fiscal year 2013 - virginia tech transportation institute

180
Fiscal Year 2013

Upload: khangminh22

Post on 23-Apr-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Fiscal Year 2013

2

Message from the DirectorTwenty-five years ago, the Virginia Tech Transportation Institute (VTTI) began as the Center for Transportation Research with 15 employees poised to become a resource for intelligent vehicle/infrastructure research. Today, VTTI has grown to become the second largest U.S. university-level transportation institute with more than 350 employees.

We have built six buildings and have accumulated more than one-quarter of a billion dollars in sponsored program research expenditures. Since 1996, we have funded more than 1,000 students who work here gaining hands-on experience to become the next generation of researchers.

VTTI has pioneered groundbreaking naturalistic driving studies made possible by internally developed data acquisition systems that allow drivers to be observed as they go about their lives. The results of such studies have made a significant impact on transportation policy at the local, state, and national levels. VTTI researchers have provided congressional testimony about the dangers of distracted driving. We were invited to the White House summit on distracted driving, the result of which was a national call to end distracted driving that has

thus far influenced 41 states and the District of Columbia to ban text messaging for all drivers. We are currently conducting the largest naturalistic studies to date for light vehicles, trucks, motorcoaches, and motorcycles. Our revolutionary studies are also being conducted on a global scale, with research efforts under way in China, Canada, and Australia.

While our research continues aided by the evolution of “big data” – the capacity to process thousands of hours of data streams – VTTI is once again ramping up its research endeavors. Using such resources as the Smart Road and an instrumented test bed opened in Northern Virginia, our researchers are leading studies that examine the potential benefits of the next wave of transportation innovation: connected and automated vehicles.

The impact of VTTI has been unprecedented on many levels, from effecting change in state and national laws to enhancing public awareness of important driving issues. Not only have we grown as a research community, we are growing our surrounding area. We have created more jobs in this county than any other private or public entity. The opening of the National Tire Research Center in Alton, Va., will answer the call for not only an advanced tire testing facility but the need to create jobs in the Southern Virginia region. Essentially, we have the capacity to not only increase safety on national roadways but to serve as an economic developer.

To become what we are today, VTTI has had to grow in size and complexity. However, we are still a family at our core; we are a community committed to conducting cutting-edge research to save lives, save time, save money, and protect the environment.

Tom Dingus Director of VTTI

Dr. Thomas A. Dingus speaks at the opening of the Vir-ginia Connected Test Bed • photo by Logan Wallace

3

Message from the Director 2Mission and Impact 4Sponsors, Clients, Partners 5 Facilities and Equipment 6 Smart Road 8 Special Initiatives 10 Tours and Open Houses 11 Media Coverage 12 Center for Advanced Automotive Research 14 Center for Data Reduction and Analysis Support 20Center for Infrastructure-Based Safety Systems 22 Center for Injury Biomechanics 28Center for Sustainable Mobility 36 Center for Sustainable Transportation Infrastructure 46 Center for Technology Development 50Center for Truck and Bus Safety 54Center for Vulnerable Road User Safety 62Automated Vehicle Systems 66I-81 Corridor Coalition 68Motorcycle Research Group 70Virginia Green Highway Initiative 72National Surface Transportation Safety Center for Excellence 74National Tire Research Center/SoVa Motion 100Connected Vehicle/Infrastructure University Transportation Center 104Research and Development 114Financial Information 118 Stakeholders 138 Personnel 140 Publications 164 Presentations/Honors 172

Table of Contents

4

The Virginia Tech Transportation Institute (VTTI) conducts research to save lives, save time, save money, and protect the environment. Researchers and students from multiple fields are continuously developing the techniques and technologies to solve transportation challenges from vehicular, driver, infrastructure, and environmental perspectives.

As one of seven premier research institutes created by Virginia Tech to answer national challenges, VTTI has effected significant change in public policies for driver, passenger, and pedestrian safety and is advancing the design of vehicles and infrastructure to increase safety and reduce environmental impacts. The VTTI impact has been significant:

• VTTI studies have shown that looking away from the roadway just prior to the occurrence of an unexpected event is responsible for up to 90% of crash and near-crash events.

• Th e VTTI Driver Distraction in Commercial Vehicle Operations study found that texting while driving raises a heavy truck driver’s crash and near-crash risk by 23 times. Th is statistic has been touted nationally, from the New York Times to the Ad Council to AT&T.

• Th e “23 times” message helped lead U.S. Transportation Secretary Ray LaHood and the U.S. Department of Transportation (US DOT) to issue a call to end distracted driving. Currently, 39 states and the District of Columbia have banned text messaging for all drivers.

• VTTI teen driving studies have shown that teens are four times more likely to get into a crash

or near-crash while distracted than their adult counterparts. Teen fatalities are three times greater than adult fatalities, so this is an important discovery of the prominence of a major causal factor.

• VTTI light-vehicle naturalistic driving studies have shown that driver drowsiness is a signifi cantly greater factor in crashes and near-crashes than was previously thought. Like heavy-truck drivers, light-vehicle drivers get into crashes and near-crashes between 15% and 20% of the time while at least moderately drowsy. Previous estimates were between 4% and 8%.

• Th e VTTI-developed data acquisition system provided the Federal Motor Carrier Safety Administration (FMCSA) the information required to evaluate its hours-of-service regulations (e.g., off -duty time, on-duty time, breaks, re-start provisions).

• The VTTI Teen Risk and Injury Prevention (TRIP) group is currently developing a teen driving program that provides monitoring and feedback via the VTTI data acquisition system.

These studies represent only a small fragment of the work performed at VTTI. An Onboard Monitoring System Field Operational Test is currently being conducted that will result in the largest truck and motorcoach naturalistic data set to date. VTTI researchers are completing the first large-scale, naturalistic motorcycle study funded by the Motorcycle Safety Foundation and were tapped by the National Highway Traffic Safety Administration (NHTSA) to conduct a complementary study with 160 motorcycles. In fact, the national success of VTTI has generated research efforts on a global scale. Currently, VTTI is leading naturalistic driving studies in China, Canada, and Australia.

Mission and Impact

photo by Logan Wallace

5

During the past 25 years, VTTI hasgrown its research portfolio to encompass hundreds of sponsors, partners, and clients from both the public and private sectors. The continued success of the Institute is due in large part to its diverse collaborations with local, state, and national transportation agencies; fellow industry researchers; major automotive companies; and automotive sup-pliers. Since 1988, key VTTI partners have included:

0 3M 0 AAA Foundation for Traffi c Safety 0 AAA Mid-Atlantic 0 ACF 0 American Association of Motor

Vehicle Administrators 0 American Association of State Highway

and Transportation Offi cials 0 American Transportation

Research Institute 0 Amoco 0 Arlington County, VA 0 Atlantic Construction Fabric 0 Attention Technologies, Inc. 0 Automotive Events 0 Battelle 0 Beam Brothers 0 Bedford County, VA 0 Bekaert 0 Bishop Consulting 0 BMW 0 Booz Allen Hamilton 0 Bosch 0 California Department

of Transportation (DOT) 0 Calspan 0 Cambridge Systematics 0 Canadian Council of Motor

Transport Administrators 0 Carnegie Mellon Robotics Institute 0 CARPI USA 0 CEI Group 0 Center for Innovative Technology 0 Cisco Systems 0 Clean Air Tech International 0 Clear Roads 0 Cohda Wireless 0 Continental Automotive Systems, Inc. 0 Corning Cable Systems 0 Crack Sealant Consortium 0 Crash Avoidance Metrics Partnership 0 Delaware Department of Motor Vehicles 0 Delaware Technical

and Community College 0 DENSO 0 DLA Piper 0 Donovan Hatem 0 Dunlap and Associates, Inc. 0 Dynamic Research, Inc. 0 Enercon Services, Inc. 0 Ergonomic Analysis, Inc. 0 Fairfax County Transit 0 Fairfax County, VA 0 Federal Highway Administration 0 Federal Motor Carrier

Safety Administration 0 Fluor, VA 0 Ford Motor Company 0 Foundation for Outdoor Advertising

Research and Education

0 General Motors 0 General Motors OnStar Division 0 George Mason University 0 Georgia DOT 0 Google 0 Guard Rail of Roanoke, Inc. 0 Howard/Stein-Hudson Associates, Inc. 0 Hubbell Lighting, Inc. 0 Human Factors North 0 Hyundai Motor Company 0 Institute for Critical Technology and

Applied Science (ICTAS) 0 IDEA Programs 0 Institute for Transportation Research

and Education at North Carolina State University

0 Interactive Design and Development, Inc.

0 Jacobs, Edwards, and Kelcey, Inc. 0 Johns Hopkins University 0 Kapsch Traffi cCom 0 Kimley-Horn and Associates 0 Last Resource 0 Lisboa, Inc. 0 Litton Network Access Systems 0 Lord Corporation 0 Maccaferri 0 MaineWay Services 0 MCI Federal 0 Mercedes-Benz 0 Michelin 0 Minnesota DOT 0 Mississippi DOT 0 ModComp 0 Montana State University – Western

Transportation Institute 0 Monterey Technologies, Inc. 0 Motor Coach Industries 0 Motorcycle Safety Foundation 0 National Academy of Sciences 0 National Cooperative Highway

Research Program 0 National Highway Traffi c

Safety Administration 0 National Institutes of Health 0 National Parks 0 National Private Truck Council 0 National Science Foundation 0 National Transit Institute 0 National Transportation Research

Center, Inc. 0 NAVTEQ 0 New River Valley Planning

District Commission 0 Nissan 0 Norfolk Southern Railroad 0 North American Fatigue

Management Program 0 North Carolina State University 0 Oilcom 0 Omni Weight Corporation 0 Osram/Sylvania 0 Outdoor Advertising Association

of America 0 PACCAR, Inc. 0 Pacifi c-Sierra Research 0 Parsons Brinckerhoff 0 PB Farradyne, Inc. 0 PB World 0 Penn State University 0 Pennsylvania DOT 0 Performance Fuels System 0 Philips Lighting 0 Pitt Ohio 0 Professional Truck Driving Institute

0 PSMJ Resources, Inc. 0 Qualcomm 0 Realtime Technologies, Inc. 0 REI Safety Services, Inc. 0 Research and Special

Programs Administration 0 RGS Associates, Inc. 0 ROHO, Inc. 0 Rowan University 0 Rutgers University 0 SAE International 0 Savari 0 Schneider National, Inc. 0 Science Museum of Western Virginia 0 Scientex 0 Shenandoah Telephone 0 Shentel Service Company 0 Siecor/Corning 0 Siemens 0 Snow Economics 0 Soft ware Technology, Inc. 0 South Carolina DOT 0 Southwest Research Institute 0 Systems Technology, Inc. 0 Texas DOT 0 Texas A&M Transportation Institute 0 TNO Defense, Security and Safety 0 Tom Tom 0 TORC Robotics 0 Toyota 0 Transanalytics 0 Transecurity 0 Transportation Research Board 0 Travelers Insurance 0 United Defense, L.P. 0 University of Calgary 0 University of Central Florida 0 University of Iowa 0 University of Maryland 0 University of Massachusetts/Amherst 0 University of Michigan Transportation

Research Institute 0 University of Minnesota 0 University of North Carolina-Chapel Hill 0 University of New South Wales 0 University of Pennsylvania 0 University of South Dakota 0 U.S. Air Force 0 U.S. Department of Agriculture

ChooseMyPlate.gov Program 0 Vehicle Safety Communications 3 0 Veridian 0 Virginia Center for Transportation

Innovation and Research/Virginia DOT Operations and Security Division

0 Virginia Department of Conservation and Recreation

0 Virginia Department of Environmental Quality

0 Virginia Department of Motor Vehicles 0 Virginia Department of Rail

and Public Transportation 0 Virginia DOT 0 Virginia Rail Policy Institute 0 Virginia Tech Parking Auxiliary 0 Virginia Tourism Commission 0 Visteon Corporation 0 Volvo 0 Volvo Trucks North America 0 Weigh-In-Motion 0 Westat 0 Western Research Institute 0 Windwalker Corporation 0 Wisconsin DOT

Sponsors, Clients, Partners

6

OverviewThe traditional laboratories at VTTI are housed in two buildings totaling more than 52,000 square feet. Building I is 30,000 square feet and houses office, laboratory, and garage facilities. Low-service laboratories include facilities dedicated to driver interface development, eye-glance data reduction, lighting research, accident analysis, accident database analysis, pavement research, and traffic simulation. The National Surface Transportation Safety Center for Excellence (NSTSCE) building comprises 22,000 square feet of office and laboratory space and was occupied in July 2006. VTTI expanded its on-site capacity by 7,000 square feet of warehouse space and housing for a shock tube lab, a paint booth facility, and a lighting lab. An additional 24,400 square-foot annex was opened during August 2013. This addition eliminated most of the flex space rented in Research

Building 7 and the Moss Building at the Virginia Tech Corporate Research Center.

To supplement and support the focused transportation research of the Institute, facilities feature a fully staffed garage and machine shop to instrument experimental vehicles. Technicians and engineers use full-scale machine and welding shops, electronics laboratories, and garage facilities to customize transportation hardware and software designed to collect large amounts of data. These facilities are also used to support the maintenance and expansion of the Virginia Smart Road systems and capabilities. Additionally, VTTI occupies an adjacent four-bay, 7,200-square-foot garage. This facility is used to store the VTTI instrumented vehicle fleet and the equipment necessary for research and Smart Road operations.

Vehicle FleetThe VTTI vehicle fleet is uniquely instrumented for specific experiments. The Fleet Inventory outlines the year, make and model, date of acquisition, and color of each vehicle or trailer. Researchers use the vehicle fleet for Smart Road tests; experimental test vehicles are used to develop new instrumentation packages. Several of the vehicles are long-term loaners from vehicle manufacturers, the Virginia Department of Transportation (VDOT), and other partnering organizations.

All vehicles are maintained in-house when possible with fully functional garages and a machine shop. Loaned vehicles are maintained in cooperation with the organization that provided the vehicle.

