scalable extended reach pon

12
ePhoton/one Torino 1-2008 1 [email protected] GCO GCO Power Budget Improvement for Passive Outside Plant Long Reach High Density Access Network using High Bit Rate RSOA-ONUs ePhoton/ONe Torino 29-1-2008 1 : Universitat Politècnica de Catalunya (UPC), Optical Comm. Group (GCO) 2: France Telecom, R&D Réseaux d'Accès (RESA), France 3: Alcatel-Thales III-V Lab, France J. A. Lazaro(1), V. Polo (1), F. Bonada (1), P. Chanclou (2), C. Kazmierski (3), J. Prat (1) ECOC 2007 We6.4.3 ePhoton/one Torino 1-2008 2 [email protected] GCO GCO Scalable Extended Reach PON OFC’08 (Invited paper) J. A. Lázaro1, J. Prat1, P. Chanclou2, G. M. Tosi Beleffi3, A. Teixeira4, I. Tomkos5, R. Soila6, V. Koratzinos7 1: Univ. Politècn. de Catalunya (UPC), Barcelona 2: France Telecom R&D Réseaux d'Accès (RESA), France 3: ISCOM, Italian Communication Ministry, Optical Communications & Devices, , Rome (Italy) 4: Instituto de Telecomunicações (IT) -, Aveiro 3810-193, (Portugal) 5: Research and Education Laboratory in Information Technologies, Athens, (Greece) 6: Tellabs Oy, Espoo, (Finland) 7: Intracom S. A Telecom Solutions, Athens (Greece)

Upload: independent

Post on 12-Nov-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

ePhoton/one Torino 1-20081 [email protected]

GC OGC O

Power Budget Improvement forPassive Outside Plant Long Reach High Density Access Network using High Bit Rate RSOA-ONUs

ePhoton/ONe Torino 29-1-2008

1 : Universitat Politècnica de Catalunya (UPC), Optical Comm. Group (GCO)2: France Telecom, R&D Réseaux d'Accès (RESA), France3: Alcatel-Thales III-V Lab, France

J. A. Lazaro(1), V. Polo (1), F. Bonada (1), P. Chanclou (2), C. Kazmierski (3), J. Prat (1)

ECOC 2007 We6.4.3

ePhoton/one Torino 1-20082 [email protected]

GC OGC O

Scalable Extended Reach PON

OFC’08 (Invited paper)

J. A. Lázaro1, J. Prat1, P. Chanclou2, G. M. Tosi Beleffi3, A. Teixeira4, I. Tomkos5, R. Soila6, V. Koratzinos7

1: Univ. Politècn. de Catalunya (UPC), Barcelona2: France Telecom R&D Réseaux d'Accès (RESA), France3: ISCOM, Italian Communication Ministry, Optical Communications & Devices, , Rome (Italy)4: Instituto de Telecomunicações (IT) -, Aveiro 3810-193, (Portugal)5: Research and Education Laboratory in Information Technologies, Athens, (Greece)6: Tellabs Oy, Espoo, (Finland)7: Intracom S. A Telecom Solutions, Athens (Greece)

ePhoton/one Torino 1-20083 [email protected]

GC OGC O

Grant agreement no.: 217122 (STREP), 3 years, 2.6 MEuroCall: FP7-ICT-2007-1 , Activity: ICT-1-1.1 - Network of the Future

Part. Participant name Short name Country

1 Universitat Politecnica de Catalunya UPC Spain

2 France Telecom / Orange FT France

3 Tellabs TLB Finland

4 Intracom S.A. Telecom Solutions IntraCOM Greece

5 Instituto de Telecomumicações IT Portugal

6 High Institute of Communication and Information Technology ISCOM Italy

7 Research and Education Laboratory in Information Tech. AIT Greece

FP7 SARDANA STREP project

Scalable

Advanced

Ring-based passive

Dense

Access

Network

Architecture”

ePhoton/one Torino 1-20084 [email protected]

GC OGC OSARDANA… (and Corridinho, Chorea, Ballu Tunda,

Ronde Chantée, ...)

CO

RN1

RN2

RN3

RNn

RN4

Different steps short steps (with arms low) and long steps (with

arms up).

Different formatsdifferent Transmission and modulation formats will be

studied and evaluated.

2 modes of jumping: small jumps or high jumping.

2 modes of operation: continue stream and burst mode.

Social: people that don’t know between themselves join

in circles to dance together, as a way of brotherhood.

