  resource  responsive  signals  in  the  field

STDN

Alexander  et  al.  2015  PNAS

Page 22: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Species  variability  in  response  to  the  same  environment

• Finely  tuned  species-­‐specific  varia>on  -­‐  each  response  (quadrant)  issignificantly  different  from  the  others

• Responses  are  orthogonal  between  species  in  the  same  resourceenvironment

Alexander  et  al.  2015  PNAS

Page 23: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Summary - Biogeochemical drivers of physiology

• New  approaches  for  the  normaliza>on  andcomparison  of  metatranscriptome  data.

• Diatom  metabolism  is  highly  variable  in  thisestuarine  environment

• Uniquely  expressed  metabolic  capacityunderpins  Skeletonema  bloom  …  and  trade  offsin  N  and  P  metabolism  that    contribute  to  thedominance  of  one  diatom  over  another

• Pacerns  in    resource  par>>oning  may  reflectsegrega>on  of  the  realized  niche  space  andexplain  why  so  many  diatom  species  can  co-­‐occur

Phosphate  transport

Nitrate  reduc7on

What are the mechanistic underpinnings of resource utilization andhow does resource utilization vary over time?

Page 24: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Key themes

• Our focus is on groups that arguably serve a“keystone” role in the marine ecosystem

• Biogeochemical drivers of physiology:– What are the mechanistic underpinnings of resource

utilization and how does resource utilization vary overtime?

• Eco-evolutionary traits:– Are there functional group traits that drive the structure

and function of the NPSG?

• Metabolic plasticity and diversity:– How do diversity and metabolism influence the

physiogical ecology of a keystone group?

Hap

toph

ytes

Dia

tom

sD

inof

lage

llate

s

Page 25: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

The  significance  of  the  NPSG

Image  credits:  SeaWIFS  Global  Chlorophyll

North  PacificSubtropicalGyre

Sta7on  ALOHA

(Karl  and  Church,  Nature  Rev.  Microbiol.,  2014)

Page 26: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

The  keystone  microbiome

Nutrient input,or other forcings

Page 27: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Hawaii Ocean Experiment: Dynamics of Light and Nutrients

(HOE-DYLAN)

Wilson et al. 2015 GBC

Page 28: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Harriet Alexander

Sampling  a  bloom

Page 29: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Deep  water  addi7on  led  to  simulated  “bloom”

Page 30: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Collect  samplesfrom  St.  ALOHA Isolate  mRNA AAAAAA

AAAAAAAAAAAA

AAAAAA

Submit  samplesto  sequencingcenter

Sequence  usingRNAseq  and  mapreads  to  genomes

Sampling  and  pipeline

Stringent  mapping

Target  60  million100  bp  paired-­‐end  reads

Removed  reads  withambiguous  mapping

MMETSP  ~400transcriptomes

6  day  incuba>ons

>5µm

MMETSP  =  Marine  Microbial  Eukaryo>c  Transcriptome  Project

Page 31: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Marine  Microbial  Eukaryote  Transcriptome  Sequencing  Project

Page 32: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Keeling et al. 2014 PLoS Biol.

Greatly  expanded  reference  sequences  in  the  tree  of  life

Page 33: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Within  lineage  diversity  also  greatly  expanded

Keeling et al. 2014 PLoS Biol.

Page 34: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

MMETSP  improves  read  iden7fica7on

             Sequence  read  iden>fica>on  is  substan>ally  improved  over  usingphytoplankton  genomes  which  do  not  capture  the  same  diversity.

Read  mapping  against  genomes  v.  MMETSP  at  St.  ALHOA

Alexander  et  al.  2015b  PNAS

Page 35: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Taxonomic  distribu7on  of  reads

Distribu>ons  is  highly  stable,  much  more  so  than  what  was  observed  incoastal  system.