Facilities and Equipment

photo by Logan Wallace

7

Fleet Inventory

VTTI-owned Vehicles (by Year/Make and Model/Date of Acquisition/Color) 1990/Hyster Forklift/July 20041991/Ford F800 Truck/June 2012/Beige1993/Fruehauf Trailer/White 1995/Peterbilt Tractor-trailer/Sept. 1998/White/Blue 1995/GMC Sierra/March 2011/Orange1997/Volvo Tractor-trailer/Nov. 1996/Blue1997/Ford Taurus/Dec. 1996/White1997/Wabash Trailer/June 2007/Orange1998/GMC Sierra/March 2011/Orange1999/Chevrolet Van (15-Passenger)/Dec. 1998/White1999/Ford Explorer XLT/March 1999/White1999/Ford Crown Victoria/April 1999/White1999/Ford Contour/April 1999/White1999/Dodge Ram Pickup/Nov. 2006/Green2000/Ford Explorer XLS/Jan. 2000/White2000/Chevrolet K 2500/June 2000/White2000/Mitsubushi Mighty Mitz/Dec. 2006/Silver2001/Saab 504-ASR/Nov. 2003/Midnight Blue2002/Ford News Van/Feb. 2002/White2002/Chevrolet Silverado 2500/May 2002/White2002/Cadillac Escalade/Aug. 2002/Pewter/Gold2002/Cadillac Seville/Aug. 2003/Red 2003/Chevrolet Malibu/Jan. 2008/White2003/Chevrolet Malibu/Sept. 2008/White 2006/Cadillac STS/Oct. 2006/White2006/Cadillac STS/Oct. 2006/White2006/Mercedes-Benz R350/Dec. 2010/Silver2006/Cascadia Semi-truck/June 2011/White2006/Chevrolet Malibu/July 2012/Red 2006/Chevrolet Malibu/July 2012/Green2007/Utility Trailer/June 2007/White2008/Ram Lin Trailer-Wind Machine/Oct. 2007/Maroon/Orange2008/Chevrolet Tahoe/May 2008/Gray

2008/Chevrolet Tahoe/May 2008/Granite2008/Chevrolet Tahoe/May 2008/Gold2008/Chevrolet Tahoe/May 2008/Red2008/Chevrolet Tahoe/May 2008/Blue2008/Chevrolet Tahoe/May 2008/White2008/Kawasaki Versys LE650-A/Jan. 2009/Red2009/Yamaha V Star XVS950A /April 2011/Black2010/Buick LaCrosse/Feb. 2010/Maroon2012/Toyota Camry/Nov. 2011/Gray2012/Honda Goldwing/June 2013/White 2013/Trailer Arising Industries/April 2013/White2013/Cadillac SRX - Sport Utility/May 2013/Raven2013/Yamaha 1670 CC Motorcycle/April 2013/Royal Blue Motor Pool Vehicles (by Year/Make and Model/Date of Acquisition/Color) 2009/Ford Fusion/May 2010/Silver2013/Dodge Mini-van/Aug. 2013/White Loaned Vehicles (by Year/Make and Model/Date of Acquisi-tion/Color) 2009/Ford F450/March 2010/White2009/Yamaha V Star 650/Black Leased Vehicles (by Year/Make and Model/Date of Acquisi-tion/Color) 2003/MCI Bus/Oct. 2010/White 2005/Infiniti FX35/Sept. 2010/Gold 2006/Infiniti M35/Dec. 2005/Silver2006/Infiniti M35 (in Florida)/Dec. 2005/Silver2009/Honda Rebel CMX250C/Dec. 2010/Blue2009/Harley-Davidson Sportster XL 1200C/May 2011/Silver 2011/Volvo VN 6x4 Tractor with Sleeper/April 2013/Yellow 2012/Kawasaki ZX600-R/Nov. 2012/Green2012/Infiniti M56/Feb. 2013/Black2013/Caddy XTS

8

• Production of diff ering intensities of rain with varying droplet sizes;

• Fog production;• Two weather stations with offi cial National Oceanic

and Atmospheric Administration (NOAA) weather available within one mile;

• Variable pole spacing designed to replicate 95 percent of national highway systems;

• Multiple luminaire heads, including light-emitting diode (LED) modules;

• A wireless mesh network variable control (i.e., luminaire dimming);

• A high-bandwidth fi ber network;• A diff erential global positioning system (GPS) base

station;• Complete signal phase and timing (SPaT) using

remote controls; and• Wide shoulders for safe maneuvering during

experimental testing.

Control Room/LaboratoriesVTTI houses the Smart Road Control Room through which on-road research is scheduled and

OverviewThe Smart Road is a unique, state-of-the-art, full-scale, closed test-bed research facility managed by VTTI and owned and maintained by the Virginia Department of Transportation (VDOT). The Smart Road continued to play an important role in VTTI research and overall success during Fiscal Year 2013. Since its inception, more than 16,500 hours of research have been conducted on the road.

Features and Operations• A 2.2-mile, controlled-access test track built to

interstate standards;• Two paved lanes:• Th ree bridges, including the Smart Road Bridge (the

tallest bridge in Virginia);• Full-time staff that coordinate all road activities; • 24/7 access control and oversight;• Centralized communications;• Lighting and weather system controls;• Safety assurance and surveillance;• Fourteen pavement sections, including an open-

grade friction course; • In-pavement sensors (e.g., moisture, temperature,

strain, vibration, weigh-in-motion);• Zero-crown pavement section designed for fl ooded

pavement testing;• An American Association of State Highway and

Transportation Offi cials (AASHTO)-designated surface friction testing facility;

• Seventy-fi ve weather-making towers accessible on crowned and zero-crown pavement sections;

• Artifi cial snow production of up to four inches per hour (based on suitable weather conditions);

Smart Road

photo by Rick Griffiths

9

overseen. The Control Room also acts as the 511 Virginia Data Quality Assurance/Quality Control (QA/QC) Center. Dispatchers located in the Control Room have the ability to manipulate lighting and all-weather testing systems on the road and can control access to the facility itself. VTTI has several laboratories to aid in research objectives. These labs include driver-interface devel-opment, eye-glance data reduction, lighting research, accident analysis, accident database analysis, pave-ment research, and traffic simulation.

Enhancements/AdditionsConnected-vehicle equipment was installed at seven locations along the Smart Road. Roadside dedicated short-range communication transceivers, or roadside equipment (RSE), were installed on existing or newly installed light poles at an approximate spacing of 2,000 feet. Accompanying communication equipment and power supplies were installed in stainless steel equipment cabinets affi xed to the respective light poles. Two additional mobile RSE sites were added in the form of solar-powered equipment trailers with elevated masts. Th e existing optical fi ber communication system was expanded and upgraded. Optical fi ber was extended through the Wilson Creek Bridge to provide connectivity at the southern turn-around. Additional fi ber patch panels were installed to facilitate a connection between RSEs and the intersection controller. Ethernet fi ber transceivers and Ethernet switches were installed to allow communication between RSEs and networking equipment in the Smart Road Control Room. A new equipment rack and processing, power, and networking equipment were installed in the Smart Road Control Room. Th ree rack-mount computers were installed to provide for RSE and switch management, connected-vehicle program processing, and Ethernet packet capture. Networking equipment installed includes a high-speed Ethernet optical-copper switch and a high-speed Ethernet switch (copper only). Uninterruptible power supplies (UPSs) were installed to support the processing and networking hardware. A high-resolution dome camera was installed for observation of the static test area portion of the Smart Road. Th is camera features weather-tight construction and zoom/pan capabilities and communicates via Internet Protocol (IP). Th is camera is currently under evaluation as a potential replacement for current cameras installed at the facility.Th e existing ultra-high frequency (UHF) radio system repeater was relocated to the sign bridge area to provide improved two-way radio communication coverage.

Th e intersection controller and cabinet were replaced with a model compatible with anticipated connected-vehicle operations. Smart Road Control Room desktop computers used for scheduling and billing operations were replaced with laptop computers. Th is and other provisions allow for quick relocation of staff and continued services in the event of a power outage or other outage. Th e control room was also equipped with a WiFi cellular access point to allow continued operations during network outages. A wireless control system was installed on the main Smart Road entry gate. Th is system replaces a wired one that was susceptible to damage from lightning strikes and water. Th e sign bridge was modifi ed to allow quick changeover of signs for experimental testing purposes. Th e replacement of weather-making system hydrants continued along with installation of a wireless mesh network for hydrant control.

VDOT 511 VirginiaVTTI serves as the primary QA/QC agency for the VDOT 511 Virginia project. The 511 system is designed for travelers and delivers information about events that may affect traffic (e.g., crashes, congestion, road work, inclement weather). QA/QC services provided by VTTI include, but are not limited to: • Reviewing entries within the VDOT VaTraffi c

incident management system.• Monitoring the various 511 public services to ensure

that VaTraffi c information is delivered to the public in an accurate and timely manner. Th ese 511 public services include:

» Th e 511 public website that provides coverage for most roads in Virginia (www.511virginia.org);

» Th e 511 interactive voice response phone system (dial 511), which includes information for approximately 400 Virginia roads (all interstate roads and most primary roads);

» Th e VA511 Alert emails, available free to the public via subscription; and

» Dynamic message boards at nine welcome centers across Virginia.

The VTTI 511 QA/QC team functions within the Smart Road Operations Group and includes three full-time staff members and as many as 15 part-time employees. The 511 and VaTraffic systems are monitored 24/7, 365 days per year from the Smart Road Control Room.

10

International Center for Naturalistic Driving Data Analysis at Virginia Tech (formerly Smart Data Center)

The VTTI data center experienced several expansions. Most noteworthy among these were a new computational cluster, the application of the Virginia Tech HPC Storage System, and a significant upgrade to the storage system supporting the VTTI Scientific Data Warehouse environment. These systems compose the foundation for data-intensive scientific research programs conducted at VTTI, particularly the Second Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study.

The 48-node compute cluster of the Institute moves data between the field and the data center, decrypts data, prepares data files for ingestion to the Scientific Data Warehouse, processes video files, and provides a platform for advanced analytical processing. The Scientific Data Warehouse expanded from approximately 100 terabytes (TB) to more than 500 TB as a result of the growth of the VTTI research data repository. A significant development of the HPC Storage System was a peta-scale archive file system, which will ultimately facilitate the long-term storage of numerous petabytes of data while maintaining data in an online state.

Building a data center at this scale requires various skills and teams. The VTTI data center team works closely with the central IT organization of Virginia Tech and the Virginia Bioinformatics Institute (VBI) to best leverage strategic investments of the University in research computing. This collaboration has been particularly noteworthy in the design and implementation of the HPC Storage System.

Training and Education for VTTI Employees

The human resources staff at VTTI, in cooperation with administrative staff and research associates from several centers at the Institute, provided a variety of training and educational opportunities for faculty and staff throughout the fiscal year, including the following: All employees at VTTI (students, staff, faulty, and wage employees) participated in a Harassment Prevention and Complaint Handling Course.

Special Initiatives

11

VTTI staff, in partnership with other employees from the Virginia Department of Transportation (VDOT), annually host one public open house, one school day event, and multiple tours.

Open House The open house was held during April 2013, and approximately 350 people attended. Attendees saw a presentation about naturalistic driving studies, toured the Smart Road Control Room, viewed instrumented vehicles, and took a ride on the Smart Road through a simulated rain shower created by specialized weather towers on the road.

School Day EventThe VTTI School Day event was held during April 2013. Students in attendance included fi rst graders to college students and public, private, and home-schooled groups from various regions of the Commonwealth. Attendance numbered approximately 400. All students were given a presentation about

the construction and capabilities of the Smart Road, toured the Smart Road Control Room, viewed instrumented vehicles, and took a ride on the Smart Road through a simulated rain shower created by specialized weather towers on the road.

Community ToursCurrently, weekly tours for the public have been closed due to increased use of the Smart Road for research. However, to continue enhancing general public education and awareness about the Smart Road and the types of research conducted at VTTI, community tours are given to large groups. Research hours on the Smart Road take precedence, but every effort is made to have as many groups as possible tour the Smart Road and the facilities at VTTI.

Tours and Open Houses

U.S. Secretary of Transportation Ray LaHood visits VTTI • photo by Logan Wallace

1211212222121

103.5 FM WTOP*ABC*Arkansas State University Herald*CBC (Canadian)*CBS*Daily Herald*Digital Journal*Fairfax Times*Herald Online*Inside Science ( American Institute of Physics)*Insurance Journal*LATimes*LED Magazine*Market Wire*Medical Express*NBC 29*Phys.org*Pilot online*Roanoke Times*Science Daily*The Huffington Post*The Ledger.com*The Legal Examiner*The Wall Street Journal*The Washington Post*VT NEWS*WDBJ7*WSET*WSLS 10Akron.comAlbuquerque ExpressAlton TelegraphAOL AutosArea DevelopmentArkansas.govAT&T; anti-texting campaignAuto Insurers of VirginiaAutomotive FleetAutomotive WorldAutonet.caBBC AutosBoston.comBusiness WireCapitol Confidential & Democrat and Chronicle (article appeared on both sites)CarInsurance.orgCars.comCCJ (Commercial Carrier Journal) & EtruckerCell ControlCenter for Automotive ResearchChicago TribuneChron.comCitizensvoice.comCity of NAPACNNCNN TechCNN TravelCollegiate TimesColumbus Ledger-EnquirerConnected Vehicle/Infrastructure University Transportation CenterConsumer ReportsContra Costa TimesCourant.comCourant.comCtpost.com & newstimes.com (article appeared on both sites)Daily Herald & FindLaw (article appears on both sites)Daily PressDeseret NewsDesignNewsDetriot Free Press

Digtriad.comDiscovery NewsE News/World News ReportEdgar Snyder & AssociatesElectric Light and PowerelectronistaEnergy Sciences NetworkEnvironmental LeaderEquities.comFairview RepublicanFindLawFleetOwner.comFoley Carrier ServicesFox 23Fox BusinessFrederick NewsFredericksburg.comGainesville.comGering CitizenGreen BangGuidelnews.comHispanicBusiness.comIafrica.comInside Bay AreaInsurance News ReportInsurance QuotesIslandPacket.comITS InternationalJoliet PathJournal of American Medical AssociationKATC.comKentucky.comKLEWTV.comKnow itKnoxville NewsKTVX -Good Morning UtahKurzweil Accelerating IntelligenceKypostLandLinemag.comLas Vegas Review-JournalLedinside.comLeesburg TodayLive Insurance NewsLynchburg News & AdvanceMakeup.comMarket WatchMarket WireMen’s HealthMidlands.comMotorcycle USAMotorcycledaily.com & Motor Sports NewswireMotorsports NewswireMPR newsMSN NewsNASDAQNatural NewsNetworking Exchange BlogNew Jersey 101.5New York TimesNews Talk 650Newsday TuesdayNewsmedicalNewswiseNiagara GazetteNightlineOne News PageOnline Media DailyOpenPROregonlive.comOzarksfirst.comParadePC MagPetaluma360.comPHYS.org

PHYS.org & The Roanoke TimesPolitic 365Positive Parenting SolutionsPostGazette.comPR WebPubMed.govPurple PressRed OrbitRedwood TimesRubber NewsSAE Internationalsalineriverchronicle.comSB wireScience CodexSDPB (South Dakota Public Broadcasting)Sonoran NewsSpace MartStarTribuneStuttgartDailyLeader.comSurf Coast TimesTampa Bay onlineTCPalmTechnology PR NewsTechnology TellTelegram.comThe Age NationalThe Apex HeraldThe Berkely Daily PlanetThe BurgsThe Daily StarThe Des Moines RegisterThe Free Lance StarThe GazetteThe Gazette VirginianThe Hawk EyeThe JournalThe Modesto BeeThe Nation’s HealthThe Record HeraldThe Roanoke StarThe Roanoke TimesThe Salt Lake TribuneThe University of Auckland LibraryThe Wall Street JournalThe Washington PostThe Weather ChannelTheTrucker.comTire ReviewTransportation NationTribune DemocratTruck Parts & ServiceTruckinginfo.comTyre ExpressUPI.comUSA TodayUSA TodayVimeoVirginia Tech NewsVT NewsWarwock beaconWest Chester BuzzWisconsin State JournalWQAD8WUSA 9WVTFWWLYes Virginia BlogYour GV.comYouTube

*Multiple mentions

Media Coverage

13

VTTI centers and initiatives have evolved through the years to address the transportation demands of today and the research needs of tomorrow. Such evolution and change is necessary to ensure that VTTI remains a leader in pro-viding cutting-edge transportation technology and creating solutions to the great-est challenges that face the motoring public.

