structural engineering design of rc structure using staad

62
November 2009 PROJECT REPORT Structural Design Report for the Powerhouse Building at Sondu Miriu Hydropower Station

Upload: uonbi

Post on 19-Jan-2023

1 views

Category:

Documents


0 download

TRANSCRIPT

November 2009

PROJECT REPORT

Structural Design Report for the Powerhouse Building

at Sondu Miriu Hydropower Station

2

CERTIFICATION

I, the undersigned certify that I have read and hereby recommends for acceptance by the Engineers

Registration Board the report entitled: “Structural Design Report for the Powerhouse building”, as

original and true works of the applicant, Mr. Stephen M.Wasike, in partial fulfillment of the

requirements for registration by the Engineers Registration Board of Kenya.

_________________________________ ____________

Eng. K.Tireito Date

0BSupervisor

3

1 2

3'

3 4

5'

5 6 7

C

D

B

A

FRAMING PLAN EL. 1,215.3

4

FRAMING PLAN EL. 1,210.5

D

A

1 22 43

3'

65

5'

7

5

2 4 76

5'

5

3'

321

A

FRAMING PLAN EL. 1,220.8 ~ 1,221.0

6

FRAMING ELEVATION LINE 4

A B C D

7

1 5

5'

62 3

3'

4 7

ROOF STEEL TRUSS FRAMING PLAN

A

C

8

BS 8110

REF. CALCULATIONS OUTPUT

2.4.1

BS 8110 Clause 2.4

1. LOADING CONDITIONS

Live Loads Calculation For Frame Loading

i) Erection Bay (EL.1210.5,designed under Civil Works structures) 50 kN/m2

ii) All other areas as shown below:

Portion Assumed Live Load (KN/m2)

Higher Roof (EL.1224.9) : 1.5 (for maintenance of roof ,etc)

Lower Roof (EL.1220.8) : 1.5 (for maintenance)

Floor (EL.1224.9) : 10 (Control & communication room)

Balcony (EL.1215.3) : 4.0

2. ELEMENT DESIGNS

2.1 Roof Deck At Elevation 1224.9

Roof deck composed of 150mm thick RC slab on steel plate decking.

The roof was composed of secondary trusses (SB-1) and (SB-2) built into the

main trusses (SG-1) and at right angles to it.

The loading from the secondary trusses were taken as point loads on the

main trusses at panel points, 1900mm c/c.

Dead Loads (DL)

80mm Covering concrete = 0.08 x 23 = 1.84KN/m2

20mm Levelling concrete = 0.02 x 23 = 0.46 KN/m2

3-ply asphalt roofing = 0.15 KN/m2

Steel plate t = 1.6mm = 0.16 KN/m2

Concrete slab 150mm thick = 0.15 x 24 = 3.6 KN/m2

Roof Dead Load (DL) = 6.21Kn/m2 Say, 6.3KN/m2

Roof DL =

6.3KN/m2

9

BS 8110

REF.

CALCULATIONS

LIVE LOADS (LL)

Roof Live Load (LL) for maintenance = 1.5 KN/m2

11BDesign of Steel Deck Plate

Stress check

Total Dead Load on deck plate, w = 6.3 kN/m / m

Span between truss SB-1, L = 1,900mm (Max.)

Assuming simply supported span,

Bending moment in plate , M = w x L2 = 6.3 x 1.9 x 1.9

8 8

= 2.84KN-m per metre width

Considering dead load acting on steel deck plate,

Ultimate moment, Mult = 1.4 x 2.84

= 4.0 KN-m per metre width

Bending Stress in Plate = Mult = 4.0 x 106

(< 265 N/mm2 ) Z 39.3 x 103

= 102 N/mm2 (OK)

Deflection check:

σmax. = 5 x w x L4 = 5 x 6.3 x 1.94

384 x E x I 384 x 2.05E-04 x 1.82E+06

= 2.9E-03m = 2.9mm

L / σ = 1900 / 2.9 = 655 > 360 (OK)

OUTPUT

Roof LL =1.5

KN/m2

Bending Stress = 102(< 265 N/mm

2

σmax. = 2.9mm

Deflection OK

10

BS 8110

REF.

Table 3.1

Clause

3.3.6

3.3

Table 3.4

Table 3.5

CALCULATIONS

1. RS1 ROOF SLAB DESIGN (El.1220.8)

Slab Design For Panel Corner Panel (Grids 3` - 4)

Dimensions Materials

Short span, lx = 4.25 m fcu = 25 N/mm²

Long span, ly = 5.50 m fy = 460 N/mm²

Slab thickness, h = 200mm Density = 24 kN/m³

cover to rebar, c = 30 mm (Normal weight concrete)

ly /lx = 5500 = 1.3 c1.50

4250 s1.05

Durability and fire resistance

Nominal cover for mild conditions of exposure = 40mm > 25mm OK

Maximum fire resistance for 200mm thick slab = 2 hours > 1 hour

EDGE CONDITIONS

Edge 1 = D D = Discontinuous

Edge 2 = C C = Continuous

Edge 3 = C

Edge 4 = D

3` 4

Edge 1

C

Ed

ge

2

Lx =

4.2

5 m

Ed

ge

4

Ly = 5.5m

C`

Edge 3

OUTPUT

h = 200mm d = 154mm

Cover= 40mm

1 hour fire

resistance OK

11

BS 8110 Ref.

Clause

3.5.2.4

Table 3.13

Table 3.15

3.5.3.4

Clause

3.4.4.4

Table 3.15

Clause

3.4.4.4

CALCULATIONS

Loading

Dead Loads

Plain concrete ,80mm thick = 0.08 x 23 = 1.84 kN/m²

Levelling mortar, 20mm thick = 0.02 x 23 = 0.46

3-ply built-up roofing felt = 0.15

Slab self weight,200mm thick = 0.2 x 24 = 4.8

Suspended ceiling = 0.6

TOTAL = 7.55 kN/m²,say 7.6 kN/m²

Live Load

Imposed, qk = 10 kN/m² Design load, ή = 1.4 x 7.6 + 1.6 x 1.5 = 13.04 kN/m² Support Moment

ßs = 0.087 (Support Moment for continuous span)

M = 0.087 x 13.04 x 4.25 x 4.25 = 20.49 kN-m

K = 20.49 x 106 = 0.035 < 0.156 1000 x 1542 x 25

z = 154(0.5+√(0.25-0.035 /0.9) = 147.84mm > 0.95 d (=146.3mm)

As = 20.49 x 106 = 350.0 mm2/m 0.87 x 146.3 x 460

Asmin = 0.0013 x 1000 x 200 = 260mm2/m <350 mm2/m OK

Short Direction

ßs = 0.065 (Mid span moment, short direction )

M = 0.065 x 13.04 x 4.25 x 4.25 = 15.31 kN-m

K = 15.31 x 106 = 0.026 < 0.156 1000 x 1542 x 25 use z = 0.95d

As = 15.31 x 106 = 261.5 mm2/m 0.87 x 146.3 x 460

OUTPUT

gk = 7.6 kN/m²

Design load, ή

= 13.04 kN/m²

TOP 1

T12@200mm

(As = 565mm2)

BOTTOM 1

T12@250mm

(As = 565mm2)

12

Bs 8110 Ref.