Page 36: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Increase  in  diatoms  during  simulated  blooms

Read  iden>fica>on  is  robust,  most  are  dinoflagellates,  but  diatomsincrease  in  simulated  blooms  (+DSW)

Page 37: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

DIA HAP DIN

ENERGYMETABOLISM

CARBOHYDRATEAND  LIPID

METABOLISM

NUCLEOTIDE  ANDAMINO  ACIDMETABOLISM

GENETICINFORMATIONPROCESSING

METABOLISM

Alexander et al. 2015b PNAS

ENVIRONMENTALINFORMATIONPROCESSING

Page 38: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Quan7ta7ve  metabolic  fingerprint

Species  are  dis>nct  from  each  other  with  95%  confidence,  and  all  butdinoflagellates  significantly  shil  in  the  simulated  blooms

For  each  gene  determineSignificance Post-­‐p  >  0.95  for  2-­‐fold  change

Page 39: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Gene  shies  in  diatoms

Page 40: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Gene  shies  in  diatoms

Page 41: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Transcrip7onal  response  during  simulated  blooms

Alexander et al. 2015b PNAS

Functional groups have distinct and reproducible transcriptional responseduring blooms driven by nutrient input

Page 42: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

42

Variable  TranscriptAlloca>on  Ra>o  (VTAR)

Variable  transcript  alloca7on  underpins  traits

Haptophytes:  “the  survivalists”;  VTAR<1Diatoms:  “the  scavengers”;  VTAR>1

• Modeling  transcript  alloca>onfollowing  nutrient  addi>onhighlights  differences  in  diatomand  haptophyte  traits

• Diatoms  are  more  efficient  thanhaptophytes

Alexander et al. 2015b PNAS

Page 43: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Transcrip7onal  responses  underscore  func7onal  group  traits

Dinoflagellates

Alterna>ve  trophicmodes?

FEW  significant  shils

BROAD  transcript  decreasesTARGETED  transcript  increase

“the  scavengers”    r-­‐selected

“the  survivalists”    K-­‐selected

MUTED  increase  and  decreases

Diatoms  

Haptophytes  

Page 44: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Summary - Eco-evolutionary traits

• The  becer  the  reference  database(MMETSP)  the  becer  resolu>on

• Phytoplankton  groups  appear  to  be  limitedby  resource  availability  in  the  NPSG.

• Dinoflagellates  have  licle  transcrip>onalresponse  to  nutrient  input.

•  Diatom  are  par>cularly  responsive(VTAR>1)  to  nutrient  input  which  likelyunderpins  their  dominance  in  blooms

Are there functional group traits that drive the structure andfunction of the NPSG?

Page 45: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Key  themes

• Our focus is on groups that arguably serve a“keystone” role in the marine ecosystem

• Biogeochemical drivers of physiology:– What are the mechanistic underpinnings of resource

utilization and how does resource utilization vary overtime?

• Eco-evolutionary traits:– Are there functional group traits that drive the structure

and function of the NPSG?

• Metabolic plasticity and diversity:– How do diversity and metabolism influence the

physiological ecology of a keystone group?

Hap

toph

ytes

Dia

tom

sD

inof

lage

llate

s

Page 46: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Diving  beyond  the  func7onal  group…

Tracking  strain  specific  responses  in  the  calcifyinghaptophyte,  Emiliania  huxleyi  (Ehux)

Image:  Jeremy  Young

Page 47: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

asexual  division

2NDiploid

Calcifying

asexual  division

1NHaploid

MEIOSIS(diploid  divides  to  

haploid)

SYNGAMY(two  haploids  fuse

to  diploid)

Naked

E.  huxleyi  life  cycle

Page 48: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

   Emiliania  huxleyi:  a  cosmopolitan,  globally  significant  species

Image:  NASA  Earth  Observatory

• Calcifica>on    -­‐  cri>cal  role  inglobal  carbon  cycle  andstrongly  linked  to  climatedriven  ocean  acidifica>on