To that end, VTTI created several new centers and initiatives during 2013, while retiring others. The individual missions and projects of each center and initiative are described herein. The new VTTI organizational structure may be found in the Personnel section of this report.

14

The Center for Advanced Automotive Research (CAAR) focuses on the research, devel-opment, and evaluation of next-generation automotive systems. CAAR is staffed by a multidisciplinary team of dedicated individuals who are passionate about improving the safety and efficiency of our nation’s transportation system. This team strives to solve a broad set of challenges associated with integrating cutting-edge technologies into the vehicles of tomorrow. The primary research areas of CAAR include crash warning/avoidance/mitigation, connected vehicles, driver-vehicle interfaces, crash causation, and vehicle automation. The center comprises two research groups: the Advanced Product Test and Evaluation (APTE) group and the Connected Vehicle Systems (CVS) group. These groups work cooperatively with their industry and governmental partners to solve complex transportation problems through technology advancement.

Center for Advanced Automotive Research

15

New ProjectTechnical Support and Tasks for the Saxton Transportation Operations Laboratory

As part of the connected-vehicle systems research effort, the Federal Highway Admin-istration (FHWA) Turner-Fairbank Highway Research Center (TFHRC) has built the state-of-the-art Saxton Transportation Operations Laboratory (STOL) to perform research of vehicle-to-vehicle and vehicle-to-infrastructure technologies. FHWA has contracted with a team of research organizations, led by Science Applications International Corporation (SAIC), to perform research related to both conven-tional transportation operations issues and intelligent transportation systems. The team will also provide support for laboratory and field experiments conducted by FHWA and its program offices and will design, develop, and integrate systems in which vehicles, users, and the infrastructure interact with each other seamlessly to support enhanced mobility, safety, environmental sustainability, productivity and economic competitiveness, and overall cus-tomer satisfaction and livability.

STOL currently incorporates an intelligent intersection with dedicated short-range com-munication (DSRC) transceivers that allow communication with vehicles, representative roadway sensors to record vehicle passages, high-speed cameras to record results, and vehicles with core connected-vehicle com-munication technologies to enable cooperative vehicle-vehicle and vehicle-highway testing. STOL uses two test vehicles that were devel-oped during previous efforts. This project will provide for expansion of the test fleet to include three additional vehicles with the basic core connected-vehicle equipment. These will con-tain the specialized equipment needed to allow partial vehicle control functions to be tested.

During this project, VTTI will lead the efforts to apply world-leading vehicle instrumentation systems and techniques to the vehicles deliv-ered under this contract, which will be used to enable advanced mobility and safety services to be explored at STOL. These services will allow drivers to share control with a semi-automated system that includes pervasive vehicle-to-vehicle and vehicle-to-infrastructure com-munications. The concept presumes that the vehicle is guided through a specialized section of roadway, such as a “managed lane” section of an urban freeway, using data provided from the infrastructure (e.g., suggested speed, following distance, and acceleration rates). The vehicles for this effort will be designed from the ground up to support ongoing research efforts with evolving and unique requirements.

Ongoing ProjectsDrowsy Driver Detection and Alerting System Development Support

In 2010 Transecurity, LLC, completed the first phase of a Small Business Innovative Research (SBIR) contract with the Federal Motor Carrier Safety Administration (FMCSA) for the devel-opment of a prototype drowsy driver detection and alerting system. During Phase II of this project, VTTI will provide ongoing research and support to Transecurity in the advance-ment and commercialization of this technology.

This project will include the development, installation, evaluation, and expansion of i) on-road testing of Mask head- and eye-tracking software and ii) a drowsiness detection algo-rithm on the Transecurity DriveVision Pro hardware platform. Mask is a machine-vision application for sensing attributes of a driver’s face relative to the vehicle.

VTTI will support the continuous development of Mask software; the continuous development of a drowsiness detection algorithm; develop-

Director: Dr. Zachary Doerzaph

16

ment of data reduction protocols for drowsi-ness events observed during field operational tests (FOTs); evaluation and optimization of drowsiness detection performance, including hit, miss, and false alarm rates; and integration of all functionality into the DriveVision Pro and DriveMetrix Pro systems to support commercial operations.

Light-Vehicle Builds and Model Deployment Support for the Safety Pilot Program

Vehicle connectivity may have the ability to enable a safer and more efficient surface trans-portation system. The United States Department of Transportation (USDOT) Connected Vehicle Safety Pilot Program was created to demonstrate the safety capabilities of connected vehicles in a real-world environment and provide technical data in support of the National Highway Traffic Safety Administration’s (NHTSA) 2013 deci-

sion on Connected Vehicle technology on light vehicles for vehicle safety.

The two critical test efforts which make up the program are the Safety Pilot Driver Clinics and the Safety Pilot Model Deployment. The Driver Clinics project, in which VTTI con-tributed, evaluated driver acceptance within controlled test environments and operational scenarios, and completed testing in early 2012. From August 2012 to August 2013, the Model Deployment will include approximately 3,000 cars, trucks, and transit vehicles operating on an open roadway to assess fully integrated V2V (Vehicle-to-Vehicle) systems, aftermarket devices, and roadside infrastructure (V2I or Vehicle-to-Infrastructure).

The Crash Avoidance Metrics Partnership (CAMP) Vehicle Safety Communications 3 (VSC3) Consortium of eight vehicle manufac-

17

turers, is leading the efforts to build and evalu-ate 72 light vehicles equipped with fully inte-grated V2V systems. VTTI has been selected to provide support to the CAMP VSC3 in Pre-Model Deployment Testing, Model Deploy-ment data collection, processing, storage and analysis, and Post-Model Deployment Evalua-tion.

During the first stage of this project, VTTI will design, develop, and instrument 72 vehicles with customized Data Acquisition Systems including camera and sensor packages, as well as concealing fixtures, necessary for data col-lection; 64 of these vehicles will be evaluated in the Safety Pilot Model Deployment. VTTI will then assist in the development and perfor-mance of objective and application-level testing of the instrumented vehicles, as well as readi-ness validation testing prior to releasing the vehicles to the Model Deployment Test Con-ductor for integration into the Model Deploy-ment fleet. VTTI will develop driver training materials and train integrated vehicle drivers, in addition to assisting with interoperability testing, performance testing, and the develop-ment and validation of a method that estimates positioning accuracy.

VTTI will monitor and maintain the condi-tion of every integrated light vehicle during the second stage of this project, the Model Deploy-ment, using a cellular link and automated health check systems, collect, store, process, and transfer vehicle data from the fleet, and coordinate with the CAMP VSC3 Consortium to analyze and report Model Deployment data as well as support to the Volpe National Trans-portation Systems Center, the Independent Evaluator for the Model Deployment.

The Safety Pilot Model Deployment is a full-scale test of safety related connected vehicle systems and will provide valuable information to understand their potential for improving the transportation system.

Human Factors for Connected Vehicles Integration Research and Design Guidelines Development

The Human Factors for Connected Vehicles (HFCV) program is a USDOT research effort focused on the unique human factors associated with connected vehicles. The program seeks to provide behavioral- and technology-based research for ensuring that connected vehicle (CV) applications improve safety rather than increase driver workload and distraction.

VTTI has been selected by NHTSA to lead efforts to (1) develop an architecture for inte-grating multiple safety and non-safety CV applications, and associated driver-vehicle inter-faces (DVIs), into a cooperative system, (2) test protocols for such integrated systems, and (3) develop the voluntary Human Factors Design Guidelines product for the HFCV Program.

VTTI is working with a number of leading experts within the transportation research field to assess previous connected vehicle and related research literature in order to design, develop, and execute coordinated experiments which will address the primary goals of this research proj-ect. Key focus areas of the proposed research include the filtering, prioritization, scheduling, and presentation of information to the driver, and will encompass light passenger vehicles, as well as heavy vehicles and commercial drivers.

The assembled team will coordinate multiple studies across a variety of locations, encom-passing simulated and closed test-track studies, on-road observations, and focus groups. Each study performed in this project will look at how to best integrate the multitude of informa-tion and applications competing for the driver’s attention, as well measure the success of that integration.

The results of the proposed studies are expected to be condensed into a summary that charac-terizes the key findings and their implications

18

within the Human Factors Design Guidelines. This document will be a voluntary guidelines document by which automotive manufacturers and CV technology developers may choose to develop and assess their CV technologies.

Completed ProjectConnected-Vehicle Communications Safety Pilot Driver Clinics Supervisor

The USDOT and its contractors have dem-onstrated that vehicle connectivity can have transformational impact on safety, mobility, and the environment. The Connected Vehicle Com-munications (CVC) Safety Pilot program was created to support the NHTSA 2013 regulatory decision. This regulatory decision will deter-mine whether connected vehicle equipment will become a mandated or optional vehicle system. A key component of this plan is gathering field data to prove feasibility of CVCs in the real world and driver acceptance. Under the Safety Pilot Roadmap, The CAMP VSC3 Consortium will lead Light Vehicle Driver Clinics to gather such data. VTTI was selected to serve as the Driver Clinics Supervisor (DCS) for the Driver Acceptance Clinics (DACs).

There were six DACs held from July 2011 to May 2012 at various locations in the United States, with the objective of obtaining data on driver acceptance of communication-based

safety systems. As the DCS, VTTI directed and supervised the planning, protocol devel-opment, human subjects protections, and execution activities conducted by the Driver Clinics Conductor (DCC) with the assistance of the VSC3 original equipment manufacturer (OEM) personnel and the US DOT. In these DACs, volunteers drove vehicles equipped with V2V safety applications on a closed test track under controlled conditions to expe-rience the V2V safety applications. VTTI developed subjective evaluation surveys/questionnaires, managed the Institutional Review Board (IRB) process, conducted data analysis of the subjective data gathered from participant surveys and focus groups, and participated in dry-run driver clinics prior to execution of the DACs.

After each DAC was completed, system per-formance testing was also performed at each location to assess hardware and software per-formance and reliability in diverse geographic regions of the country (i.e. unique terrain, urban vs. rural locations) under real-world conditions. VTTI developed the data acquisi-tion system necessary to record performance evaluation data, installed the device on the vehicles, supported VSC3 in establishing per-formance tests metrics, executed performance testing, and analyzed the data acquired.

19

20

photo by John McCormick

Center for Data Reduction and Analysis Support

The Center for Data Reduction and Analysis Support (CDRAS) specializes in adding value to existing driving data at VTTI. The center continually strives to achieve this mission in a timely, efficient, and cost-effective way by leveraging and engaging multiple centers within VTTI and by serving not only the internal needs of the Institute but those of its strategic part-ners. CDRAS supports standardized access to and analysis of numerous naturalistic driving study data sets held at VTTI. CDRAS services include coding video and audio data, data qual-ity assurance, data standardization, data mining, event selection, and data analysis. The center also actively supports data analysis collaborations with external institutions.

21

The Center for Data Reduction and Analysis Support (CDRAS) comprises two groups:

The Data Reduction Group serves many different research groups, both internal and external to VTTI, whose research requires video and/or audio analyses in the areas of driver performance and behavior metrics, situational analyses, and environmental characteristics. The goal of this group is to provide efficient, accurate, and comprehensive coding of videos to meet the spe-cific needs of each unique research project. The group begins by conducting necessary groundwork to prepare a video data set for analysis and working alongside the researcher to develop a data reduction protocol. The group then trains and manages the required data reduc-tion staff, conducts extensive quality control throughout the reduction phase, and prepares final sets of coded data. In addition to the group leader, the group currently includes three coordinators, a large staff of data reduc-tionists, and three data reduction labs with nearly 50 combined workstations. The labs currently operate six days a week, 60 hours per week to meet these demands.

The Data Analysis Support Group performs activities and projects that improve the state of and access to the naturalistic driving data sets available at VTTI. The group comprises experts in data preparation, standard-ization, mining, and analysis. The goal of the group is to remove any roadblocks to efficient data use and analy-sis. Group clients not only include VTTI personnel but external research organizations interested in using large-scale naturalistic driving data sets.