Social: SARDANA network aims at the maximum extension of

broadband access to all; it will extend the broadest application of ICT avoiding social fracture

Scalablea new dancer can always be added to the circle

except when the dance is in high jumping.

ScalableSARDANA network will allow increasing the number of

nodes according to future requirements.

Centralizedthe “Cap danser” tells to the other dancers when

to change the steps, according to the song.

Centralizedthe management of the network is done by the Central

Office (CO) according to the traffic.

Ring shapedexpresses community strength

Ring shapedprovides protection and communication balance

SARDANA danceSARDANA network

ePhoton/one Torino 1-20085 [email protected]

GC OGC OOptical Network Scenarios

vs distance

Extended PON>100 Mbit/s x Nusers

users' bandwidth grows by 50% per year

Nielsen's law of Internet Bandwidth(Data source: Alterbox 04/98)

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

1,E+07

1,E+08

1980 1985 1990 1995 2000 2005 2010

Bit/

s

Bit Rate

100Mbit/s

Metro&Access convergence

copper, radio

Bitrate

LAN

10 Mb

100 Mb

1 Gb

10 Gb

1 Mb1m 10m 100m 1Km 10Km 100Km 1000Km

VSR OPTICALACCESS

METRO

100 Gb

LAN

10 Mb

100 Mb

1 Gb

10 Gb

1 Mb1m 10m 100m 1Km

VSR OPTICALACCESS

CORE

100 Gb

Interfacenumber

LAN10

100

1,000

10,000

1VSR

METRO OTNLAN10

100

1,000

10,000

1VSR CORE

ACCESSMETROOPTICAL

1m 10m 100m 1Km 10Km 100Km 1000Km1m 10m 100m 1Km

ePhoton/one Torino 1-20086 [email protected]

GC OGC OFTTH research: motivation• Evolution after G/E-PON ?• Access-metro convergence ?• Assure the future full usability of infrastructure

– Dark fibre available, in limited number– Fibre exhaust urban areas

• Investment and risk deferring– unpredicted growth after G/E-PONs– unpredicted take rates, geographically & temporally

• Technological alternatives ?– emerging opto-electronic technologies

CATV

ADSL

FTTH-PtP

FTTHG/E-PON

FTTHWDM-PON

POTs

FTTH

WDM&TDM-PON

COST

xDSL

TIME

CAPACITY

FTTH ultra-dense WDM-PON

ngPON

WDM - PONWDM - PON

ePhoton/one Torino 1-20087 [email protected]

GC OGC OImpact on infrastructure

Central

UsuarioCaseta en vía pública

Fibra Óptica en canalización subterránea

Suministro eléctrico

Central

Usuario

Nodo Remoto enterrado

Fibra Dopada con ErbioFibra Óptica en canalización

Current solutions ngPON

ePhoton/one Torino 1-20088 [email protected]

GC OGC OImpact over network architecture

• Decrease the number of Central office• Integration of Central office and Metro node

A C

B

Redon

Equipements WDM sur chaque arc optique

Present Tomorow

FT/Orange

ePhoton/one Torino 1-20089 [email protected]

GC OGC O

RED TRONCAL DE FIBRA ÓPTICA

AÑO 3

Barcelona El Prat de Llobregat

Tarragona

Lleida

Girona

Sant Cugat del VallèsMataró

Granollers Sabadell

TerrassaIgualada

Villafranca del Penedés

Vilano va i la Geltrú

Manresa

Vic

Figueres

Olot Ripoll

Berga

Puigcerdà

La Seu d’Urgell

Balaguer

Mollerusa Tàrrega

Cervera

Valls

Reus

Salou

TortosaRED SECUNDARIA

DE INTERCONEXIÓN

Barcelona

Tarragona

Lleida

Girona

Sant Cugat del VallèsMataró

Granollers Sabadell

TerrassaIgualada

Villafranca del Penedés

Vilano va i la Geltrú

Manresa

Vic

Figueres

Olot Ripoll

Berga

Puigcerdà

La Seu d’Urgell

Balaguer

Mollerusa Tàrrega

Cervera

Valls

Reus

Salou

Tortosa

Fundamental goals• Maximize:

– N. served users (>1000)– Served area (100Km)– Served capacity (10Gbit/s x 40)

• Minimize:– Infrastructure: COST

• N. Fibres / cables• N. Cabinets• N. Active areas• Civil work investments

• Musts:– Passive external plant– Single fibre access– Scalability and upgradability– Robustness:

• Protection • Monitoring and electronic compensation strategies

over the PON

UNLIMITED PON

ePhoton/one Torino 1-200810 [email protected]