• Source  of  paleoproxies  forclimate  reconstruc>ons

• Form  dense  blooms,  driverslargely  unknown

• First  marine  phytoplankton  tohave  mul>ple  strainssequenced,  iden>fying  pangenome

Page 49: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

10,000  cells  per  ml>  100,000  km2  

Figure  from  Read  et  al.,  2013

Emiliania  huxleyi  has  many  diverse  isolates

Cultured  strains  are  highly  diverse  -­‐  isolated  from  a  broadtemperature  range  and  displaying  considerable  physiological  diversity

Page 50: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

E.  huxleyi  has  a  pan  genome,  with  core  and  variable  genecontent

Key  func>onal  genes  are  variably  distributed  across  cultured  isolates.

Page 51: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Hawaii Ocean Experiment: Dynamics of Light and Nutrients

(HOE-DYLAN)

Wilson et al. 2015 GBC

Page 52: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

C

Control

+NDSW

Deep  seawater  amendment

-­‐N +P-­‐P

Treatments  with  added  N

Responses  to  shies  in  resource  ra7os

Page 53: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Collect  samplesfrom  St.  ALOHA Isolate  mRNA AAAAAA

AAAAAAAAAAAA

AAAAAA

Submit  samplesto  sequencingcenter

Sequence  usingRNAseq  and  mapreads  to  genomes

Sampling  and  pipeline

Stringent  mapping

Target  60  million100  bp  paired-­‐end  reads

Removed  reads  withambiguous  mapping

MMETSP  Ehux  straintranscriptomes

6  day  incuba>ons

>5µm

MMETSP  =  Marine  Microbial  Eukaryo>c  Transcriptome  Project

Page 54: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Summary  -­‐  Metabolic  plas7city  and  diversity

• Metatranscriptome  data  can  be  parsed  atthe  strain  level  with  appropriate  referencedata.

• Apparent  abundance  of  Ehux  strains  andtheir  physiology  is  driven  by  nitrogenaddi>on

• Everything  is  perhaps  everywhere  and  theenvironment  selects  for  what  is  dominant

How do diversity and metabolism influence the physiogical ecologyof a keystone group?

Page 55: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

Summary

• Biogeochemical drivers of physiology:– Plasticity in diatom physiology may allow for co-

occurrence of diverse species.

• Eco-evolutionary traits:– Diatoms appear to be more efficient in turning over

their transcriptome than haptophytes which likelyunderpins their success in response to nutrient pulsesin the NPSG.

• Metabolic plasticity and diversity:– E. huxleyi strains vary in the field in response to N, but

harbor conserved responses to nutrient pulses in theNPSG.

• New resources and ways of parsingmetatranscriptome data are leading to newinsights!

Hap

toph

ytes

Dia

tom

sD

inof

lage

llate

s

Page 56: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol
Page 57: Dyhrman Lecture partBv2 - Home - Evolution and Genomicsevomics.org/wp-content/uploads/2015/06/Dyhrman-Lecture-part-2.pdf · Other terpenoid biosynthesis Replication system Sterol

• Dyhrman Lab: Dr. Rachel Wisneiwski Jakuba, Dr. Elizabeth Orchard, Dr. LouieWurch, Abigail Heithoff, Harriet Alexander, Kyle Frischkorn, Dr. Alena Sevucu, Dr.Julia Diaz, Dr. Monica Rouco Molina, Hannah Joy-Warren, Sheean Haley andmany undergraduate interns.

• Collaborators: Ben Van Mooy, C-MORE partnership, Mike Lomas and the BATSProgram, Jim Ammerman and the ATP3 Program, Eric Webb, Claudia Benitez-Nelson, Ellery Ingall, Dan Repeta, Dennis McGillicuddy, John Waterbury, CabellDavis, Mak Saito, Bethany Jenkins, Tatiana Rynearson, C-MORE investigators

Acknowledgements

• C-­‐MORE• Simons  Founda>on• NSF• EPA• NOAA• DOE,  JGI