New ProjectsData Analysis Support for the Second Strategic Highway Research Program (SHRP 2) Naturalistic Driving Study, Phase 2: • MRIGlobal• Center for Transportation Research and Educa-

tion (CTRE)• Safety and Fitness Electronic Records (SAFER)

System

Support for International Naturalistic Driving Col-laborations in China and Australia

Data Reduction Efforts: • Safety Pilot Model Deployment• Small Business Innovation Research (SBIR)• Collision Avoidance Systems• Motorcycle Safety Foundation (MSF)

Ongoing ProjectsData Reduction and Standardization for the SHRP 2 Naturalistic Driving Study

Support Projects for the SHRP 2 Naturalistic Driv-ing Study: • Data access website maintenance• Creation of event and epoch files for collisions• Data standardization• Conducting data user workshops• Providing data access support to non-SHRP 2

users

Support for the Investigating the Impact of Hand-Held and Hands-Free Cell Phone Use on Driving Performance and Safety-Critical Event Risk Study

Support for Connected Vehicle/Infrastructure Uni-versity Transportation Center Projects

Data Reduction Efforts: • Crash reduction and data processing for the

SHRP 2 Naturalistic Driving Study• Supervised Practice Driving Study• Human Factors of Connected Vehicles• Various projects funded through the National

Surface Transportation Safety Center for Excel-lence (NSTSCE)

Completed ProjectsData Analysis Support for the SHRP 2 Naturalistic Driving Study, Phase 1: • MRIGlobal• CTRE• University of Minnesota• SAFER

Initial Research on Portable Devices and Voice Interfaces

Support for the National Highway Traffic Safety Administration (NHTSA) Visual Manual Guideline

Data Reduction Efforts: • 100-Car Study• Naturalistic Teen Driving Study• Cooperative Intersection Collision Avoidance

Systems for Violations (CICAS-V)• Older Driver Study• Field Demonstration of an Advanced Heavy

Vehicle Indirect Visibility System (IVS)• 8-Truck and 34-Truck Studies

Director: Dr. Miguel Perez

Center for Infrastructure-Based Safety Systems

photo by

22

Researchers with the Center for Infrastructure-Based Safety Systems (CIBSS) focus their endeavors on roadway-based safety systems such as lighting, visibility treatments, pavement markings, signage, signals, barriers, the interaction of visibility with roadway design, and weather considerations. The goal of CIBSS is to conduct research and development efforts that advance knowledge and provide solutions to real-world issues.

Judging lighting at VTTI • photo by Anne Wernikoff

23

New ProjectsVisibility Support

This Federal Highway Administration (FHWA)-sponsored project was awarded on September 1, 2012. The objective of this project is to support the FHWA Visibility Program by providing responses to and interpretation of technical issues, measurement and characterization of lighting and signaling systems, development of measurement standards, and development of consensus standards.

During the course of this project, the overall responsibility of the team will be to provide support to the FHWA Visibility Program for the evaluation, standardization, and testing of lighting and signaling systems. This includes the evaluation and analysis of technical and program issues and the provision of advice, recommendations, and support.

Safety IDIQ Management This FHWA-sponsored project was awarded on February 1, 2013. The primary purpose was to provide the FHWA Office of Safety with an outlet for performing various task orders in an indefinite delivery/indefinite quantity (IDIQ) format. This IDIQ contract was competitive. CIBSS researchers successfully provided an appropriate response to Task Order Proposal Requests (TOPRs) #30, #34, and #45.

During the course of the fiscal year, CIBSS researchers worked to enhance their responses to the requested TOPRs through a continual improvement process from the standpoint of both team capabilities and an understanding of FHWA requirements. The center also continued to seek communication with FHWA partners to provide a better resource to the agency as the contract moved forward.

Trinidad Nights This Colorado Department of Transportation-

sponsored project is designed to provide an evaluation of the guardrail-mounted lighting installation in Trinidad, Colorado. In an effort to control light pollution from a viaduct over the city of Trinidad, Colorado, a light-emitting diode (LED) experimental guardrail-mounted lighting system was implemented. This lighting system uses vertically mounted LED strips that project light in the travel direction of the driver. These LED strips provide a high level of vertical illuminance on objects that may be in the lane of travel of the vehicle.

This implementation of LEDs is unique, and the effectiveness of the system as compared to traditional lighting systems is unknown. A performance test will be valuable in comparing the ability of this system to provide object visibility in the roadway to that of traditional lighting. This test will involve an experiment conducted with participants from the general public in Trinidad. These experiments will be compared to similar experiments performed under traditional lighting systems.

CIBSS researchers provided the Roadway Lighting Mobile Measurement System (RLMMS) for the lighting evaluation in the test sections. The Center also conducted the evaluation with the general public. The results of the evaluation and the visibility distance will be documented and provided to the project sponsor.

Ongoing ProjectsShiny Sign

This project, sponsored by the National Cooperative Highway Research Program (NCHRP) through the Texas A&M Transportation Institute, compares different sign lighting types with different combinations of sign materials. The purpose of the study is to determine the most visible combination of sign materials and sign lighting by having participants identify a series of words printed

Director: Dr. Ron Gibbons

24

on the signs while driving. New sign material technology may provide an opportunity for dimming sign lighting, which can reduce energy costs and sky glow or light pollution.

The testing for this project was conducted this year on the Smart Road using a changeable sign that can be raised and lowered to alter the sign message. The Smart Road lighting control system was also used to modify the lighting conditions. The legibility of the sign in varying conditions was measured from the human factors testing perspective.

Airport Garage LightingThis Airport Cooperative Research Program (ACRP)-sponsored project is designed to investigate the functionality and possible energy savings that may result from changes made to airport parking garage lighting. Current lighting technologies will be considered during cost-benefit analyses of transitions to alternative airport parking garage lighting. Activities to be undertaken by VTTI include site selection of multiple airports and field testing with a modified version of the VTTI-developed RLMMS. Lighting design activities will be conducted with assistance from the engineering firm of Parsons Brinckerhoff. Cost-benefit analyses of transitions to different parking garage lighting will be performed with the assistance of the program management firm, MCR Federal.

The first phase of the project is complete, and scheduling of the site visits and photometric measurements is underway and is expected to be completed in September.

LED NightThe Virginia Center for Transportation Innovation and Research (VCTIR) is sponsoring this assessment of LED-based exterior luminaires. LED luminaires have been tested at VTTI for electrical and lighting

performance. Following this laboratory testing, luminaire systems will be evaluated in the field at a Virginia Department of Transportation (VDOT) Park and Ride facility using the VTTI-developed RLMMS. Both evaluations and ongoing measurements of luminaire performance during a 24-month period will be reported to the sponsor to determine which luminaires meet VDOT specifications.The lighting systems were installed during September 2012 and have been measured three times for performance. During the spring, the project team held an educational seminar with the project sponsor.

Foggy SignsThis VCTIR-sponsored project is designed to investigate the performance of internally illuminated roadway signs using different color schemes and intensities to determine which configurations perform best during foggy conditions. A Smart Road study will be conducted during which participants will be asked to read aloud an alphanumeric combination displayed using each sign configuration. The distance at which a participant can correctly read the sign (i.e., the legibility distance) will be used as the measure of performance. Results of this study will provide information that can help increase active sign legibility during foggy conditions.The measurements of the fog-making system performance were made using a VTTI-developed visibility meter. Human factors testing is ongoing.

Wet Visibility VThis VCTIR-sponsored project is another in the Wet Visibility family. Wet Visibility V is an extension of the efforts made during the previous project to assess the durability of pavement markings. The retroreflectivity of test markings installed on Route 460 in Blacksburg, VA, will be monitored for an additional two

25

years to assess their long-term durability. The results of this study will provide information about the performance of various pavement markings during a four-year period. Results will be used by VDOT to inform its pavement-marking policies.

The final set of measurements has been completed, and the final report is being prepared.

Spectral InteractionsSpectral Interactions is the second phase of the Spectral Effects project and is sponsored by FHWA. The focus of this project is to investigate the impact of headlamps on overhead roadway lighting. This investigation will use varying levels of overhead roadway

lighting paired with standard vehicle headlamps. The project will use the Small Target Visibility (STV) model and pedestrian detection. The detection distances of objects under the prescribed conditions will show the impact of headlamps at different dim levels. The findings may result in an opportunity for energy savings as the threshold for dimming roadway lights and adequate nighttime visibility are examined.

Spectral EffectsFHWA and the National Highway Traffic Safety Administration (NHTSA) are sponsoring this evaluation of the impact of the spectral power distribution of light on driver performance. With a new focus on energy savings, alternative light source technologies (both traditional and

Ron Gibbons studies bicycle visibility • photo by Jim Stroup

26

new) are being applied to roadway lighting.

This has caused the spectral power distribution of the light source to play a more important role in the consideration of a roadway lighting application. Broad-spectrum sources (i.e., a light source with significant spectral output across the entire visible spectrum) potentially provide the driver additional benefits such as improved visual performance, better object color recognition, and greater visual comfort. This project investigates these effects and considers the potential benefits of a broad-spectrum source. The project considers the impacts of both the fixed overhead lighting system and vehicle headlamps. Data collection has been completed; data analysis and final reporting of the project are under way.

An additional aspect of the project is the devel-opment of a potential system that uses vehicle headlights to highlight pedestrians on the side of the roadway. This is coupled with the ini-tial study of broad-spectrum sources and the potential benefits that such light sources may provide in allowing drivers to detect pedestrians and animals along the side of the roadway. The design and manufacture of this peripheral illu-mination system is complete, and data collection is expected to begin during late 2013.

Adaptive LightingThis FHWA-sponsored project considers the possibilities of adapting lighting systems to the needs of the driving environment. The first step is to create a causal link between the lighting system and the vehicular crash rate. Current projects connect the existence of lighting to a reduction in crashes, but insufficient data exist to link roadway brightness to the crash rate. To accomplish this goal, this project considers the crash rate for six states and the performance measurements of the lighting systems. A

Bayesian analysis is then planned to associate the lighting performance to the crash rate. Draft procedures will be developed to aid in the design of adaptive lighting systems. These procedures will also provide guidelines for when to dim a lighting system and how to perform the adaptation. The final step in this project is the performance of a legal review of the proposed guidelines to ensure the viability of such a system.

The lighting measurements have been completed, and the final analysis is under way. A draft of the design specifications is also currently under review.

Accelerating Roundabout ImplementationThis project is primarily performed by partners North Carolina State University and Kittelson and Associates, Inc. The purpose of the project is to identify factors that limit the implementation of roundabouts in the highway system. These factors include the yielding of drivers to pedestrians in roundabouts. The other limitation is the potential for backups at peak traffic times. The research team has performed reviews of the various roundabouts throughout the U.S. to link roundabout design characteristics to driver behavior. The study also includes crash and environmental analyses. The resulting report will provide a guideline for agencies to minimize the impact of such factors on roundabout implementation.

Completed ProjectsPacific Nights

This project was sponsored by Clanton and Associates and comprised an LED assessment study that occurred in Seattle, Washington, during March 2012. The purpose of the study was to compare different LED luminaires to conventional high-pressure sodium (HPS)

27

luminaires at varying dim levels. These comparisons were made to examine the potential to dim roadway luminaires with the goal of conserving energy costs while maintaining the current standard of visibility. Results will inform the City of Seattle and Seattle City Light of potential ways to enhance or maintain visibility while transitioning to LED technology. The final report has been completed and issued.

FHWA Safety Indefinite Delivery/Indefinite Quantity

This FHWA-sponsored project was awarded on July 1, 2010. The primary purpose was to provide the FHWA Office of Safety with an outlet for performing various task orders in an IDIQ format. This IDIQ contract was competitive. CIBSS researchers successfully provided an appropriate response to TOPRs #30 and #34. This project has been continued as Safety IDIQ Management.

photo by Jim Stroup

28

Center for Injury Biomechanics

The Center for Injury Biomechanics (CIB) strives to mitigate the human suffering and societal costs associated with unintentional injuries. This is accomplished by conducting research to determine the mechanisms of injury and human tolerance to injury. The impact and injury responses and physical properties of post-mortem human surrogates and in vivo biomedical models are measured on multiple scales via cellular, tissue, organ structure, body region, and whole-body-level testing. Human volunteer testing is conducted at low energy levels to investigate the effects of posture and muscle activation. The tolerance to various loading regimes using different injury mechanisms is determined to develop or improve injury metrics and predictive functions for a given injury type.Warren Hardy (left), director of CIB, and Stefan Duma (right), department head of the Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences • photo by Logan Wallace

29

of the thorax and abdomen. The second objective is to compare the responses for a given combination of standard safety restraint systems between surrogate types. The third objective is to compare the responses of each surrogate type between combinations of standard safety restraint systems.

Ongoing ProjectsRoadside Features for the Highway Safety Manual (HSM)

The objective of this research is to develop quantitative measures that can be incorporated into the Highway Safety Manual (HSM) to evaluate the effects of roadside designs and features on the frequency and severity of lane-departure crashes. The project is designed to: 1) Use completed and ongoing research projects to identify crash modification factors (CMFs) and available data sources related to lane-departure crashes; 2) Determine the strengths, weaknesses, and differences between the HSM prediction models and the Roadside Safety Analysis Program (RSAP) and identify opportunities to provide consistency by updating data sources, base models, or modification factors; and 3) Develop new roadside crash modification factors for this type of collision event.

CIREN: Crash Injury Research and Engineering Network

This primary purpose of this project is to pro-vide support for the Wake Forest University (WFU) Crash Injury Research and Engineering Network (CIREN) center by participating in a subset of the reviews conducted by the WFU CIREN center of the automobile accident case data collected by WFU, either on-site at WFU or remotely via webcast. CIB will also participate in a retrospective analysis of previously col-lected automobile crash head-injury cases in an attempt to better understand head injury mecha-nisms, travel to participate in CIREN network general meetings and/or to present material at technical conferences, and contribute to the drafting of journal publications.

New ProjectsIntravenously Administered Nanoparticles to Halt Blast Trauma

The purpose of this research is to investigate whether intravenously administered nanoparticles functionalized with a peptide that binds with activated platelets could reduce bleeding and improve survival in a model of blast trauma. Blood loss is the primary cause of death at acute time points post-injury in both civilian and battlefield traumas. Immediate intervention is critical to minimize mortality associated with severe trauma. Poly(lactic-co-glycolic acid)-based nanoparticles with poly(ethylene glycol) arms and the RGD peptide to target activated platelets were fabricated. These functionalized nanoparticles or controls are delivered in a whole-body blast injury model in rats. Blasted animals are immediately injected intravenously with nanoparticles. Physiological monitoring is conducted, and survival time is recorded for one hour. Subsequently, tissues are collected for biodistrubution of nanoparticles and lung tissue injury. The particles reduce injury severity, and the functionalized nanoparticles or synthetic platelets reduce bleeding in a model of blast trauma. This treatment has the potential to greatly impact survival outcomes related to internal hemorrhage.