Table 3.27

3.4.5.4

Table 3.16

Table 3.9

3.4.6

Table 3.11

3.12.11.2.7

clause 3.9.3

clause

3.9.4.19

CALCULATIONS

Distribution steel and all other areas of slab (min.rebar)

Asmin = 0.0013 x 1000 x 200 = 260mm2/m

Check for shear

ßs = 0.50 (max,at continuous edge 3)

V = 0.50 x 13.04 x 4.25 = 27.7kN/m

v = 27.7 x 1000 = 0.18 N/mm2 < 0.8 √25 OR 4N/mm2 1000 x 154 100 x 565 = 0.37 ; vc = 0.59 N/mm2 > v OK

103 x 154

Deflection

M = 15.31 x 106 = 0.64; fs = 5 x 460 x 261.5 = 133.1 N/mm2

Bd2 1000 x 1542 8 x 565

Modification factor, tension reinforcement = 1.516

Allowable span / effective depth ratio = 26 x 1.516 = 39.42

Actual span / effective depth ratio = 4250 / 154 = 27.60<39.42

Cracking

3 x d = 3 x 154 = 462mm

Spacing between bars = 250 - 12 = 238mm < 3d

3. RC WALL DESIGN

RC walls to be infill panels between the columns and beams , thickness

200mm. Because of the opening for windows; these walls do not provide any

structural stiffness to the frames except for the self dead weight acting on the

beams.

3.1 Reinforcement design

Minimum reinforcement required in walls to control cracking due to flexure

and thermal shrinkage:

a) External Walls (Outside Faces Only)

0.25 x 200 x 1000 / 100 = 500mm2/m

OUTPUT

USE

T12@300mm

(As = 377mm2)

Shear ok

l / d ratio OK

spacing OK

Provide T12 @ 200 c/c

(As= 565mm2)

13

BS 8110

REF.

CALCULATIONS

OUTPUT

3.2.1.3

b) Internal Walls (Both Faces)

provide T10 @ 200 c/c = 393mm2/m

4. FRAME LOADING CALCULATIONS – INPUT LOADS

1BDead Loads (DL)

The dead loads used in the analysis were derived from knowledge of the

weights of various materials used. The calculated values are summarized in

tables 2 and 3 as shown underneath.

Sample calculation for Dead loads on Joint No. 21, 29 (Table 4.1)

Roof at elevation 1223:DL = 6.3KN/m2

Contributing Area: Length = (7.5 + 5.5 ) / 2 = 6.50m

Width = (1.9 / 2 + 0.4) = 1.35m

Area = 6.5 x 1.35 = 8.775m2

Total load on joint no. 21or 29 = DL (KN/m2) x Area (m2)

= 6.3 x 8.775 = 55.28KN

Weight of Sub-Truss SB-1/SB-2 = 0.22KN/m

Total length for load on joint = (7.5 + 5.5 ) / 2 = 6.50m

Total load on joint no. 21or 29 = 0.22 x 6.5 = 1.43KN

Similarly, Parapet wall on joint = 15.36 x 6.5 = 99.84KN

TOTAL POINT LOAD (DL) = ( 99.84 + 1.43 + 55.28) = 156.55KN

Computation for the rest of the joint loads is as shown in table 4.1 below.

Sample calculation for load distribution from slab to joint no. 9 along gridline 4

- C is demonstrated below for Roof UDL of 7.6KN/m2:

i) Roof

Area of trapezium 1: = 0.5 x ( L1 + L2) x W

= 0.5 x (3.75 + 1.525) x 2.225 = 5.87 m2

Total Roof Load = 5.87 x 7.6 KN = 44.61 KN

Provide

T10 @ 200 c/c

(As= 393mm2

14

2BBS 8110

REF.

3BCALCULATIONS 4BOUTPUT

4 53'

9JOINT no.

C

Area of trapezium 2: = 0.5 x (2.75 + 0.525) x 2.225

= 3.64m2

Total Roof Load = 3.64 x 7.6 KN

= 27.66 KN

i) Concrete Wall,1400mm High

Length of wall = 0.5 x (7.5 + 5.5) = 6.5m

Area of wall = 6.5 x 1.4 m2 = 9.10m2

Load from wall to joint = 0.2 x 24 x 9.10 = 43.68 KN

ii) 800 x 450 Beam RG1

Length of Beam = 0.5 x (7.5 + 5.5) = 6.5m

Weight of Beam = 0.8 x 0.45 x 24 = 8.64 KN/m

Dead Load of Beam = 8.64 x 6.5 = 56.16 KN

Total Load on Joint 9 = (27.66 + 43.68 + 56.16 + 44.61)KN

= 172.11 KN

Remainder of the loading on frame 4 A-D was calculated similarly for both

dead and Live Loads for member loading as well as joint loading and

results tabulated in Tables 4.1 below.

15

BS 8110 REF.

CALCULATIONS OUTPUT

Calculation of member loads on RG3 (Members 11,120 (Ref. Table 4.2)

i) RG3 (900 X 450):

Self weight: 0.9 x 0.45 x 24 = 9.72 KN/m

ii) Roof at EL.1220.8:

Dead Load = 7.6 KN/m2 (see appendix A3)

Base of triangular load distribution ( h2) = 4.45 (see figure on page 13)

Height of triangular load distribution (d2) = 2.225

Load on triangular area contributing = 2.225 x 4.5 x7.6 / 2.25

= 33.82 kN/m

16

TABLE 4.1:-FRAME 4 , A ~ DEAD LOAD : JOINT LOADS:

Level EL +

Load Description

Unit TRIBUTARY PORTION

Joint No.

Weight Linear Triangular Trapezoidal Total Load Moment

(KN/m2) L L W L1 L2 W (m

2) (KN) (KN-m)

(KN/m) (m) (m) (m) (m) (m) (m) (m)