GC OGC O

CO

RN1 RN2

RNi

RNj

RNN RNN-1

1:K

ONONU

1:K

ONONU

ONONU

1:KRSOA ONU

λD m+1,…, λD

2N

WDM RING

TDM TREE

λD1,…, λD

m

Downstream Signals

Upstream Signals

λU1,…, λU

2N

λU1,…, λU

2N

Bidirectional Transmission PIN/APD

ONONU

ONONU

ONONU

SARDANA architecture

1:K

RN i

Signals

λi1, 2, 3, 4

50/50

1:K/2

1:K/2

λi1, i2

50/50

λi1

Common

Rest

λi3, i4

ONU

ONU

λi3 λi1

SARDANA PON

• new adoption of remotely-pumped amplification

• WDM/TDM overlay

• cascadableremote nodes ina new hybrid architecture

• 2-fibre passivecentral-ringprotection + 1-fibre TDM-trees

ePhoton/one Torino 1-200811 [email protected]

GC OGC OSARDANA equipment general scheme

1. Separate: standard GPON (MAC) + SARDANA2. Integrated functionality: adapted GPON + SARDANA

SARDANA ONT

SARDANA CO

Standard 10G-GPON

OLT

Optical Interface

SARDANA PON

Standard 10G-PON

ONTSERVICEPLATFORM

MUX &

PUMP &

ROUT.&

MONIT.

Standard 10G-GPON

OLT

Optical Interface

Standard xPONOLT

Optical Interface

refl.opticalInterface

CONTROL (control&management, monitoring, compensation)

ePhoton/one Torino 1-200812 [email protected]

GC OGC O

CO

RN1 RN2

RNi

RNj

RNN RNN-1

ONONU

ONONU

1:K

ONONU

ONONU

1:K

ONONU

1:K

ONONU

ONONU

1:KRSOA ONU

λD m+1,…, λD

2N

WDM RING

TDM TREE

λD1,…, λD

m

Downstream Signals

Upstream Signals

λU 1,…, λU

m

λU m+1,…, λU

2N

Bidirectional Transmission

Approach and basic modules• WDM ring: Transport & Resilience

– up to 1.2Tbit/s (64 λ for 2000 users)

• TDM trees:– Up to 3 λ for 3 operators sharing common

infrastructure.

• Passive Remote Nodes (RN):– Cascadable Add&Drop– 2-to-1 fibre interface– Remotely pumped (from CO) optical

amplification by EDFs– Athermal splitters and fixed filters

• CO (OLT):– Centralizes the light generation and control– Stack of lasers serving TDM trees– Standard G/E-PON equipment adapted to SARDANA – WDM is used for wavelength routing at the central ring – DBA techniques for TDM trees.

• Simplest colourless ONU:– In line with techno-

economical guidelines– High speed RSOA of

SOA+REAM for up-stream remodulation

ePhoton/one Torino 1-200813 [email protected]

GC OGC ORemote Node design… evolution

CO

RN1 RN2

RNi

RNj

RNN RNN-1

ON ONU

ON ONU

1:K

ON ONU

ON ONU

1:K

ON ONU

1:K

ON ONU

ON ONU

1:K RSOA ONU

λD m+1,…, λD

2N

WDM RING

TDM TREE

λD1,…, λD

m

Downstream Signals

Upstream Signals

λU1,…, λU

m

λUm+1,…, λU

2N

Bidirectional Transmission

• Passive Remote Nodes (RN):– Cascadable Add&Drop

– 2-to-1 fibre interface

Pass band filters

90/10 90/10

RN i 50/50

λi1 λi2

1:K 1:K

EDFs

WDM WDM Pass band filter

90/10

RN i

EDFs

90/1090/1090/10

1:K

EDFs

50/50

1:K/2

1:K/2

50/50

λi2 λi2λi1 λi1

1:K RN i

Signals

λi1 50/50

1:K/2

1:K/2

λi2

50/50

λi1&2

OFC 2006, JThB78MZM - ECOC 2006, We3P169RSOA - OFC 2007, OTuG2 RSOA - ECOC 2007, We6.4.3

• A):Tunable lasers at ONU– Single fiber Ring– Add&Drop by splitters – X/Y: 90% Pass/10% Drop

(10dB drop loss)

• B): Colorless ONU (MZM & RSOA)– Double fiber Ring to avoid

Rayleigh at ring and EDFs– More EDFs… more pump power

required

• C): Add&Drop by filters, transparent for others. Scalability maintained

– Drop IL reduce from 10.2dB to 0.7dB– Thermal Drift <1.2pm/ºC

– Remotely pumped (from CO) optical amplification by EDFs

– Athermal splitters and fixed filters

– 50/50 splitter for: resilience and Traffic Balancing

ePhoton/one Torino 1-200814 [email protected]