Investigation of Thoracic and Abdominal Loading Due to Different Safety Restraint Conditions Using ATDs and PMHSs

The overall purpose of this project is to quantify the degree of thoracic and abdominal loading due to different restraint conditions in full-scale frontal sled tests. There are three primary objectives for this project. The first objective is to quantify the response of post-mortem human surrogates (PMHSs), the Hybrid III anthropometric test device (ATD), and the Test device for Human Occupant Restraint (THOR) ATD during high-speed sled tests with a combination of standard safety restraint systems, particularly focused on the response

Director: Dr. Warren Hardy

30

Abdominal Injury Patterns The objective of this project is to investigate abdominal injuries incurred during motor vehicle collisions. Epidemiological and etiological studies using National Automotive Sampling System (NASS)/Crashworthiness Data System (CDS) and CIREN cases are being performed to supplement current, limited data about the subject. A laboratory PMHS capable of reproducing the requisite abdominal damage and injury mechanisms will be developed. This whole-body testing will involve examination of loading and damage parameters, determination of the damage tolerance/threshold, and development of an associated predictive metric. The mechanism of abdominal injury will be investigated using high-speed, biplane x-rays to record the internal kinematics.

Development and Validation of the THOR-k Finite Element Model

The advanced, anthropomorphic THOR was developed by the National Transportation Biomechanics Research Center of the National Highway Traffic Safety Administration (NHTSA) at the U.S. Department of Transportation (USDOT). THOR is designed to facilitate both the development and evaluation of advanced vehicle occupant safety systems. The device features improved biofidelity and expanded capabilities to assess injury in all bodily regions. Though designed specifically for use during frontal and oblique crash environments, THOR offers multi-directional faculties in several of its components. The latest THOR dummy features numerous functional benefits with its enhanced design and measurement capabilities compared to previously existing crash test dummy technology. The goal of this project is to develop and validate a new finite element model (FEM) of the recent version of the THOR dummy (k model). The mesh and assembly of the new model will be developed

by researchers from George Washington University (GWU). The material properties based on material characterization tests will be identified by Virginia Tech researchers led by Dr. Costin Untaroiu. Virginia Tech researchers will also validate the model against data available from calibration, biofidelity, and sled tests. Virginia Tech researchers will compare the predictions of the final THOR model in a frontal crash-sled simulation with corresponding data of the Total Human Model for Safety (THUMS). The model sensitivity against material properties and test conditions will be investigated.

Evaluation and Calibration of a FEM of the THOR-NT Dummy for Assessing Vertical Impact Loading

ATDs are frequently used during crash testing to evaluate injury risk for vehicle occupants. The THOR dummy has been developed and continuously improved by NHTSA. The device has shown better biofidelity during impact tests relative to the Hybrid III, which is the dummy used for present regulations. Current efforts of improving the THOR-NT advanced frontal crash test dummy have been based exclusively on comparative frontal crash tests using PMHSs and Hybrid III ATDs. Therefore, the adequacy of using THOR during evaluations of injuries caused by vertical loading is not ideally understood. To address this gap, the objective of this Virginia Tech project, conducted with NASA Langley Research Center (LaRC), is to evaluate and calibrate the FEM of the THOR-NT dummy under vertical loading conditions corresponding to Federal Aviation Administration (FAA) and Department of Defense regulations for crash safety and NASA Orion Crew Module Landing requirements.

Evaluation of Pre-tensioning and Force-limiting Used in Novel Seat Belt Restraint Systems

Current seat belt systems have proven to be

31

effective by preventing 45 percent of fatal injuries and 67 percent of serious injuries. However, it is understood that an early coupling of the occupant to the vehicle seat using pre-tensioners during a frontal crash can additionally reduce the injury risk of the occupant. Until recently, low-power pre-tensioners have been used only to take up the slack in a seat belt to avoid submarining (i.e., occupants sliding down under the lap section of the seat belt). The current trend of increased vehicle stiffness has resulted in a requirement for a better coupling of the occupant to the seat by applying greater forces in the belts using high-power pre-tensioners, especially in the lap belt. It is known that applying greater forces may increase injury risk in the occupant’s bodily regions that are compressed by the belts (e.g., thorax, pelvis, and abdomen). The objective of this project is to evaluate the performance of pre-tensioning and force-limiting used in novel seat belt restraint systems for better protection of the occupant involved in a frontal crash. The methodology is a multi-faceted approach involving: 1) Experimental static deployment tests with both ATDs and PMHSs; 2) Data analysis of dynamic penetration of the surrogate abdomen/thorax and belts during tests using the Vicon system; 3) Statistical correlation between levels of thorax/abdomen deformations, injuries/non-injuries, and anthropometric characteristics of PMHSs; and 4) Tissue tests conducted on abdominal solid organs to investigate the influence of variability in the material properties on the PMHS response to pre-tensioning.

Task 4.1 - Generic Hull 2 The purpose of this study is to gain a better understanding of the loading conditions present in a representative vehicle experiencing an underbody blast. The loads and timing associated with various types of damage predicted by ATDs will provide insight into

potential injury mechanisms and the ability of the ATDs to respond to and predict those injuries under such conditions. The results of this research will help direct future studies.

Task 4.2 - Blast Buck Comparison Testing These series of tests are designed to investigate the kinematics of surrogate occupants undergoing high-level and high-rate vertical accelerations. Two surrogates are positioned on top of a blast buck having a rigid frame and seat structure with a deformable floor. Paired comparisons are conducted to examine the effects of different postures, personal protective equipment, and mitigation strategies.

Factors Related to Serious Injury and Fatal Motorcycle Crashes with Traffic Barriers

The goal of the proposed research program is to use in-depth accident investigations to determine the characteristics of serious injury and fatal motorcycle crashes into traffic barriers. The long-term goal is to recommend injury-mitigating strategies for motorcyclists that continue to protect passenger-vehicle occupants. The scope of the research program will include collisions with all forms of traffic barriers such as guardrail barriers, concrete barriers, bridge rails, crash cushions, and end terminals.

Head and Thoracic InjuryIn the automotive safety field, FEMs are commonly used to predict and ultimately mitigate injuries to human occupants. However, there currently are limited data that can be used to validate the kinematics and inertial responses of internal organs due to applied loading. Therefore, the injury patterns of restrained occupants will be reconstructed on PMHSs under controlled loading conditions using impact tests that simulate injury mechanisms observed during field accidents. The project comprises two goals: 1) To simulate field accident internal organ injury mechanisms through local impact testing; and 2) To quantify

32

the three-dimensional (3D) motion of internal organs due to isolated thoracic impacts. To accomplish these goals, radiopaque markers will be implanted in various thoracic structures. A high-speed, biplane x-ray system will be used to visualize the motion of the markers.

Roadside DataEach year, more than 10,000 motorists in the U.S. are fatally injured during road departure crashes. The reasons why road departure crashes often lead to fatality or injury despite the installation of thousands of miles of advanced countermeasures are complex and not completely understood. This study will conduct in-depth investigations of 1,000 road-departure crashes at 24 sites across the United States. The study promises to provide fundamental insights into the crash conditions associated with road departures (e.g., impact speed, impact angles, vehicle road-departure orientations, encroachment frequencies, and roadside topography) to reduce the severity and frequency of roadside crashes. The study will couple these crash causation factors with complete injury information for each of the crash victims to identify the influence of infrastructure design on injury outcomes.

Military Biomechanics IIA new fluid-filled eye will be designed and developed to replace the current solid eye in the Facial and Ocular Countermeasure Safety (FOCUS) headform, a state-of-the-art physical model capable of measuring impact loads to the face and eyes. The new eye will be instrumented with a high-rate pressure sensor that will be calibrated to predict eye injury risk. The FOCUS form will be slightly modified to allow for a new eye and sensor cable. To investigate the internal loading mechanisms of the eye subjected to blast loading, a full-eye computational model that is able to

incorporate non-symmetric loading patterns and omnidirectional impacts will be developed.

The biomechanics of cervical spine arthroplasty (i.e., the surgical repair of a joint) in the military will be investigated by first further analyzing existing tests of the effects of cervical spine implants then developing a suitable cadaver testing apparatus. This is important for head-supported mass issues. Related to head-supported mass, FEMs of various face shields will be created to evaluate the effects of spinal loading on candidate designs.

This project is also designed to characterize the physical responses of a previously developed pulmonary surrogate under a series of representative impact loading conditions. The surrogate’s responses will be correlated to the strain distribution within a FEM of the human lung. Finally, this project will evaluate the effect of non-censored rib fracture timing on thoracic injury criteria.

WinSmash UpdateThe objective of this project is to update and enhance the WinSmash crash reconstruction code. Specifically, the project corrects known programming bugs, implements an improved strategy for the search of stiffness values, rewrites the code in the more modern language C#, and develops an expanded library of stiffness values that better reflect the current vehicle fleet. This project has resulted in the development of WinSmash 2010, a completely rewritten and restructured version of the WinSmash crash reconstruction code. Earlier phases of this project developed WinSmash 2007 and WinSmash 2008. WinSmash 2007 was used to generate delta-V estimates in NASS/CDS 2007. WinSmash 2008 was used for the same function in NASS/CDS 2008 and NASS/CDS 2009. WinSmash 2010 will be used to generate delta-V estimates for NASS/CDS 2010 and later versions.

33

Completed ProjectsQuantitative Evaluation of Deflection Equivalence (DEQ)—Part I

Certain vehicle safety regulatory agencies are considering adapting into the standard frontal vehicle safety compliance tests a new thoracic injury criterion called the deflection equivalence (DEQ). However, concerns have been raised regarding the ability of DEQ to accurately predict under certain loading conditions thoracic injury risk using the 50th percentile male Hybrid III ATD. Specifically, DEQ that is calculated based on the Hybrid III sternum-chest potentiometer (single-point) does not appear to be sensitive to cases during which a knee-bolster airbag (i.e., a knee airbag designed

to reduce loading on lower limbs) is deployed or in cases where the steering wheel rim directly loads the chest due to the airbag “bottoming out” (i.e., the airbag does not provide sufficient cushion to the vehicle occupant). The proposed research program comprised three primary goals designed to investigate these concerns: 1) Assess the effectiveness of knee-bolster airbags with respect to thoracic injuries experienced during real-world automotive collisions using the NASS/CDS and CIREN databases; 2) Determine if direct steering wheel contact due to the lack of an airbag deployment or the airbag “bottoming out” is still a major source of thoracic injury during real-world automotive collisions using the NASS/CDS and CIREN databases; and 3) Evaluate the pros and cons

Warren Hardy, director of CIB • photo by Logan Wallace

34

of DEQ, sternum deflection, and peak chest deflection as thoracic injury predictors during frontal impacts using an ATD, human body FEM simulations, and various combinations of safety restraint systems.

IMPACT Response to WIAMan The Virginia Tech – WFU CIB formed a consortium of universities to address the primary injury concerns of today’s military. Better vehicle structures, seating and restraint systems, and personal protective equipment are needed to improve the safety of the mounted soldier, particularly during vehicle vertical loading. Currently, no valid development and evaluation tool exists to aid in the design of these systems or to assess the risk of injury during an underbody blast. This project contributed to the determination of biofidelity corridors and risk curves associated with the implementation of a new form of test dummy, the Warrior Injury Assessment Manikin (WIAMan).

Crash Injury Research and Engineering Network (CIREN)

CIB participated in a subset of reviews, which were conducted by the WFU CIREN center, of automobile accident case data collected by WFU. CIB supported the CIREN case study and/or statistical findings by conducting pilot biomechanical testing.

Light-vehicle Event Data Recorder Technologies

The objective of this program was to evaluate the current potential of event data recorders (EDRs), manufacturer-planned upgrades to EDRs, and potential updates of EDR capabilities based on data about safety needs. The evaluation included an assessment of the requirements and capabilities for EDR survivability (i.e., the ability of the EDR to withstand impacts). The research program focused on both light vehicles (e.g., cars and light trucks) and heavy vehicles that included truck-tractors, straight trucks, and buses (e.g., transit and motorcoaches). The research program supported the NHTSA decision about regulating future generations of EDRs.

Advanced Automated Collision Notification This project sought new methods to improve triage decisions (i.e., the process of determining the priority of patient treatment based on condition severity) made during vehicle crashes by taking advantage of electronic data collected during a crash. This project was designed to develop and validate Advanced Automated Collision Notification algorithms using the advanced capabilities of EDRs to specifically improve triage decisions. EDRs in current-production passenger vehicles provide a unique source of data about a crash, storing data elements that describe the vehicle and occupant

VTTI/CIB Crash Sled Lab • photo by Logan Wallace

35

restraint responses to an impact. These EDR data elements can be used to dramatically improve the prediction of impact injury incidence and severity for field triage decisions.

New Jersey Graduated Driver’s LicenseTeen crash fatalities occur for a number of reasons, including driver inexperience, lack of proper training, and a propensity for excessive risk-taking among some teens. These tragic events continue to occur at the rate of approximately 100 deaths per year in New Jersey despite state implementation in 2001 of the graduated driver’s license (GDL). The goal of this research program was to develop a comprehensive teen driver monitoring method and program for New Jersey that uses current and future data sources. This system will be used to determine the effectiveness of the New Jersey GDL law in reducing motor vehicle crashes, injuries, fatalities, and property damage for novice drivers who are typically 16 to 25 years of age. The resulting system will be designed to facilitate evaluation of the current New Jersey GDL law and proposed enhancements to the law.

Specifically, this research program: 1) Developed a comprehensive teen driver monitoring method and program for New Jersey that uses current and future data sources; 2) Evaluated crash data to determine if teen driver crashes and fatalities in New Jersey have significantly declined since enactment of a GDL law in 2001; 3) Conducted a study that compared the driving experiences of teens who had 50 hours of practice driving coupled with formal driver training versus those who had 100 hours of practice driving without formal driver training in terms of future crash involvement, traffic violations, and other factors; 4) Conducted a study that compared the driving experiences of teens who held their driving permits for six months versus those who held their permits for 12 months in terms of future crash involvement, traffic violations, and other factors; 5) Evaluated the effectiveness of the September 2008 directive that banned plea bargains for drivers with a GDL; and 6)

Developed a detailed plan for a pilot study of an in-vehicle observation of teen driving behavior.

Human Abdomen Model Center of Expertise

This research was conducted for the Global Human Body Models Consortium (GHBMC). This was a multi-year, multimillion dollar project coordinated by the GHBMC, which is a consortium of the world’s largest automobile manufacturers and suppliers. The effort was designed to develop and validate the most advanced FEMs of the human body. Regional models were separated for development into five centers of expertise, with the full-body center performing integration of the regions. The models were highly anatomically detailed and possessed the most accurate tissue representations possible, particularly in terms of mechanical responses and failure characteristics. The models were designed to predict relevant crash-induced injuries. Individuals were modeled to cover the maximum range of normal sizes in the world population. Fifth and 50th percentile females and 50th and 95th percentile male models were developed. Scalable models were developed to represent other shapes and sizes. Subsequent models represented children and the elderly.