1223 Roof 6.3 0 6.5 1.35 8.78 55.28

Sub-truss 0.22 6.5 0 0 0 0 0 6.50 1.43

Parapet 15.36 6.5 0 0 0 0 0 6.50 99.84

Total 156.55 21,29

Roof 6.3 0 6.5 1.9 0 0 0 12.35 77.81

Sub-truss 0.22 6.5 0 0 0 0 0 6.5 1.43

Total 79.24 22~28

URG4 11.52 6.5 0 0 0 0 0 6.50 74.88

wall 6.72 6.5 0 0 0 0 0 6.5 43.68

Total 118.56 12,20

1220.8 Roof 7.6 0 0 0 2.75 0.525 2.225 3.64 27.66

7.6 0 0 0 3.75 1.525 2.225 5.87 44.61

wall 4.8 0 6.5 1.4 0 0 0 9.10 43.68

RG1 8.64 6.5 0 0 0 0 0 6.50 56.16

Total 172.11 9

Roof 7.6 0 0 0 2.75 0.525 4.45 7.29 55.4

7.6 0 0 0 3.75 1.525 4.45 11.74 89.22

RB1 6 6.50 0 0 0 0 0 6.50 39.00

Total 183.62 10

Roof 7.6 0 0 0 2.75 0.525 2.225 3.64 27.66

7.6 0 0 0 3.75 1.525 2.225 5.87 44.61

Cant. Slab 7.6 0 6.5 2.85 0 0 0 18.53 140.83 193.65

Parapet 8.5 6.5 0 0 0 0 0 6.50 55.25 154.7

RG2 8.64 6.5 0 0 0 0 0 6.50 56.16

RCB 8.64 2.85 0 0 0 0 0 2.85 24.62 33.87

Total 349.13 382.22 11

1217.5 2G4 11.52 6.5 0 0 0 0 0 6.50 74.88

Wall 4.8 0 6.5 4.52 0 0 0 30.55 141.02

Crane Girder 5 6.5 0 0 0 0 0 6.50 32.50

Total 248.4 7

Crane Girder 5 6.5 0 0 0 0 0 6.50 32.50 8

1215.3 Floor 5.6 0 0 0 2.225 0.525 2. 225 3.05 17.08

5.6 0 0 0 3.75 1.525 2. 225 5.87 32.87

Wall 4.8 0 6.5 4.7 0 0 0 30.55 146.64

1G1 11.52 6.5 0 0 0 0 0 6.50 74.88

Total 264.39 4

Floor 5.6 0 0 0 2.75 0.525 4.45 7.29 58.32

5.6 0 0 0 3.75 1.525 4.45 11.74 93.92

1B1 3.9 6.5 0 0 0 0 0 6.50 25.35

Total 196.59 5

Floor 5.6 0 0 0 2.75 0.525 2. 225 3.64 20.38

5.6 0 0 0 3.75 1.525 2. 225 5.87 32.87

Balcony 7.4 0 6.5 0.95 0 0 0 6.18 45.73

Edge/Handrail 4.6 6.5 0 0 0 0 0 6.50 29.90

Wall 4.8 0 6.5 4.7 0 0 0 30.55 146.64

1G2 11.52 6.5 0 0 0 0 0 6.50 74.88

1CB 10.08 2.85 0 0 0 0 0 2.85 28.73

Total 379.13 6

17

TABLE 4.2:-FRAME 4 , A ~ D: ( MEMBER DEAD LOADS)

Level EL +

Load Descriptio

n

Unit Uniform Load Trapezoidal Load

Weight Length Load h1

(m) w1

(KN/m) d1

(m) h2

(m) w2

(KN/m) d2

(m) Member

No. (Kn/m2) b w

(KN/m) (m) (KN/m)

1220.8 RG3 9.72 0 9.72 11 , 12

Roof 7.6 0 0 0 4.45 33.82 2.225 11 , 12

7.6 4.45 33.82 2.225 0 0 0 11 , 12

1215.3 1G3 9.72 0 9.72 9 , 10

Floor 8 0 0 0 4.45 35.6 2.225 9 , 10

8 4.45 35.6 2.225 0 0.00 4.45 9 , 10

(A) C1 16.8 0 16.8 4

C1 36 0 36 1

(C) C3 16.8 0 16.8 6 , 8

C3 36 0 36 5

C3 36 0 36 2

(D) C4 11.76 0 11.76 3 , 7

TABLE 4.3:Frame 4 , A ~ D Dead Load Moment Due To Eccentricity At Column Line A And C

From Joint No.

Joint Load

From Member

No.

Uniform Load Triangular Load Total Mz Moment at Joint

No. w

(KN/m) L

(m) w * L (KN)

w (KN/m)

L (m)

w*L /2 (KN)

Py (KN)

0.25*Py (KN m)

21 156.55

22 ~ 25 277.34

7 248.4

118.56

800.85 800.85 200.2 7

29 156.55 11 9.72 4.45 43.25 75.25 4.45 76.25

25 ~ 28 277.34

9 172.11

8 32.5

10 91.81

730.31 43.25 167.43 940.99 235.25 8

18

TABLE 4.4:FRAME 4,A ~ D,: LIVE LOADS: JOINT LOADS

Level EL +

Load Description

Unit TRIBUTARY PORTION

Joint No.

Weight Linear Rectangular Trapezoidal Total Load

(Kn/m2) L L W L1 L2 W (m

2) (KN)

(KN/m) (m) (m) (m) (m) (m) (m) (m)

1223 Roof 1.5 0 6.5 1.35 0 0 0 8.78 13.17 21,29

Roof 1.5 0 6.5 1.9 0 0 0 12.35 18.53 22 ~ 28

1220.8 Roof 1.5 0 0 0 2.75 0.525 2.225 3.64 5.46

Roof 1.5 0 0 0 3.75 1.525 2.225 5.87 8.81

Total 14.27 9

Roof 1.5 0 0 0 2.75 0.525 4. 45 7.29 10.94

Roof 1.5 0 0 0 3.75 1.525 4. 45 11.74 17.61

Total 28.55 10

Roof 1.5 0 0 0 2.75 0.525 2.225 3.64 5.46

Roof 1.5 0 0 0 3.75 1.525 2.225 5.87 8.81

Roof 1.5 0 6.5 2.85 0 0 0 18.53 27.8

Total 42.07 11

1215.3 Floor 10 0 0 0 2.75 0.525 2.225 1.82 36.4

10 0 0 0 3.75 1.525 2.225 2.94 58.7

Total 95.1 4

Floor 10 0 0 0 2.75 0.525 4. 45 3.65 72.9

10 0 0 0 3.75 1.525 4. 45 5.87 117.4

Total 190.3 5

Floor 10 0 0 0 2.75 0.525 2.225 1.82 36.4

10 0 0 0 3.75 1.525 2.225 2.94 58.7

Balcony 4 0 6.5 0.95 0 0 0 6.18 24.72

Total 119.82 6

TABLE 4.5:-FRAME 4 , A ~ D: ( MEMBER LIVE LOADS)

Level EL +

Load Descriptio

n

Unit Uniform Load Trapezoidal Load

Weight Length Load h1

(m) w1

(KN/m) d1

(m) h2

(m) w2

(KN/m) d2

(m) Member

No. (Kn/m2) b w

(KN/m) (m) (KN/m)

1220.8 Roof 1.5 0 0 0 4.45 6.68 2.225 11 , 12

1.5 4.45 6.68 2.225 0 0 0 11 , 12

1215.3 Floor 10 0 0 0 4.45 44.5 2.225 9 , 10

10 4.45 44.5 2.225 0 0.00 4.45 9 , 10

19

Table 4.6: Live Load Moment Due To Eccentricity, Frame 4, (A-D)

From

Joint

No.

Joint Load

(KN)

From Member

No.

Uniform Load Triangular Load Total

Py

(KN)

Mz

0.25*Py

(KN-M)

Moment at Joint No.

W

(KN/m)

L

(m)

W*L

(KN)

W

(KN/m)

L

(m)

W*L/2

(KN)

21 13.17

22~25 64.86

78.03 78.03 19.51 7

29 13.17 11 6.68 4.45 14.86

25~28 64.86

9 14.27

10 14.28

106.58 14.86 121.44 30.36 8

20

5BBS 8110 REF.