GC OGC OONU based in RSOA (fast RSOA)• Fast RSOA from Alcatel-Thales III-V Labs, France Telecom

NF & Signal Gain @1530nm

0

5

10

15

20

25

-35 -30 -25 -20 -15 -10 -5 0Pin [dBm]

NF

[dB

]

0

5

10

15

20

25

G [d

B]

NF, 50mANF, 80mANF, 100mAG, 50mAG, 80mAG, 100mA0

0.5

1

1.5

2

-35 -30 -25 -20 -15 -10 -5 0

Input Power [dBm]

E/O

Ban

dwid

th [G

Hz]

50 mA, BW@-3dB

80 mA, BW@-3dB

100 mA, BW@-3dB

NF and Signal Gain measurements and 25ºC, Bo = 50GHz, Be= 2GHz

E/O -3dB BW measurements at 25ºC and 1530 nm

• Best E/O BW (1.8GHz) does not require saturating Input Signal levels (-15dBm)

• 16 dB Gain is compatible with the best E/O BW

ePhoton/one Torino 1-200815 [email protected]

GC OGC OEnabling technologies• Remotely pumped amplification

– Pump power provided by CO∙ Passive Fiber Plant

– Erbium Doped Fiber (for C- Band)∙ 1.4dB/m @ 16dBm Pp∙ NF = 5.3dB (forw. Pp)∙ Pp consumption.:

14dBm/rEDF

• Raman Amplification– G_On/Off =

1dB/W/km @ 1543.73 nm

Raman Amplification 6Km SMF

-10123456789

1500 1550 1600

Wavelength (nm)

Gai

n an

d N

F (d

B) Ch 42 [1543.73 nm]

-101234567

0 0.2 0.4 0.6 0.8 1

Pump Power (W)Si

gnal

Gai

n (d

B)

-60

-40

-20

0

20

40

-20 -10 0 10 20Pump Power (dBm)

Sign

al G

ain

(dB

)

Gain (5m EDF)Gain (10m EDF)Gain (15m EDF)Gain (20m EDF)

Ch 42 [1543.73 nm]

ePhoton/one Torino 1-200816 [email protected]

GC OGC ORemotely pumped amplification• Pump power requirements

– Pp loss = 0.25dB/km @ 1480 nm– 14dBm/rEDF– 2 rEDFs/λ

(to avoid Rayleigh Backscattering) – 32 users/λ

(dep. on network requirements)

• Pump requirements in the range of Raman Pumps (Watts)

• Set-Up limitations– 24dBm Pp available

64 128 256 512 10240

25

50

100

Network Users

Rin

g Le

ngth

(km

)

20-23 23-26 26-2929-32 32-35 35-3838-41 41-44 44-47

Pump (dBm)

A C

B

• Configurations (Pp to the active RN)– A: 512 users (8 RN) & 50 km WDM ring– B: 512 users (8 RN) & 100 km WDM ring– C: 1024 users (16 RN) & 50 km WDM ring

ePhoton/one Torino 1-200817 [email protected]

GC OGC OSet-Up description… & update

• CO: Laser, MZM, Pump Laser• ONU: Reflective SOA + Detector

1:16

RN i

Pump WDMs

Signals

λi1&2

Pump EDFs

2:2

50/50

X / 100-X

1:16

λi1

50/50

Pump WDMs

Pump EDFs

50/50

2:2

1:16

1:16

2km λi2

100GHz

50GHz

Pump

1km

50/50

RSOA ONU

90/1

0

CO Downstream Fibre

Upstream Fibre

Optical Switch

Pump Lasers

MZM

Tunable Laser

Optical Switch

RN16 RN1

25km 25km 25km 25km

Att

25km 25km 25km

25km

ePhoton/one Torino 1-200818 [email protected]

GC OGC O

1.E-12

1.E-09

1.E-06

1.E-03

-36 -33 -30 -27 -24Signal Power [dBm]

BER

B2B

A@25Km

B@50Km

C@25Km

Downstream10Gbps

Transmission experiments: Downstream

• 10Gbps Downstream• ASK by MZM• 156 Mbps (Min granted)

– at 1:32 ratio and half duplex

• Measured at furthest RN at each configuration:

– A: 512 users & 50km (RN4 at 25km)– B: 512 users & 100km (RN4 at 50km)– C: 1024 users & 50km (RN8 at 25km)

• Sensitivity penalties:– 1.2 dB, 3.1 dB and 3.6 dB

• Current limitations:– Lack of benefits from Raman Amplification

in Set-Up, limited to 24dBm Pp available

ePhoton/one Torino 1-200819 [email protected]

GC OGC OTransmission experiments: Upstream

• Limitation after 16 RN, 50km because of reduced output power at 1530nm (RSOA centered at 1510nm)

• No BER floor and sensitivities @ BER 10-9 ≤-25dBm

FAST RSOA* Reflective ONU BW, Eye diagrams and up-stream BER

-12

-9

-6

-3

0

3

6

0 1000 2000 3000 4000 5000Frequency (MHz)

Rel

ativ

e E/

O R

espo

nse

(dB

) Slow RSOA

Fast RSOA

Equalized FastRSOA

4Gbps

2.5Gbps1.25Gbps

5Gbps 6Gbps

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

-45 -40 -35 -30 -25 -20Signal Power (dBm)

BER

B2B(RSOA_In= -20 dBm)

B2B(RSOA_In=-15 dBm)

After RN(RSOA_In=-15 dBm)

RN16 @50km

2.5GbpsUpstream1530.33nm

* Device analysis in: R. Brenot et al, OFC’05, OME50 (2005).* Transmission at 5Gbps in: P. Chanclou et al, OFC’07, OWD1 (2007)

ePhoton/one Torino 1-200820 [email protected]

GC OGC OTransmission experiments: Upstream • 1.25Gbps• Reaching 1024 ONUs along 100km in the

worse conditions of fiber cut• Thanks to:

– Power budget reduction, new RN design– Lower input signal required for this RSOA at

1.25G (-20dBm)

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

-40 -35 -30 -25 -20Signal Power (dBm)

BE

R

B2B(RSOA_In=-20 dBm)

RN16 @100km

1.25GbpsUpstream1530.33nm

CO

RN1 RN2

RNi

RNj

RNN RNN-1

ONONU

ONONU

1:K

ONONU

ONONU

1:K

ONONU

1:K

ONONU

ONONU

1:KRSOA ONU

λD m+1,…, λD

2N

WDM RING

TDM TREE

λD1,…, λD

m

Downstream Signals

Upstream Signals

λU 1,…, λU

m

λU m+1,…, λU

2N

Bidirectional Transmission

Fiber Cut

RSOA

RN16

100km Ring

ePhoton/one Torino 1-200821 [email protected]

GC OGC O

0 5 10 151 .10 12

1 .10 11

1 .10 10

1 .10 9

1 .10 8

1 .10 7

1 .10 6

1 .10 5

1 .10 4

1 .10 3

0.01

Gain Variation = 0 dBGain Variation = 1 dBGain Variation = 2 dBGain Variation = 3 dBGain Variation = 4 dBGain Variation = 5 dB

Gain Variation = 0 dBGain Variation = 1 dBGain Variation = 2 dBGain Variation = 3 dBGain Variation = 4 dBGain Variation = 5 dB

Q parameter

BER

Gain excursion & BER measurement

• A) Detection level fixed for each upstream packet at Preamble bits (44 bits at 1.25 GPON standard after Guard Time)

• B) Mark’s level is affected by a reduction along the packet

ID

• Gain excursion of 5dB implies BER reduction from specified 10-10 to 10-3

• Alternatively, a much better signal is required (Q ∼ 14)

A) B)

ePhoton/one Torino 1-200822 [email protected]

GC OGC OConclusions & Further research• Experimental results show feasibility of:

– Highly Flexible and Scalable Network Architecture– High user-density (>1000) & Long reach (100 km) in worse

case, checking resilience capability at 1G by 10dB power budget improvement

– Single-fiber access & Fully PASSIVE fiber plant– Using RSOA-ONU as a cost-effective implementation showing

potential upgrade up to 5G– High Bandwidth per user by means of 10Gbps/2.5Gbps half-

duplex system• A lot to do…

ePhoton/one Torino 1-200823 [email protected]

GC OGC O… & Further research– Gain stabilization of remote EDFs in burst mode– Increase robustness by electronic compensation strategies and

intelligent monitoring and controlling of impairments– Full demonstrator building & Field trial …

• Under project: “Scalable Advanced Ring-based passive Dense Access Network Architecture” (SARDANA)

ePhoton/one Torino 1-200824 [email protected]

GC OGC O

THANKS:

!!!!!