CIB participated in the GHBMC effort as the Abdomen Model Center of Expertise. CIB collaborated with Dr. Philippe Beillas of the French National Institute for Transport and Safety Research (INRETS) in Lyon-Bron and Dr. Philippe Vezin, head of the Laboratory of Biomechanics and Impact Mechanics. The research approach involved empirical and numerical components on multiple scales. For the development of an improved FE tool for the evaluation of local abdominal injury, material properties, tolerance of tissues and systems, and the local structural responses during impact were needed and were obtained during the course of this project. CIB conducted the majority of the empirical work, and INRETS conducted the majority of the numerical work for the abdomen center of expertise.

36

Th e mission of the Center for Sustainable Mobility (CSM) is to conduct research relevant to society’s transportation needs, to translate the results of that research into a realistic and workable application, to create and provide the tools needed to apply developed knowledge and processes, and to educate qualifi ed engineers to meet today’s transportation demands and tomorrow’s transportation challenges.

CSM comprises four groups:• Transportation Systems and Operations• Traffi c Signal Operations• Energy and Environmental• Data Visualization

Center for Sustainable Mobility

photo by Jim Stroup

37

New ProjectsMAUTC Incident and Weather: Effects of Major Transportation Incidents and Disruptive Events

During the last five years, the Northern Virginia transportation system has experienced several major incidents and disruptive events, including a Metrorail train collision, an earthquake, and a collapsed crane. The magnitudes and sources of these incidents are different from the more common vehicle collisions. This study will compare the impacts of the three major events with common vehicle collisions in terms of demand changes, network performance, and the applicability of congestion mitigation strategies. The overall goal of this project is to better understand the similarities and differences between extraordinary disruptive events and more common incidents and the traffic mitigation strategies that are effective during these situations. The associated objectives include: 1) Identifying similarities and differences among major incidents and more common incidents; 2) Determining the network performance under major incident and disruptive event conditions; 3) Determining the network performance under more common incident conditions; and 4) Identifying and evaluating traffic mitigation strategies for applicability to the different event conditions. The outcomes of the study will help the Virginia Department of Transportation (VDOT) and other departments of transportation plan for unusual events of different types and will evaluate the benefits of implementing traffic mitigation strategies in different scenarios.

MAUTC Incident and Weather: Winter Weather Demand Considerations

In 2011, the “perfect [snow] storm” hit the Washington, D.C., commuting area during the evening peak period, causing some drivers to spend 13 hours on the road. While it is acknowledged that severe weather reduces speeds and capacities, the impact of such

weather cannot be determined without knowing how many drivers will be affected. Predicting the winter weather demand involves understanding the complexities associated with the decision to travel at a particular time. School closures, workplace policies, storm characteristics, and road conditions influence drivers’ trip decisions during winter events. This study explores these influences and complexities. The goal is to examine winter weather effects on demand and estimate demand models. Towards this goal, this study involves collecting original data about citizens’ travel decisions during snowstorms and the dependence of these decisions on the aforementioned influential factors; identifying school and employer policies with respect to early closures during snow events; and developing snowstorm-related demand models.

Conference on Agent-Based Modeling in Transportation Planning and Operations

The inaugural Conference on Agent-Based Modeling in Transportation Planning and Operations, which is funded by the Mid-Atlantic Universities Transportation Center (MAUTC), will be held September 30 to October 1, 2013, at the Inn at Virginia Tech in Blacksburg, Virginia. The conference has the following objectives:• Present the current state of the art/science in

agent-based transportation modeling.• Provide the lessons learned from the current

research eff orts in this fi eld.• Defi ne where the future lies in this type of

modeling eff ort and what steps and research agenda need to be taken to ensure its success.

A website for the conference has been established at http://www.cpe.vt.edu/abmconf/index.html. An organizing committee has been formulated. Also, a paper review committee has been formed to review the papers and the presentations. Qualified papers will be published in a special issue of Transportation Research-Part C, which is dedicated to this conference.

Director: Dr. Hesham Rakha

38

Using Mobile Probes to Inform and Measure the Effectiveness of Macroscopic Traffic Control Strategies on Urban Networks

Urban traffic congestion is a problem that plagues many cities in the United States. Devising and testing strategies to alleviate this congestion is especially challenging due to the difficulty of modeling these complex urban traffic networks. However, recent work has shown that these complicated systems can be modeled in relatively simple ways by leveraging consistent relationships that exist between network-wide averages of pertinent traffic properties, such as average network flow, network density, and the rate at which trips are completed. Using these “macroscopic” traffic models, various control strategies can be developed to mitigate congestion and improve network performance. However, the effectiveness of many of these strategies depends on the ability to estimate traffic conditions on the network in real-time. This jointly proposed research between Penn State and Virginia Tech seeks to investigate how real-

time mobile vehicle probes can be combined with macroscopic urban traffic models to implement more efficient network-wide traffic control strategies. Additionally, this work will examine how the effectiveness of these strategies can be directly measured in the field using only mobile vehicle probe data. These two efforts can lead to more efficient control of downtown traffic networks and a reduction in vehicular delay during rush-hour periods. This project is a collaborative effort between Penn State and Virginia Tech funded under MAUTC.

Modeling the Dynamics of Driver’s Dilemma Zone Perception using Machine Learning Methods for Safer Intersection Control

Rural, high-speed signalized intersections are associated with vehicle crashes due to dilemma zone problems. Dilemma zones are defined in either time or space as zones in which some drivers may decide to proceed and some may decide to stop at the onset of a yellow light. This disagreement among drivers can lead to

photo by Michael Kiernan

39

rear-end crashes (when a driver decides to stop while the following driver decides to proceed) and/or right-angle crashes (when drivers end up violating the red light and crash with side street traffic). This joint proposed research between Virginia Tech, Morgan State University, and Penn State will investigate the dynamic nature of drivers’ perceptions of dilemma zones and whether that perception changes as a function of their experience driving through safe or unsafe intersections. A matching project funded by the Virginia Center for Transportation Innovation and Research (VCTIR) is investigating different control methods to minimize dilemma zone-related crashes. These methods range from traditional advanced detector and actuated control optimal configuration to the use of advanced technologies such as Wavetronix and detection-control systems. These two efforts can lead to better modeling of driver perception, better control algorithms, and safer intersections.

Development of a Ground-Coupled Bridge Deck Deicing System Using Energy Foundations

The long-term goal of this research is to develop a ground-coupled bridge deck deicing system that uses geothermal energy harvested through bridge foundations or geothermal trenches/boreholes. The proposed system is different from ground-source heat pump systems used for building heating and cooling as it uses a circulation pump. The warm fluid extracted from the ground is circulated through a tubing system embedded within the bridge deck. The envisioned technology will help reduce the use of salts and deicing chemicals, thus decreasing bridge deck deterioration and offsetting the detrimental effects and environmental hazards caused by these chemicals. The knowledge base developed from the proposed phase of the research will be critical for successful product development during the next phase.

During the proposed phase, the research team will investigate the operational principles, identify key design parameters, and develop a proof-of-concept testing approach that will eventually transform the concept to a ready-to-use technology. Laboratory and field tests will be performed on instrumented bridge decks and heat-exchanger piles (energy piles) to investigate heat transfer within different components of the ground-coupled bridge deck system. The knowledge and experience gained from this research will allow the team to develop a well-planned strategy for achieving its long-term goal. This research is a collaborative MAUTC project between Penn State and Virginia Tech.

MAUTC Training on Pavement Surface Characteristics

The purpose of this project is to develop an effective education training program for roadway agency engineers and managers at the federal, state, and local levels. The program will introduce participants to the state of the art in pavement surface characteristics measurement and management and their impacts on the performance of national road transportation infrastructure systems. It is anticipated that this research will prepare state and local department of transportation (DOT) workforces to better address pavement contribution to the performance of their networks as it relates to the requirements of the Moving Ahead for Progress in the 21st Century Act (MAP-21). The hypothesis of the research team is that agencies can better achieve their performance goals if they understand the contribution of the pavement to the various road-vehicle interactions (e.g., ride comfort, safety, gas consumption, traveling speed and reliability, environmental pollution, etc.). This will help decision makers align their investment decisions with performance goals.

40

STOL Task 1CSM is part of the SAIC team that is providing support operations for the Saxton Transportation Operations Laboratory (STOL). The research that the team is conducting under the program relates to cooperative vehicle systems research, including cooperative adaptive cruise control (CACC) system development, speed harmonization system development, and the modeling of these cooperative systems.

STOL Task 2 As part of STOL, this task entails developing and demonstrating the use of optimized variable speed targets to reduce congestion. In coordination with technology deployed in operating vehicles, the variable speed recommendations are designed to provide travelers the benefit of improved highway performance. The speed recommendations originate in a traffic management center (TMC; or, for purposes of this study, a surrogate for a TMC communicating to roadside equipment is acceptable). The TMC will calculate the ideal speed to create a safe traffic flow while maximizing vehicle throughput, thereby providing an overall benefit to the traveling public. The TMC will transmit the speed information to connected vehicles that contain communications and timing technologies combined with CACC to implement the system. Drivers of the connected vehicles can opt-in to the speed harmonization system provided, and the TMC will update the information sent to the vehicles to maintain the improved performance. Initial engineering development and testing will be performed at the Turner-Fairbank Highway Research Center STOL, followed by field tests.

Traffic Bottlenecks Identification and Diagnosis, Countermeasure Prioritization, and Innovative Solutions to Local/Systemic Problems

The primary goal of this Federal Highway Administration (FHWA)-sponsored project is to provide guidance about the characteristics of localized congestion/bottlenecks that occur on a facility level and relevant existing and innovative solutions to localized congestion/bottlenecks that are primarily on the infrastructure side and low-cost in nature. It is understood that the solutions space for systemic congestion will positively impact localized congestion/bottlenecks primarily by lowering traffic demand or significantly increasing supplies with multimillion/multibillion dollar infrastructure improvements. However, the scope of this project will limit itself to identifying existing literature and research materials about the solutions space for systemic congestion and will not try to research innovative solutions or improve existing solutions for systemic congestion.

This project involves six tasks to support the vision of this initiative. During the first part of the project, Tasks 1 through 4 will provide for progressive development of traffic bottleneck identification and diagnosis and countermeasure prioritization guidance that is helpful to state and local agencies. These tasks will involve the completion of a series of interim deliverables. During the second part of the project, Tasks 5 and 6 will provide the platform for researching new solutions to bottlenecks and developing additional guidance for selected low-cost innovative treatments. These tasks will also include the completion of a series of interim deliverables.

41

Use of Probe Data for Arterial Roadway Travel Time Estimation and Freeway Medium-term Travel Time Prediction

Urban traffic congestion is a problem that plagues many cities in the United States. One approach to alleviating such congestion is to provide drivers with better travel time information so that they can make better departure time and routing decisions. This research project focuses on two efforts: 1) Validating the use of probe data to estimate arterial travel times; and 2) Validating and developing techniques to predict freeway travel times during a two- to four-hour window. With regard to arterial travel time estimation, the objective is twofold. The first goal is to provide a comprehensive validation of INRIX arterial probe data. During validation, the variability and reliability of arterial data in different corridors equipped with permanent and portable Bluetooth detectors will be studied under different traffic conditions. The second objective is to develop a methodology for augmenting INRIX data with other data sources to improve the data quality. With regard to freeway travel time prediction, the objective is also twofold. The first objective is to validate existing medium-term travel time prediction algorithms along one or two corridors in the state of Virginia. The second objective is to enhance the medium-term prediction accuracy using various artificial intelligence and traffic modeling techniques.

Guidance for Alternative IntersectionsState and local DOTs are searching for guidance about how to move forward with the analysis of “Alternative Intersections/Interchanges.” Recently, significant interest has developed in the double crossover diamond interchange (DCD; also known as divergent diamond interchange [DDI], the displaced left turn [DLT], the median U-turn [MUT], and the restricted conflict U-turn [RCUT])

that is proliferating for converting existing intersections and for facilitating new construction. Currently, most analyses are conducted using microsimulation software that is time consuming and costly at early analysis. The Highway Capacity Manual (HCM) does not have analysis procedures for alternative intersections, with the exception of roundabouts.

The objective of this research effort is to develop HCM analysis procedures for evaluating the capacity and quality of service of the DCD, DLT, MUT, and RCUT. These procedures or guides should include extensions of HCM methods to address gaps in the HCM relevant to the operations of these advanced intersection types. The analysis procedure and guide should be suitable for inclusion in Volume 4 of the 2010 HCM and will be issued as an FHWA Traffic Analysis Document. CSM is part of a multi-university team working on this effort.

CoSMob: Cooperative Systems for Smart Mobility Services and Solutions

The goal of CoSMob is to explore the potential of using real-time information collected from cooperative transportation systems via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication and to produce useful mobility information that could be disseminated through multiple communication technologies to drivers, traffic controllers, service providers, and transport authorities. Specifically, the project will build an integrated end-to-end system (framework) for capturing, processing, analyzing, and delivering (near) real-time V2V or V2I data/information to produce multimodal mobility management services that can enhance the performance of the overall transportation network. The CoSMob engine will be plugged into the MasarakTM of QUWIC. In addition to this integration, CoSMob will make use of the CopITS, a three-year National Priorities Research Program (NPRP) project that began in December 2010. Onboard units (OBUs) and roadside units (RSUs) are aftermarket products under development at QUWIC. This

42

project is funded by the NPRP of the Qatar National Research Foundation (QNRF). This is a collaborative effort between the Qatar Mobility Innovations Center and VTTI.

Ongoing ProjectsMAUTC Penn State

MAUTC has been the federally designated university transportation center (UTC) for Region 3 since the inception of the UTC Program in 1988. CSM leads the Virginia Tech team within a consortium that also includes Penn State (lead university), University of Maryland, University of Virginia, and West Virginia University. For much of its history, MAUTC has functioned as a research funding clearinghouse for its constituent members. The changing transportation profession dictates that MAUTC also function as a clearinghouse for knowledge creation, knowledge management, and knowledge implementation. MAUTC is a single entity serving multiple, non-university stakeholders who are part of the transportation enterprise of the mid-Atlantic region.