6BCALCULATIONS 7BOUTPUT

5. MONORAIL HOIST LOAD FOR DRAFT TUBE GATE (HL)

( FRAME 4, A ~ D)

8BLong Term Case:

Hoist, Self weight = 10 kN

Lifted Load = 75 kN

Total Point Load, P = (75 + 10) KN = 85 KN

Moment (joint No.11) : M = 1.7 x 85 = 144.5 KN-m

9BShort Term case

Short term Load, P = 200 kN

Hoist self weight = 10 kN,

Total Point Load, P = (200 + 10)KN = 210 KN

Moment (joint No.11) : M = 210 x 1.7 = 357 KN-m

6. SEISMIC LOAD (SL) (UBC)

seismic loads I are considered the as 10% of Y direction loads of Dead Load, (DL),

Live Load, (LL), and Crane Dead Load (CDL). This load is applied this to the

frame in the X- direction and determined the seismic coefficient thus:

V = Z I C

Where :

Z = 0.15 (Zone 2A)

I = 1.25

RW = 5.0

C = 1.25 S S = 1.0 Site Coefficient (Given in Table 16-J)

T = Ct hn3/4 Ct = 0.0731; hn = 1223 - 1210.5 = 12.5m

RW

W

T2/3

21

BS 8110 REF.

CALCULATIONS

OUTPUT

T = 0.49 Sec

C = 1.25 x 1.0 / 0.492/3 = 2.01

V = 0.15 x 1.25 x 2.01 / 5.0 x W

= 0.08 x W , Say 0.10 x W

Sample of seismic load calculation for joint loads in table 4.1 are shown in table 4.7

below. In each case, the joint loads are multiplied by a factor of 0.1:

Table 6.1:Seismic Joint Load Calculation

Level EL + Joint Dead Load (KN) Seismic Load (KN) Joint No.

1223 156.55 156.55 x 0.1 = 15.66 21,29

79.24 79.24 x 0.1 = 7.92 22~28

118.56 118.56 x 0.1 = 11.86 12,20

1220.8 172.11 172.11 x 0.1 = 17.21 9

183.62 183.62 x 0.1 = 18.36 10

7. TEMPERATURE EFFECTS (TE)

The concrete structure was subjected to stresses due to temperature changes of.

+10 degrees and -10 degrees centigrade. The temperature load was calculated

directly by STAAD programme, using the following commands:

TEMPERATURE LOAD

1 TO 12 TEMP 10

LOAD 16 -1.0 TE

TEMPERATURE LOAD

1 TO 12 TEMP -10

22

BS 2573

REF.

CALCULATIONS

OUTPUT

Appendix A,

Table 25

Tables 1,2,3 and 25

Bs 6399:

general

purpose

cranes

8. CRANE LOADS (CDL, COL)

8.1 Specification of Crane

Design Crane capacity : 1000 KN

Design Crane Capacity : 13 m

Number of Wheels : 8 pieces

Design Wheel span : 4.1 m

Crane Loads

Dead load , W = 750.0KN (including trolley)

Maximum wheel load , Pmax = 340.0KN

Minimum wheel load , Pmin = 97.5 KN

Average wheel load , Pav = 93.8 KN

Impact Loads

Vertical Loads, Pv = 0.25 P

Transverse Horizontal Surge Load, PHT = 0.10 P

Longitudinal Horizontal Surge Load, PHL = 0.05 P

8.2 Reactions from Crane Girders to Columns

Crane Girder size = 914 x 419 x 343 kg/m Universal Beam

Add 15% of self weight to carter for weight of welds,plates,stiffenners,etc

Weight of girder = 343 x 1.15 = 395 kg/m

Weight of rail = 30kg/m

Weight of lattice girder = 75 kg/m

Total weight = (395 + 30 + 75) kg/m

= 500 kg/m, OR 5.0 KN/m

Crane Rxn on Girder =5.0 KN/m

23

BS 8110 REF.

CALCULATIONS

OUTPUT

8.3 Crane Position for Maximum shears

Minimum hook approach = 1.1 m

Span of crane = 13.0 m

a = 1.1 m

b = 11.9 m

c = 13.0 m

d = 4.1 m

a) Crane Operating Load Cases:

i) Maximum Operating Load/Pair Of Wheels

Grid Line A or C

Hook + crab weight = (1000 + 150) x (13 - 1.1)

2 x 13

= 526.3 KN

Crane weight (600 / 4 ) = 150 KN

Total, (Pvmax.) = 676.3 KN

Maximum vertical load / = 1.25 x 676.3 KN

pair of wheels (factored) = 845.4 KN

ii) Minimum operating load/pair of wheels

Grid Line A or C

Hook + crab weight = (1000 + 150) x 1.1) 2 x 13

= 48.7 KN

Crane weight (600 / 4 ) = 150 KN

Total = 198.7 KN (Pvmin.)

Pvmax =

845.4 KN

Figure 8.1: Crane Position for Max. Shear

24

BS 8110 REF. CALCULATIONS

OUTPUT

Minimum vertical load / = 1.25 x 198.7 KN

pair of wheels (factored) = 248.375 KN

iii) Horizontal Surge Load

10% of (hook + crab) : 0.10 x (1000 + 150 )

= 115 KN

Horizontal Surge Load / = 115.0 / 4

pair of wheels (PHT) = 28.8 KN

iv) Longitudinal Surge (Breaking) Load Fig. 8.2:Surge Loads

This is defined as 5% of the wheel load For each pair of wheels : P = 0.05 x 676.3

= 33.87 KN

Total on whole girder : 2 x 33.87 KN

= 67.74 KN NOTE:

This force acts at rail level and is transferred to top of corbel with a moment. Since

the rail is continuous over the girder, the surge load is taken by the three columns in

each frame)

Thus each column takes,

PHL = 67.6 / 3 = 22.6 KN (see table 4.7 below)

And moment , 22.6 x 1.1 = 24.9KN m

In table 8.1 on page 26 below, Fx = PHL = 22.6KN and Mz = 24.9KN m

b) Crane Unloaded Cases:

i) Maximum Vertical Load / Pair of Wheels

Grid Line A or C

Hook + crab weight = (1000 + 150) x 1.1) = 68.7 KN

2 x 13

Crane weight (600 / 4) = 150KN

Total = 218.7KN

Hor. Surge load (PHT)

= 28.8 KN

Breaking Load

= 67.74 KN

Fx=22.6 KN

Mz =

24.9knm

25

BS 8110 REF.