TranLIVE UTCTranLIVE is a Tier 1 UTC. The theme of TranLIVE is, “Transportation for Livability by Integrating Vehicles and the Environment,” with an emphasis on developing technologies to reduce the environmental impact of transportation. The TranLIVE UTC is a consortium of five universities: the University of Idaho (lead), Virginia Tech, Texas Southern University, Syracuse University, and Old Dominion University. The mission of TranLIVE is to help the nation achieve the goals of a cleaner environment and greater energy independence through 1) eco-traffic signal-system technologies, 2) eco-routing tools, and 3) alternative fuels and vehicles. More accurate and reliable vehicle emission and fuel consumption models will be developed by integrating vehicle and environmental data systems. These efforts will lead to improved technology for the industry and better decision-making tools for transportation and land-use officials.

This mission supports the U.S. DOT strategic goals of livable communities and environmental

photo by Kim Peterson

43

sustainability by developing integrated engineering solutions to better manage planning and land use (livability) and by reducing energy and environmental impacts (sustainability) of the transportation system.

Eco-signal EvaluationAs part of an FHWA-funded effort, CSM researchers developed an algorithm to compute the fuel-optimal speed profile of a vehicle approaching a signalized intersection that displays a red indication for different values of time-to-green (TTG). The optimized vehicle trajectory is part of an Eco-Speed Control Model. To predict the most fuel-optimal speed trajectory and advise a driver of the optimal actions to take, the model incorporates information received about future signal changes from an upcoming traffic signal controller using V2I communication. As a vehicle equipped with V2I communication capability enters the dedicated short-range communication (DSRC) scope of a particular intersection, the vehicle receives information about lead vehicles and upcoming signal changes. If the vehicle can maintain its current speed and safely pass through the intersection while the light is green, then it is directed to do so. If the traffic signal indication is yellow, the algorithm calculates if the vehicle can accelerate to some value below a set limit (usually the speed limit) and pass through the intersection safely before the red indication is introduced. If this is possible, then the vehicle is controlled to proceed as directed. If the vehicle arrives while the traffic signal is red, then the algorithm computes the fuel-optimal speed profile so that the vehicle arrives at the intersection stop line when the traffic signal turns green and all queues have been cleared. The proposed research effort will use the eTEXAS model to test the proposed algorithm. The test will consider various intersection geometries, various arrival rates, different expected times of arrival, different DSRC scopes, and different initial queues to

quantify the potential benefits of such a system. The work plan includes the following tasks: a) Develop an optimization approach to compute the optimum vehicle trajectory; b) Develop an algorithm to estimate queue lengths and queue clearance times using DSRC and loop-detector data; c) Provide support to implement the proposed logic within the eTEXAS model; d) Provide support to implement the Virginia Tech Comprehensive Power-based Fuel Model (VT-CPFM) within the eTEXAS framework; and e) Construct sample networks and conduct a sensitivity analysis.

Completed ProjectsMAUTC Data Quality Needs Assessment

The objective of this MAUTC/VDOT-sponsored effort was to prepare and disseminate accurate medium-term travel-time predictions (i.e., up to 120 minutes in advance) for a major corridor between Richmond and Virginia Beach using probe-based INRIX data. The study section that was considered included Interstate 64 (I-64) from Interstate 295 (I-295; east of Richmond) to Interstate 264 (I-264). Project tasks included: 1) Assembling INRIX data and constructing a database of historical data categorized by the day of the week and weekends for the entire freeway section from Richmond to Virginia Beach; 2) Developing data imputation techniques and k-Nearest Neighbor (kNN) algorithms to identify similar spatiotemporal conditions for use in travel-time prediction and considering the use of pattern recognition and other statistical techniques to identify comparable conditions; 3) Testing the algorithm by displaying the travel times on VDOT variable message signs (VMSs); and 4) Writing a final report documenting the findings of the study.

Blue Castle Nuclear Plant Evacuation Study

This project entailed approximating the evacuation time estimate (ETE) in the vicinity

44

of the Blue Castle Nuclear plant in Green River, Utah. Dr. Hesham Rakha led a team from VTTI that conducted the modeling study of the evacuation plan. In accordance with the draft guidance, a minimum of 10 evacuation scenarios were modeled to reflect seasonal, day-of-the-week, weather, special events, and roadway impacts on ETEs. These scenarios were developed to identify combinations of variables and events, provide ETEs under varying conditions, and support protective action decisions. The scenarios included a range of potential evacuation situations dependent on site-specific considerations. The team also considered the introduction of staged evacuations as alternatives to a keyhole evacuation. Staged evacuations necessitate the evacuation of one area while adjacent areas are ordered to shelter in place until directed to evacuate. For each evacuation scenario, an estimate of the time to complete a staged evacuation was provided to support protective action decision making. The ETE report included a discussion of the approaches used during the development of staged evacuations.

Region 3 University Transportation CenterThe theme of the Region 3 UTC was “Technology for Integrated Transportation Systems Operation and Performance.” The theme recognized that now and in the future transportation needs to be envisioned as a set of mobility options that are fully integrated to ensure optimal system performance. For too long, transportation has been considered a series of modes with discrete missions, goals, customers, and problems. The nature of the obstacles that have to be faced and the complexity of transportation system elements dictate use of advanced technologies to formulate solutions. With innovative solutions in hand, the national strategic objectives of safety, mobility, global connectivity, environmental stewardship, and security can be addressed effectively.

Developing Eco-driving StrategiesNumerous variables influence vehicle energy and emission rates. These variables can be classified into six broad categories: travel-, weather-, vehicle-, roadway-, traffic-, and driver-related factors. To reduce fuel consumption and emissions, significant efforts are required to decrease the total trip distance and improve vehicle technologies and road infrastructure. Several research efforts have studied the impact of aggressive driving on fuel consumption and emission rates (Nam et al., 2003; Nesamani and Subramanian, 2006; Tzirakis et al., 2006). One study from Sierra Research found that aggressive driving is responsible for 15 and 14 times greater carbon monoxide (CO) and hydrocarbon (HC) emissions for the same trip (NRC, 1995), respectively. This project was sponsored by MAUTC.

MAUTC Rollover Propensity EstimationThis MAUTC-funded regional project involved fundamental collaborative research between Penn State and Virginia Tech. The project included two tasks. Task 1 entailed developing calibration tools to estimate the vehicle mass and center of gravity for use in a vehicle safety system. This task will make it possible for vehicles to inexpensively estimate their inertial parameters on the road. This will enable vehicle safety algorithms to adapt to changes in loading, thereby significantly improving the safety of on-road vehicles. Task 2 entailed battery health prognostic and diagnostic algorithms that can predict, detect, and isolate catastrophic plug-in hybrid electric vehicle (PHEV) battery failures before they cause significant vehicle damage and/or accidents on the road. This task will enable vehicles to accurately estimate the states of health of battery packs on the road. This action will allow relevant vehicles to use battery packs safely and efficiently, thereby improving overall vehicle fuel economy and minimizing the likelihood of catastrophic battery failures on the road (e.g., thermal runaway).

45

photo by Michael Kiernan

Center for Sustainable Transportation Infrastructure

46

The Center for Sustainable Transportation Infrastructure (CSTI) focuses on asset management, road surface characterization, general pavement design, and life-cycle cost assessment. The mission of CSTI is to: 1) Advance the state of knowledge and provide quality education and research in transportation/infrastructure areas; 2) Conduct outreach activities designed to disseminate and implement CSTI research on national and international levels; and 3) Enhance the transportation infrastructure workforce by increasing the number of graduate students in the pavement and infrastructure fields and strengthening the undergraduate transportation infrastructure track.

photo by Logan Wallace

47

New ProjectsSustainable Pavements

A priority for all transportation agencies is the construction and maintenance of a reliable and sustainable transportation infrastructure that is economically viable, minimizes the impact on the environment, and operates fairly. Highway construction, maintenance, and operation are the most important areas of infrastructure in which sustainability must be achieved. The National Sustainable Pavement Consortium brings departments of transportation (i.e., Mississippi, Pennsylvania, Virginia, and Wisconsin) and the Federal Highway Administration (FHWA) together to share ideas and experiences and to establish a common agenda encouraging the use and development of more sustainable pavements.

Topics that will be investigated are:

• Examining emerging sustainable materials, technologies, products, and pavement systems; facilitating their adoption; and testing approaches and methods needed to implement these technological improvements.• Identifying an appropriate set of metrics that comprises all aspects of pavement sustainability and the adaption or development of tools designed to assess pavement sustainability on qualitative and quantitative scales.• Examining how sustainability considerations will aff ect all aspects of pavement engineering, such as planning, design, construction, maintenance, management, and reclamation.• Investigating the eff ect of climatic change on regional pavement engineering in terms of design, construction, maintenance, and management.• Developing tools designed to assess pavement sustainability on qualitative and quantitative scales.

Structural Index IIOne of the key business functions of network-level pavement management is to support the selection of pavement sections in need of work

and the assignment of “general” pavement treatments to these candidate projects based on smoothness and surface distress data. This practice does not take into consideration the structural capacity, which results in inefficient maintenance strategies. The recent addition of a network-level falling weight deflectometer (FWD) to the data collected by the Virginia Department of Transportation (VDOT) has made possible the inclusion of pavement structural capacity in the design of treatments.

Phase I of this proposed project developed a structural index for flexible pavements to use in network-level pavement evaluation, which facilitates the inclusion of the pavement structural condition into pavement management applications. This proposed Phase II of the project focuses on the development of a similar index for composites and pavements.

The objective of this project (Phase I and Phase II) is to develop tools to analyze pavement structural capacity at the network level. The products of the effort include:

• A “structural” pavement condition index that can be used for network-level pavement management; • An algorithm to scope pavement maintenance and rehabilitation projects at the network level; and • A framework for specifying structural capacity thresholds based on non-destructive evaluation and analysis.

Ongoing ProjectsSplash and Spray

This project is designed to develop an assessment tool for characterizing the propensity of highway sections to generate splash and spray during rainfall and for this propensity to be assessed in terms of impact on drivers. The project will deliver a robust model to predict splash and spray generation and will comprise three components: 1) Water-film model, 2) Splash/spray model, and 3) An exposure model. The final model

Director: Dr. Gerardo Flintsch

48

will be practical and applicable by all highway administrations throughout the country.

An emphasis is being placed on identifying the input parameters that are necessary for a robust model and how these parameters should be measured. The tool, which will subsequently be developed into an appropriate software application, will contribute to ongoing efforts of improving user satisfaction with public highways. The project scope includes: 1) Evaluation of prior work in the area of splash and spray mechanisms; 2) Development of a model to predict water-film thickness and splash and spray occurrence on pavement surfaces, encompassing an appropriate range of conditions; 3) Validation and refinement of the model developed; 4) Development of recommendations as to threshold criteria used to classify the impact of splash and spray on highway users; and 5) Documentation of the development efforts and preparation of technology transfer materials.

Pavement Surfaces Properties Consortium

This collaborative project establishes a research program focused on enhancing roadway transportation system services by optimizing pavement surface texture characteristics, including friction, splash and spray, and tire-pavement noise. Other organizations participating are the FHWA and the Connecticut, Georgia, Pennsylvania, South Carolina, Mississippi, and Virginia DOTs.

The program is designed to evaluate equipment used to measure pavement surface properties and other emerging technologies that show promise for improving measurements and innovative pavement surfaces and pavement preservation treatments. The collaborative research program provides an accessible and efficient way for highway agencies and

other organizations to conduct research about pavement surface texture and smoothness. The program also helps participants verify the operation and accuracy of their equipment used for pavement evaluations and road construction quality control.

Current projects include: 1) An annual equipment “rodeo” to compare each partners’ equipment used to measure pavement surface properties; 2) Seasonal monitoring of friction and macrotexture of different surfaces to investigate the need for seasonal correction factors; 3) Development of stereovision technology used to measure macrotexture; 4) Continuous Friction Measurements Technology Deployment; 5) Evaluation of high-friction surfaces; 6) Evaluation of the feasibility of implementing the International Friction Index in the U.S.; and 7) Organization of the 7th Symposium on Pavement Surface Characteristics SURF 2012, held September 19-22 in partnership with The Road World Association, American Association of State Highway and Transportation Officials (AASHTO), FHWA, and the Transportation Research Board (TRB).

Preventive MaintenanceThe objective of this project is to improve the preservation of state pavements by compiling the main findings from current practices of pavement preservation, evaluating the most promising treatments, and developing guidelines and construction practices that can be used by VDOT to define the most appropriate pavement preservation methods and timing for roads in Virginia.

Project researchers participated in the VDOT Pavement Management System (PMS) training held in the Richmond Central Office by the Pavement Maintenance Division with the updated version of the program. The PMS

49

program will facilitate evaluations of the historical performances of several preservation treatments. This evaluation should produce ideal criteria for more effective implementation of the suggested preservation approaches to be made as part of this study. A simplified user’s guide for the PMS suggesting possible alternatives for different preventive maintenance treatments will be created as part of the project.

Quiet PavementThe objective of this research is to support the Virginia Center for Transportation Innovation and Research (VCTIR) efforts for documenting all aspects of the progression to “routine application of quiet pavement.” Specific tasks include the determination of as-constructed functional and structural properties of the various technologies to be evaluated via performance monitoring during two full winters of service.

During this project, several different parameters described below will be measured to conduct performance monitoring of the five Quiet Pavement Test Sites built by VDOT:

• Onboard Sound Intensity (OBSI; noise);• Continuous Friction Measurement Equipment (CFME) dynamic friction (Grip Tester);• Static Friction with the Dynamic Friction Tester (DFT);• Static Macrotexture with the Computerized Tomography (CT) Meter; and• Pavement markings, retrorefl ectivity, and color measurements.

Additionally, data processing of other parameters (e.g., smoothness, locked-wheel skid, etc.) will be supported and used during the development of the Interim Report for The Virginia Quiet Pavement Implementation Program to the General Assembly.

The OBSI software developed for CSTI was

recently updated to facilitate data processing and analysis. It was also used to compare results against a system that has participated in the national OBSI rodeos, having shown ideal correlation.

Reclaimed Asphalt PavementThe use of reclaimed asphalt pavement (RAP) in asphalt mixtures has steadily increased during recent years. Furthermore, with growing awareness of greener and more sustainable practices and increases in oil prices, state DOTs have considered the economic and environmental benefits of integrating greater percentages of RAP into their mixes.