CALCULATIONS

OUTPUT

ii) Minimum Vertical Load / Pair Of Wheels

Grid Line A or C

Hook + crab weight = 150 x 1.1 2 x 13 = 6.4KN

Crane weight (600 / 4) = 150KN

Minimum vertical load

/ pair of wheels: (Pvmin.) = 156.4KN

c) Maximum Horizontal and Longitudinal Reactions from Crane Girder to

Columns

For maximum effect at Line 4, from the force diagram below:

Taking vertical and horizontal moments,

Figure 8.3: force diagram Crane Loads On Frame 3’ - 5

R3'v = 4.1 / 7.5 x Pv = 0.55 x Pv……..…..(i)

R3'HT = 0.55 x PHT……………………………………..……..(ii)

R4v = (1.0 + 3.4 / 7.5 ) x Pv = 1.45 x Pv……….....(iii)

R4HT = 1.45 x PHT………………………………..……………(iv)

R3'HL = R4HL = R5HL = PHL…………….(v)

Pvmin =

156.4KN

26

BS 8110 REF. CALCULATIONS

OUTPUT

d) Moment Reactions from crane Girders to Columns …………(Fig. 8.4)

MX = FY x 0.75 ± FZ x 1.1 MZ = FX x 1.1 Where:

FY = RV;

FZ = RHT and

FX = RHL

8.4 Sample Calculation for Crane Operating Load7(COL7)

From page 22,

Maximum vertical load, Total, (Pvmax.) at grid 3` = 845.4 KN

From equation (i), for Crane Operating Load 7 (COL7),

R3'v = 0.55 x Pv = 0.55 x 845.4

= - 464.75 KN(Max A) For FY,with max,at A

R4v = -1.45 x Pv = 1.45 x -845.4 = -1225.83 KN

For Fz ,with max A

R3'HT = 0.55 x PHT = 0.55 x 28.8 = 15.84 KN For Mx, with max. at A

MX = FY x 0.75 ± FZ x 1.1

= -465 x 0.75 ± 15.8 x 1.1 = 331.4 KNm

Mz = FX x 1.1 = 22.6 x 1.1 = 24.9 KNm The calculated values are as tabulated in table 8.1 below.

For Max.A:

R3'v =

- 464.75 KN

R4v = Fy

-1225.83 KN

MX = 331.4 KNm

Mz = 24.9

KNm

27

Table 8.1:Maximum Crane Dead Load Effects on Columns Along Grid Line 4

Load Case Max. @ Line

Grid Location Fx (KN)

FY (KN)

FZ (KN)

MX (KN-M)

MZ (KN-M)

A A 3' 0 - 120.3 0 90.2 0

CDL4 4 0 -317.1 0 237.8 0

C 3' 0 -86 0 -64.5 0

4 0 -226.8 0 -170.1 0

∑ 0 -750.2 0 93.4

C A 3' 0 -86 0 64.5 0

CDL4 4 0 -226.8 0 170.1 0

C 3' 0 -120.3 0 -90.2 0

4 0 -317.1 0 -237.8 0

∑ 0 -750.2 0 -93.4

A 3' 22.6 -465 15.8 366.1 -24.9

4 22.6 -1225.8 41.8 965.3 -24.9

COL7 A 5 22.6 0 0 0 -24.9

C 3' 22.6 -136.6 15.8 -85.1 -24.9

4 22.6 -360.1 41.8 -224.1 -24.9

5 22.6 0 0 0 -24.9

∑ 135.6 -2187.5 115.2 1022.2 -149.4

A 3' -22.6 -465 -15.8 331.4 24.9

4 -22.6 -1225.8 -41.8 873.4 24.9

COL8 A 5 -22.6 0 0 0 24.9

C 3' -22.6 -136.6 -15.8 -119.8 24.9

4 -22.6 -360.1 -41.8 -316.1 24.9

5 -22.6 0 0 0 24.9

∑ -135.6 -2187.5 -115.2 768.9 149.4

A 3' 22.6 -136.6 15.8 119.8 -24.9

4 22.6 -360.1 41.8 316.1 -24.9

COL21 C 5 22.6 0 0 0 -24.9

C 3' 22.6 -465 15.8 -331.4 -24.9

4 22.6 -1225.8 41.8 -873.4 -24.9

5 22.6 0 0 0 -24.9

∑ 135.6 -2187.5 115.2 -768.9 -149.4

A 3' -22.6 -465 -15.8 85.1 24.9

4 -22.6 -1225.8 -41.8 224.1 24.9

COL22 C 5 -22.6 0 0 0 24.9

C 3' -22.6 -136.6 -15.8 -366.1 24.9

4 -22.6 -360.1 -41.8 -965.3 24.9

5 -22.6 0 0 0 24.9

∑ -135.6 -2187.5 -115.2 -1022.2 149.4

28

9. MAIN FRAME ANALYSIS FOR SP4 (A - D)

BS 8110,Part 1,clause 2.5.2:-Considering transverse truss SP4 along grid line 4 (A-D)for analyisis,the

following loading conditions and truss modelling are analysed.

10BTable 9.1:Load Condition For Transverse Frame Model 4(A-D)

No. Description Crane

Position

Crane

Operation Seismic force

Standard Load

1 DL Dead Load

2 LL Live Load

3 CDL Crane Dead Load Line A

4 CDL Crane Dead Load Line C

5 COL Crane Operating Load Line A Moving A-C

6 COL Crane Operating Load Line A Moving C-A

7 COL Crane Operating Load Line C Moving A-C

8 COL Crane Operating Load Line C Moving C-A

9 SL Seismic load (DL+LL) ACTING A-D

10 SL Seismic load (DL+LL) ACTING D-A

11 SLC Seismic Load by Crane Line A ACTING A-D

12 SLC Seismic Load by Crane Line A ACTING D-A

13 SLC Seismic Load by Crane Line C ACTING A-D

14 SLC Seismic Load by Crane Line C ACTING D-A

15 TE Temperature Effect(+10 degrees)

16 TE Temperature Effect(-10 degrees)

17 HL Hoist Load (Long Term)

18 HL Hoist Load (Short Term)

Load Combinations

21 1.4DL+1.6LL+1.4CDL Line A

22 1.4DL+1.6LL+1.4CDL Line C

23 1.4DL+1.6LL+1.6COL Line A Moving A-C

24 1.4DL+1.6LL+1.6COL Line A Moving C-A

25 1.4DL+1.6LL+1.6COL Line C Moving A-C

26 1.4DL+1.6LL+1.6COL Line C Moving C-A

27 1.4DL+1.6LL+ 1.4CDL +1.4SL+1.4SLC Line A ACTING A-D

28 1.4DL+1.6LL+ 1.4CDL +1.4SL+1.4SLC Line A ACTING D-A

29 1.4DL+1.6LL+ 1.4CDL +1.4SL+1.4SLC Line C ACTING A-D

30 1.4DL+1.6LL+ 1.4CDL +1.4SL+1.4SLC Line C ACTING D-A

31 1.4DL+1.6LL+1.6HL(L Term)+1.4CDL Line C

32 1.4DL+1.6LL+1.6HL(S Term)+1.4CDL Line C

33 1.0DL+1.0LL+1.0CDL+1.0TE Line A

34 1.0DL+1.0LL+1.0CDL+1.0TE Line C

35 1.0DL+1.0LL+1.0CDL-1.0TE Line A

36 1.0DL+1.0LL+1.0CDL-1.0TE Line C

29

10. TRUSS MODELING AND LOADING CONDITIONS

BS 8110, Part 1, Clause 3.2.1.3: Truss SG-1 is part of the frame model of superstructure at Line 4. it

is sampled to show how the analysis was carried out. The sizes of reinforced concrete elements are

as shown below:

Figure 10.1: FRAME SP 4 (A – D)

1700

22

00

550

0

48

00

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

RC Member B (mm) H (mm)

1, 2, 5 1000 1500

3, 4 700 700

6 700 1000

7 700 700

8 700 1500

9, 10 450 900

11, 12 450 900

Steel Members Size

13 ~ 20 150 x 100 x 10 RHS

21 ~ 28 200 x 100 x 10 RHS

29 ~ 45 100 x 100 x 10 RHS

1

7

30

BS 8110 REF.

CALCULATIONS

OUTPUT

11. COMPUTER ANALYSIS AND RESULTS

The resuts of computer analysis,redone using STAAD 2006 are as tabulated

below in Appendix... A summary of the maximun forces is given below:

Member No. on Model Mx (KNm) Fx (KN) Fy (KN)

Column C1 1 2079 3699.5 240.1

Column C3 2 3519 5187.7 579.3

Column C4 3 558.7 2740.5 227.9

RG3 11,12 839.2 (C End ) 398.5

844.1(D End) 417

1G3 9,10 1552.2 (C End) 729

1342.2(D End ) 691

For full results of computer analysis, refer to appendix C

31

BS 8110 REF.

CALCULATIONS

OUTPUT

Clause 2.5.3

Clause 3.4

Clause 3.4.4.4

12. DESIGN OF RC AND MEMBERS

a) 900 x 450 1G3

Table 12.1:Beam Shears and Moments from Computer Analysis

Location

Moment (KN-m) Shears

Top Bottom (KN)

End C 1552.2 - 729

Centre - 925 414

End D 1342.2 - 691

Design Parameters

Width, b = 450mm

Overall Depth, h = 900mm

Cover to Rebars, t = 40mm

Effective Depth, d = 900 – 40 – 12 – 12.5 = 832.5mm

Concrete Grade, fc = 25 N/mm2

Steel Yield, fy = 460N/mm2

Assume T25 rebars, T12 stirrups

d' = 40 + 25/2 = 52. 5 mm

End C (TOP),Moment = 1552.2 KNM

K = 1552.2x 106 = 0.199 > 0.156 25 x 450 x 832.52

Compression reinforcement required,

K - K’ = 0.199 - 0.156 = 0.043

Excess Moment = 0.043 x 25 x 450 x 832.52

= 335.89 KN-m

d = 832.5mm

d' = 52. 5 mm

32

BS 8110 REF. CALCULATIONS

OUTPUT

3.4.5.2

Table 3.8

Table 3.7

3.4.5.3

Asc = 335.89 x 106

0.95 x 460 x (832.5 - 52. 5)

= 985.4 mm2

PROVIDE 2 T25 COMPRESSION STEEL

Tension steel,

Z = 832.5(0.5 + √(0.25 - 0.156 /0.9)

As = 0.156 x 25 x 450 x 832.52 + 985.4 mm2

0.95 x 460 x 645.2

= 5299.3mm2

PROVIDE 12 T25 TENSION STEEL

x = (d – z) / 0.45 = (832.5 - 645.2) / 0.45

d’ / x = 52. 5 / 416.2 = 0.126

As min = 1.5 x 600 x 1000 = 850 mm²

As crack = 0.4 x 0.5 x 3 x 1000/2 x 600/460 = 391 mm²

Shear Analysis (End C)

v = V = 729 x 1000 = 1.95 N/mm2 bd 450 x 832.5

100 As/bd = 100 x 5890/ 450 / 832.5 = 1.57

(vc + 0.4) = (0.77 + 0.4) = 1.17 N/mm2

0.8 x √fcu = 0.8 x √25 = 4 N/mm2

(vc + 0.4) < v < 0.8 x √fcu OR

1.17 N/mm2 < v < 4 N/mm2

Assume 3T12 @ 150, Stirrup spacing < 12 x 25 = 300mm

Asv ≥ bv sv (v - vc) / 0.87 fy

≥ 450 x 150( 1.95 – 0.77) / 0.87 / 460

PROVIDE

3 T25

(1470 mm²)

Z = 645.2mm

As = 5890mm2

x = 416.2mm

d’ / x < 0.37

v=1.95 <

4 N/mm2

vc = 0.77 <

4 N/mm2

Asv≥131.6 mm2

33

BS 8110 REF.

CALCULATIONS

OUTPUT

cl.3.4.5.5

Clause 3.8.2.1

≥ 131.6 mm2

(Svmin.) = (0.75d), = 0.75 x 832.5 = 624.4mm

PROVIDE 3-T12 @150mm c / c,

Deep Beam Side Reinforcement

Try 6 T16 side rebars

Sb = (900 – 2 x (40 + 12 + 25)) = 373mm

(6 / 2 + 1)

Min. bar size = √ sb x b = √ 373 x 600 =

fy 460

Therefore provide 6 -T16 side reinforcements

b) DESIGN OF REBARS FOR COLUMN C4

( Elevation 1210.5 - 1215.3)

Column Parameters

bcol = 700 mm loy = 4800mm

hcol = 700 mm cover = 40 mm

lox = 4800mm FcU = 25N/mm2

Column Loads From STAAD Analysis

MX = 558.7 KNm; Shear = 227.9 KN (X- axis)

My = 97.9KNm; = 31.4 KN (Y- axis)

N (Axial ) = 2740.5 KN

NOTE:

Moments and shears in Y -axis are from the longitudinal frame A (3` - 5)

analysis, considering dead loads and live load combinations only.

Asv = 339mm2

34

BS 8110

REF.

CALCULATIONS

OUTPUT

3.8.1.6.2

Table 3.20

3.8.1.6.1

3.8.4.5

equation 40

End Conditions:

Bottom:

dbeam = 800mm

βx = 1.2 : Column unrestrained at top,restarined by deep beam at botom.

βy= 1.2 : Column restrained at top and bottom by deep beam .

Column effective heights

lex = βx x lox = 1.2 x 4,800

ley = βy x loy = 1.2 x 4,800

h' = 700 - 40 - 10 - 12.5

b' = 700 - 40 -10 - 12.5

h' / h = 637.5 / 700 = 0.91

Analysis Condition

lex / hcol = 4800 / 700 = 8.23 < 10

ley / bcol = 4800 / 700 = 8.23 < 10

bcol > dbeam

Therefore the Column IS Short

Bi-Axial Bending

Design moment :

Mx = 558.7 knm = 876.39 KN

h' 0. 6375m My = 97.9KNm = 153.59 KN b' 0. 6375m Mx > My b' h' Therefore Design for Enhanced M'x

M'x = Mx + β x ( h' / b' ) x My

lex = 5760mm

lyx = 5760mm

h' = 637.5mm

b'= 637.5 mm

h' / h = 0.91

Column IS Short

Mx > My b' h'

35

BS 8110

REF.

CALCULATIONS

OUTPUT

Table 3.22.

Part 3

Chart No.25

3.8.4.6

Table 3.9

β = 1 - 7 x N = 1 - 7 x 2740.5 x 103

6 x b x h x fcu 6 x 700 x 700 x 25

M'x = 558.7 + 0.739 x ( 637.5 / 637.5 ) x 97.9

= 631.05 KNm

N = 2740.5 x 103 = 5.59

Bh 700 x 700 M'x = 631.05 x 106 = 1.84

bh2 700 x 700 x 700

100Asc = 0.7% bh

Provide 10T25 Bars

(100 Asc / bh = 1.00)

Shear Analysis

Shear, V = (Vx2 + Vy

2)1/2

Vx = 227.9 KN ; Vy = 31.4KN

V = ( 227.92 x 31.42 )1/2

= 230.1 KN

v = V = 230.1 x 103 = 0.52 N/mm2

h'b 637.5 x 700 v < 4.0 N/mm2 OR 5.0 N/mm2 vc = 0.65 N / mm2

β = 0.739

M'x = 631KNm

Provide :

10T25 Bars

( Asc = 4910mm

2)

V = 230.1 KN

v=0.52 N/mm2

vc=0.65 N/mm2

36

BS8110

REF.

CALCULATIONS

OUTPUT

Clause

3.4.5.12

3.4.7

Clause 5.2.3.4

v'c = vc + 0.60 N / Ac V h' / M

Ac = h = 0.49m2;

M = 631.05 KNm

Hence v'c = 0.65 + 0.60 x 2740.5

0.49 x 230.1 x 0.6375 x 631.05

= 0.69 N /mm2

Therefore provide min. Hoops:

Max. spacing = 0.75 x h' = 0.75 x 637.5 = 478.12mm;

Min. Size of Hoop = 25 / 4 = 6.25mm

a) Design of Corbel to Support Crane Girder

Figure 12.1: Crane position for maximum shear force on supports(Corbel)

Shear Force Analysis

Horizontal force on corbel = 27 kN

Dynamic wheel load (P) = 300.0 KN/wheel

v'c =

0.69N /mm2

Use

3 T10@200

37

BS8110

REF. CALCULATIONS

OUTPUT

Clause 5.2.7.1

Impact factor (wheels) = 1.25

Therefore factored load = 1.25 x 300 = 375.0 KN

Ultimate load,Pf = 1.4 x 375.0 = 525 KN

C = 4.34m (c/c spacing of Crane wheels)

Pf = 525 KN/ wheel (Factored Load)

L = 7.5 m (Max span of Girder)

Wswt = 5 KN/m (Assumed Girder self weight)

PT = 2 x Pf = 2 x 525 = 1050 KN

Max. shear force due to wheel loads = PT x ( 2 - C/L )

1050 x ( 2 - 4.34/7.5 ) = 1492.4 KN

Girder self weight. = 5 x 7.5/2 = 18.8 KN

Total Shear force, Vx = 1492.4 + 18.8 = 1511.2 KN

Concrete strength fcu = 25 N/mm2 ; fy = 460N/mm2

Maximum bearing stress at contact surface = 0.8 x 25 = 20N/mm2

Minimum Length of bearing plate = 470mm

Required minimum width of Bearing Plate = 1511.2 x 103

(20 x 470)

= 160mm

minimum width of Bearing Plate provided = 370 > 160mm OK

For the corbel section considered,(See Figure 12.2 below)

Column width,B = 1000mm

Overal Depth,H = 2000 mm

effective depth d = 2000 - (40 + 25 / 2) = 1947.5 mm

Pf = 525 KN

Vx=1511.2 KN

38

BS8110

REF.

CALCULATIONS

Figure 12.2: Rebar for corbel section

Figure 12.3: Corbel forces

OUTPUT

39

BS8110

REF.

clause 5.2.7.2.3

BS table

3.9

CALCULATIONS

Reinforcement

Shear stress ,v = Total Shear, Vx = 1511.2 x 103 B x d 1000 x 1947.5

Line of action of load from column face, av = 500mm

av / d = 500 / 1947.5 = 0.26mm

v / fcu = 0.776 / 25 = 0.03 From chart, appendix…….

z / d = 0.875 ; z = 0.875 x 1947.5 = 1704.06mm

x = (d - z) / 0.45 = (1947.5 - 1704.06) / 0.45

(d - x) = 1947.5 - 540.97 = 1406.53mm

Ft = Vx x cotβ = 1511.2 x 500 / 1406.53

From strain profile,

concrete strain,εs = (1406.53 / 540.97) x 0.0035 = 0.0091 > 0.002

x / d = 540.97 / 1947.5 = 0.28

From table 104,Reiynolds,steel stress, fs = 330 N/mm2

Required Rebar = Steel Tensile Force,Ft Steel Stress, fs

= 537.21 x 103 = 1627.9mm 330 but 0.5 Vx = 0.5 x 1511.2 = 755.6 KN > Ft

So provide As = (755.6 + 1.4 x 27) x103 = 2404mm2 330

SHEAR ANALYSIS

100 x As / B x d = 100 x 2950 / 1000 x 1947.5 = 0.15

Concrete shear stress, vc = 0.34 N/mm2

OUTPUT

V = 0.776 N/mm

2

x =540.97mm

Ft = 537.21KN

use concrete

εs =0.002 x / d = 0.28

Provide

6 T25 bars

AS=2950mm2

40

BS5950

REF.

BS 5950, Part 4.6.1

CALCULATIONS

Links required : As / sv = B(v - vc)

= 1000(0.878-0.34) = 538 mm2/m

Minimum area of links = 0.5 x Rebar area

= 0.5 x 2950 = 1473mm2

Notes

1.) The main tension bars to be welded to a cross bar of equal size and strength.

2.) 2).The distance between the edge of the bearing plate and the inside

face of the cross bar (169mm) > cover to main tension bars.

13. DESIGN OF MAIN TRUSS MEMBERS (SG-1)

From STAAD analysis, maximum axial forces( KN ) are :

Tension compression

Bottom Members (Nos. 13 – 20) : 1116.8

Top Members (Nos. 21 – 28) : 1205.9

Internal Members (Nos. 29– 45) : 749.1 749.10

Consider member No. 17 with tensile force = 1141.05 KN

For welded connections, allowable tensile force, Pt,

Pt = Ae x Py ; Ae = gross area of section.

Try 150 x 100 x 10mm RHS section

Allowable tensile force = 55.5 x 102 x 275 x 10-3

= 1526.25 KN > 1141.05 KN OK

OUTPUT

Provide:

T12@150 C/C

AS=754mm2/m

Provide 7

legs@226

AS= 1582mm2

Use 150x100x10mm

RHS

41

BS8110

REF.

BS 5950, 4.7.3.2

Table 27(a)

CALCULATIONS

Member with max. compressive force (No.24) = 1205.92 KN

Panel points for secondary trusses = 1812.5mm

Effective length, LE = 1812.5 x 1.0 mm

Try 200 x 100 x 10mm RHS

Radius of gyration = 7.0 x 10mm

Λ = 1812.5 / 7.0 x 10mm = 25.9

pc = 269 N/mm2

allowable compressive force Pc = pc x Ag ; Ag = 55.5cm2

Pc = 269 x10-3 x 55.5 x 102 = 1492.95 > 1205.92 KN OK

Deflection check for truss SG-1:

Displacement diagrams (figs.13.1 &13.2) below depict the deflection of truss

SG-1. On frame 4 A-D.

i) Determination of max deflection due to Dead Load (See fig.13.1)

σDL = 23.91 – (2.32 + 3.20) = 21.15 mm ………(i) 2

ii) Determination of max deflection due to Live Load (See fig.13.2)

σLL = 5.48 – (0.50 + 0.77) = 4.85 mm ………(ii)

2

i) Computation of maximum total deflection due to combined Dead

Load and Live Load

σmax = σDL + σLL

= (21.15 + 4.85) mm = 26.0 mm

i) Check on limiting deflection ratio (L / σ)

L / σ = 15,200 / 26.0 = 584.6 > 360 OK

OUTPUT

Use 200x100x10mm

RHS

σDL= 21.15mm

σLL = 4.85 mm

σmax= 26.0mm

L / σ > 360

OK

42

BS5950 REF.

CALCULATIONS

OUTPUT

Figure 13.1:Dead Load deflections

Figure 13.2:Live Load deflections

43

44

45

46

SECTION B: BILLS OF QUANTITIES

BILLS OF QUAN TITIES

GENERAL NOTES:

47

Whenever in the contractors priced bill of quantities no price appears against an item,the value of s

uch item shall be deemed to have been included in his prices for the other items in the bill of

quantities.

Abbreviations

Throughout the bill of quantities,units of measurements and the terms are abbreviated and shall be

interpreted as follows:

M shall mean linear metre

Sm shall mean square metre

Cm shall mean cubic metre

Mm shall mean millimeter

Kg shall mean kilogramme

Ditto shall mean the whole of the preceeding description except as qualified in the description

in which it occurs.

48

Column C1

49

50

APPENDICES

51

APPENDIX A:

FRAME MODELLING

52

3.2.1 12BSp 4 (A – D) For Dead Loads on Frame

Modeling of all Dead Loads (DL) forces acting on the sub-frame SP4 (A-D) as calculated above is as

given below. The self weight of the steel truss is not given and will automatically be calculated by the

analysis software (STAAD III)

Figure……………….. For deal loads (DL). Units: KN, M

170

0

220

0

550

0

480

0

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

-156.58 -79.24 -79.24

-79.24

-79.24

-79.24

-79.24

-79.24

-156.58

-183.62

-173.07

-344.79

-9.75

-127.92

-199.04

-237.81

-269.52

-34.27

-34.27

-16.58

-373.88

-11.76

-11.76

-8.64

-10.08

-32.5

-35.6

-35.6

-36.0

-16.8

143.4

-254.02

-16.8

4

1

1

-36.0

-127.92

53

3.2.2 13BSP 4 (A – D) For Live Loads on Frame

Modeling of all Live Loads (LL) forces acting on the sub-frame SP4 (A-D) is as given below.

Figure……………….. For Live loads (LL). Units: KN, M

170

0

220

0

550

0

480

0

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

-13.17 -18.53 -18.53

-18.53

-18.53

-18.53

-18.53

-18.53

-13.17

-28.55

-14.27

-42.07

-380.6

-30.36

-190.2

-6.68

-6.68

-214.92

-11.76

-89.0

-89.0

19.51

-254.02

4

1

1

7

54

3.2.3 14BSP 4 (A – D) for Crane Dead Loads (CDL)

Modeling of Crane Dead Loads (CDL) forces acting on the sub-frame SP4 (A-D) with maximum

loading at Grid A is as given below.

Figure……………….. For Crane Dead Loads (CDL) [A: MAX] Units: KN, M

170

0

220

0

550

0

480

0

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

-226.8

170.1

-237.8

-317.1

4

1

1

7

55

SP 4 ( A – D)

Modeling of Crane Dead Loads (CDL) forces acting on the sub-frame SP4 (A-D) with maximum

loading at Grid C is as given below.

Figure……………….. For Crane Dead Loads (CDL) [C: MAX] Units: KN, M

170

0

220

0

550

0

480

0

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

-317.1

237.8

-170.1

-226.8

4

1

1

7

56

3.2.4 15BSP 4 (A – D): CRANE OPERATING LOAD (COL)

1) [Max A – C]

Modeling of Crane Operating Load (COL) forces acting on the sub-frame SP4 (A-D) with maximum

loading at Grid A and crane travelling from A to C is as given below.

Figure……………….. For Crane Operating Load (COL) [A: MAX:- A-C] Units: KN, M

170

0

220

0

550

0

480

0

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

-360.1

224.1

-965.3

-1225.8

4

1

1

7

41.8

41.8

57

2) Crane Operating Load (Col) [Max C – A]

Modeling of Crane Operating Load (COL) forces acting on the sub-frame SP4 (A-D) with maximum

loading at Grid A and crane travelling from C to A is as given below.

Figure……………….. For Crane Operating Load (COL) [A: MAX:- A-C] Units: KN, M

170

0

220

0

550

0

480

0

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

-360.1

-41.8 -41.8

-1225.8

4

1

1

7

-873.4

316.1

58

3) Crane Operating Load (Col) [Max A – C]

Modeling of Crane Operating Load (COL) forces acting on the sub-frame SP4 (A-D) with maximum

loading at Grid C and crane travelling from A to C is as given below.

Figure……………….. For Crane Operating Load (COL) [C: MAX:- A-C] Units: KN, M

170

0

220

0

550

0

480

0

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

-1225.8

873.4

-316.1

-360.1

4

1

1

7

41.8

41.8

59

4) Crane Operating Load (Col) [Max C – A]

Modeling of Crane Operating Load (COL) forces acting on the sub-frame SP4 (A-D) with maximum

loading at Grid C and crane travelling from C to A is as given below.

Figure……………….. For Crane Operating Load (COL) [C: MAX: - C - A] Units: KN, M

170

0

220

0

550

0

480

0

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

-1225.8

-41.8

-41.8

-360.1

4

1

1

7

-224.1

965.3

60

3.2.5 16BSP 4 (A – D) for Seismic Load Case

Modeling of Seismic Load Case (SL) forces acting on the sub-frame SP4 (A-D) is as given below.

These forces were considered as 10% of Y direction loads of Dead Load, (DL), Live Load, (LL), and

Crane Dead Load (CDL). The calculated seismic load was applied to the frame in the X- direction.

Figure……………….. For Crane Dead Loads (CDL) [A: MAX] Units: KN, M

170

0

220

0

550

0

480

0

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

-226.8

170.1

-237.8

-317.1

4

1

1

7

61

3.2.6 17BSP 4 (A – D): For Hoist Loads

1. Long Term Hoist Load

Figure……………….. For

170

0

220

0

550

0

480

0

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

-144.5

4

1

1

7

-85.0

62

2. Sp 4 ( a – d): For Short Term Hoist Load

Figure……………….. For

170

0

220

0

550

0

480

0

21

12

22

13

23

14

24

15

25

16

26

17

27

18

28

19

29

20

29

13

14

22

39

38

21

30

15

40

23

32

31

25

42

16

33

24

41

34

18

35

26

43

36

20

37

28

45

19

17

27

44

8

11

12

9

10

9

5

10

4

6

5

8

2

C

2

3

3

11

6

7

4450 4450

8900

[email protected] = 14500

14500

A

D

350

750

750

-357.0

4

1

1

7

-210