The objective of this project is to investigate the effect of increasing the amount of binder content on the performance of high-RAP surface mixtures. Because the aged binder in the RAP tends to improve rutting resistance and degrade cracking resistance, the latter effect may be offset by an increase in the percent of asphalt binder compared to the optimal asphalt content obtained using the Superpave mix design procedure. With the practice of many Virginia asphalt producers to fractionate RAP (FRAP), better control over mix gradation can be achieved, which allows greater RAP to be incorporated into the mixture.

The direct benefit of the project is the potential to increase mix stiffness, mix durability, and mix fatigue resistance with high-RAP content mixes. Furthermore, increasing RAP content has potential environmental and economic benefits that will result in more sustainable pavements. The benefits should be relevant to both asphalt producers and VDOT.

Center for Technology Development

50

The Center for Technology Development (CTD) develops, manufactures, implements, and maintains innovative data acquisition, collection, logistics, and analysis systems in support of transportation research.

Connected-vehicle hardware designed by CTD • photo by Logan Wallace

51

OverviewThe Center for Technology Development (CTD) collaborates with other VTTI centers and groups to provide research support. CTD researchers continuously develop advanced systems for data collection with the goal of gathering a range of detailed data while remaining unobtrusive to participant drivers.CTD comprises the following groups: Mechani-cal Systems, Data Acquisition, and Advanced Development. These groups provide technical support for various projects and the Smart Road.CTD continues to create solutions in response to the ever-changing requirements of VTTI research centers and sponsors. CTD initiatives include, but are not limited to: • The technical capability and reliability of the current VTTI data acquisition system (DAS), which provides increased data acquisition rates and throughput via updating of communication and processing hardware.• The implementation, instrumentation, and recovery of data from vehicle- and infrastruc-ture-based DASs and the performance of offsite repairs and initial data quality checks.• Continued development of the highly inte-grated VTTI DAS, which offers increased research parameters and reduced unit size designed to significantly decrease installation times, increase data sampling rates and through-put, provide corrected vehicle dynamics data, and render improved video compression and quality.• Continued development of machine-vision capabilities related to driver, vehicle, and road-way metrics.

Mechanical Systems GroupThe Mechanical Systems group is responsible for extensive mechanical fabrication ranging from small to large hardware designed to suit the needs of all research projects. The group

can tailor these fabrication techniques to research needs based on size and requirements by using various methods such as sheet-metal forming, vacuum-bagging composites and thermo-forming plastics to computer numerical control (CNC)-machined parts created using the group’s four-axis Haas, and finishing in-house using the CTD anod-izing/paint/power coat facilities. The group can also design complex components using low- and high-volume injection molding, urethane casting, and many of the current rapid prototyping tech-nologies. The group uses three-dimensional laser scanning software and computer-aided design (CAD) technology to reproduce complex geom-etry and to design custom components featuring seamless integration. The group’s ability to design, evaluate, and simulate in a digital environment results in the reduced developmental time of a project. The support, maintenance, and upgrades of all Smart Road facilities and equipment are also performed by the group.

Data Acquisition GroupThe Data Acquisition Group is responsible for electronic hardware design. The group’s capabili-ties span advanced circuit board design using arm processors, digital signal processors (DSPs), and field-programmable gate arrays (FPGAs) to system integration and project development from conception to completion. The group is a pioneer in the fields of distributed DASs, covert surveil-lance, and large-field DAS deployments. The group develops software and firmware for use in VTTI DASs as regulated by researchers’ needs. The group also supplies and implements data trig-gers for use during data collection. CTD person-nel install DASs in VTTI-owned, participant, and commercial fleet vehicles and in highway infra-structure locations (e.g., intersections). The group is responsible for tracking and locating subject vehicles and infrastructure locations and collect-ing research data. Preliminary quality control is performed in the field to identify and address

Director: Mr. Andy Petersen

52

data acquisition issues; DASs are repaired as needed. CTD tracks and performs causal analysis and reports data loss for subsequent corrective actions.

Advanced Development Group

The Advanced Development Group is respon-sible for software development at VTTI. The group comprises specialists in real-time data acquisition hardware and software development, machine-vision road tracking, machine-vision head tracking, and data analysis advancements. In support of transportation research safety, CTD developed hardware, software, and firm-ware for the VTTI Next Generation DAS. The system is smaller in size and includes new and improved parameters for use during transpor-tation research, including the development of advanced machine-vision algorithms that facili-tate remote sensing of driver performance.CTD has provided support for the following projects:• Integration Requirements Definition for Connected-vehicle Interfaces• Connected-vehicle Communications Safety Pilot Driver Clinics Supervisor• Human Factors for Connected-vehicle Guide-line Development• Crash Avoidance Metrics Partnership Model Deployment• Field Demonstration of an Advanced Heavy-vehicle Indirect Visibility System• Enhancement of Camera/Video Imaging Sys-tems (E-C/VIS) for Heavy Vehicles• 511 Virginia, Software Development• Design of the In-Vehicle Driving Behavior and Crash Risk Study

• Naturalistic Teenage Driving Study• Assessment of a Drowsy Driver Warning System (DDWS) for Commercial Vehicle Drivers• Human Performance Evaluation of Light-vehicle Brake Assist Systems• Cooperative Intersection Collision Avoidance System for Violations (CICAS-V)• Driver Distraction in Commercial Vehicle Opera-tions• Detection-control System (D-CS) Field Evaluation• Disability Discomfort Glare Task• Collision Warning System• Proprietary Major Automotive Company (MAC) Research• Development of the Luminance Camera System• Older Driver Data Collection• Product Development• Evaluation of Enhanced Brake Lights Using Surro-gate Safety Metrics• Signalized Intersection Red Light Running and Dilemma Zone Study• Commercial Motor Vehicle Driving Simulator Validation (SimVal) Study, Phase II• Comparison of Object Detection and Identifica-tion with an Advanced C/VIS (A-C/VIS) and a Commercially Available C/VIS on Heavy Trucks• Pilot Study of Instrumentation to Collect Behav-ioral Data to Identify On-road Rider Behaviors• Enhanced Rear Signaling for Heavy Trucks• Backing Countermeasures Mini-field Operational Test (FOT) – Naturalistic Observational Study• Hardware-in-the-loop Evaluation of the Bendix ESP System for Tractor Semi-trailers

53

CTD performs data checks on equipped vehicles • photo by Logan Wallace

54

The Center for Truck and Bus Safety (CTBS) conducts research and development efforts to advance the state of knowledge in the truck and bus safety domains and provides pragmatic solutions to real-world problems. CTBS specializes in providing quality education and research focused on a variety of safety issues involving heavy-truck and bus operations.CTBS comprises three groups specializing in the following areas:• Advanced Systems and Applications• Behavioral Analysis and Applications• Safety and Human Factors

Center for Truck and Bus Safety

photo by John McCormick

55

Evaluating the Potential Safety Benefits of Electronic Logging Devices (ELD)

Electronic logging devices (ELDs) are primarily designed to improve efficiency. However, Cantor et al. (2009) used a survey, combined with state crash data from the Federal Motor Carrier Safety Administration (FMCSA) Safety and Fitness Electronic Records and hours-of-service (HOS) violations from the FMCSA Safety Management Measurement System, to model the potential impact of full ELD adoption on crashes and HOS violations. Cantor et al. (2009) found that full ELD adoption could potentially reduce HOS violations by 12.4 percent and total crashes by 15.6 percent. Moreover, FMCSA (2011) estimated that electronic onboard recorders (EOBRs) have the potential to reduce HOS violations by up to 40 percent. Although the Cantor et al. (2009) and FMCSA (2011) studies were able to show that EOBRs could reduce HOS violations and crashes, these studies have several methodological limitations that reduce the validity and generalization of their findings. For example, the Cantor et al. (2009) study only used state crash data. During an analysis of carrier-collected crash data, Hickman et al. (2011) found that almost 20 percent of crashes were not reported to the state in which the crash occurred (mainly because these were low severity crashes). The Cantor et al. (2009) study also did not include a measure of exposure (miles or driving hours), nor could the authors identify if the truck involved in a crash or HOS violation had an ELD (for those carriers without full EOBR adoption). Thus, the estimates of EOBR effectiveness provided by Cantor et al. (2009) should be viewed with caution. The current study will attempt to address several of the limitations of the Cantor et al. (2009) and FMCSA (2011) studies. First, the current study will use carrier-collected crash data to obtain a more representative picture of how ELDs perform under real-word driving conditions. Second, the analysis will be at the truck level; thus, trucks with EOBRs

New ProjectsWinter Maintenance

Equipment operators working during winter events are exposed to long and stressful work hours, and fatigue associated with these operations results in higher accident rates, lower productivity, and increased health issues. This project is investigating the environmental stimuli that contribute to operator fatigue and is recommending practical, low-cost mitigation solutions. This project is focused on work and rest schedules and how they relate to driver fatigue when operating trucks with and without advanced in-cab instrumentation, as well as the causes of fatigue-related incidents and applicable functional countermeasures to reduce fatigue and potential fatigue-related incidents. This project is sponsored by the Minnesota Department of Transportation.

Establishing a Methodology to Evaluate Teen Driver Training Programs

Based on the higher crash risk level of teen drivers, the Wisconsin Department of Transportation (WisDOT) has been dedicated to implementing new driver education programs in hopes of improving the driving skills and behavior of their teen driver population. While WisDOT has established an exhaustive process to license driver training schools, the department does not have established methods to analyze the entire statewide construct of how young drivers are trained. To date, these programs have not undergone an objective evaluation of effectiveness. Therefore, a clear need existed for the development of methodologies to objectively analyze and evaluate the effectiveness of such new programs. For the current research project, VTTI is developing a methodology and identifying potential data sources to analyze and evaluate the effectiveness of driver training programs as they relate to the demonstrated safety and behavior of teen drivers in Wisconsin.

Director: Dr. Richard Hanowski

56

will be compared to trucks without ELDs (i.e., VTTI will be able to differentiate crashes and HOS violations involving a truck with an ELD and those without). Third, a measure of exposure will be calculated (miles traveled) at the truck level. Lastly, although the sample of participating carriers in the current study will be a convenience sample, every attempt will be made to obtain a sample that is representative of the general commercial motor vehicle (CMV) population.

Field Study on the Efficacy of the New Restart Provisions for Hours of Service

VTTI is the prime contractor on this project, with the Washington State University Sleep and Performance Research Center serving as the subcontractor. It is well known that, at times, commercial truck drivers are at a high risk of driver fatigue due to irregular sleep cycles, inadequate rest breaks, and tight delivery schedules. During 2011, FMCSA adopted an updated HOS rule that, among other changes, allows truck drivers to “restart the clock” on their weekly on-duty period by going off-duty for at least 34 consecutive hours at their home terminal. This option may only be used once every seven days, and the restart period must include two periods that span the 1 a.m. to 5 a.m. time frame. Sponsored by FMCSA, the research team is charged with conducting a naturalistic investigation of the efficacy of the new 34-hour restart provision for truck drivers, which went into effect with a compliance date of July 1, 2013. Data about the duty schedules and sleep cycles of more than 100 truck drivers will be collected during a period of several months. Data will then be analyzed to determine if the flexibility of this updated rule directly translates into not only better health and a more sustainable working environment for truck drivers, but safer roadways for all.

Multiple Sources of Safety Information from V2V and V2I: Redundancy, Decision-Making, and Trust

VTTI is the prime contractor on this project,

with Battelle Memorial Institute serving as the subcontractor. This project seeks to enhance the understanding of how drivers handle critical safety information received from multiple sources. This includes in-vehicle sources (e.g., vehicle-to-vehicle [V2V]) and external sources (e.g., vehicle-to-infrastructure [V2I]). Areas of interest include how drivers deal with different sources of information and how they decide which source to trust, consistency in messages, timing, and differences in definitions and terminology/symbology. This project is being sponsored by the National Highway Traffic Safety Administration (NHTSA).

Field Study of Light Vehicle Crash Avoidance Systems

VTTI is the prime contractor on this project, and the University of Michigan Transportation Research Institute (UMTRI) is serving as the subcontractor. This project is focused on collecting and analyzing performance and operational data about production crash avoidance systems being offered on new light-duty vehicles. This research seeks to better understand driver responses to crash warnings, variables associated with crash avoidance systems, and reliability and practicality of these systems. This project is being sponsored by NHTSA.

Heavy Truck Crashworthiness VTTI is the prime contractor for this project, and UMTRI is serving as the subcontractor. While safety in the operations and functioning of heavy vehicles has increased, the fatalities and injuries from truck crashes are still high and continue to reinforce that truck driving is one of the more dangerous jobs in the United States. This project is analyzing and evaluating existing data sets for a more detailed understanding of the scope and details of truck driver injury in traffic accidents in relation to cab crashworthiness. UMTRI is also investigating regulations and industry trends related to truck occupant protection. The

57

goal of this project is to assemble information about truck driver injury in crashes to assist in the understanding of injury mechanisms and to review regulatory and industry initiatives concerned with reducing the number of truck occupant fatalities and the severity of injuries. This project is being sponsored by NHTSA.

Enhancements to Safety Benefits Estimator Tool Kit for Heavy Vehicle Collision Mitigation Braking Systems

VTTI is the prime contractor for this project, and UMTRI is serving as the subcontractor. NHTSA, in consort with leading industry crash avoidance system suppliers and a research university, completed the development of a methodology and associated “toolkit” that can be used to estimate the safety benefits of forward collision warning (FCW) and collision mitigation braking (CMB) systems. Through this project, UMTRI is working to address accuracy, confidence levels, and transparency of the existing toolkit for CMB systems. Through the research team efforts, the toolkit will be more beneficial and will improve the output capability of the model. The overall documentation of the toolkit will be improved. This project is being sponsored by NHTSA.

Effects of Detention Times on Commercial Motor Vehicle Driver Safety and Operations

Long detention times have potential safety and operational impacts, including HOS violations. The purpose of this FMCSA-sponsored project is to better understand the nature of the problem of detention times in the CMV industry and the potential safety and operational impacts that can occur as a result of long detention times and to develop strategies to mitigate driver risks. The study will seek objective measures of detention time and the extent to which it: (i) is associated with increased crashes and other factors that lead to crashes and (ii) contributes to drivers violating HOS violations. As such, the study is envisioned to have two phases. During Phase I,

the average detention time will be assessed by the type of trucking operation (e.g., short, line, long haul) and the size of trucking operation (e.g., small, medium, large). A methodology will also be developed for evaluating the safety and operational implications of driver detention times on work hours (e.g., fatigue), HOS violations, out-of-service violations (OOS), and crashes. During Phase II, a yet-to-be determined contractor will implement the methodology developed in Phase I to assess the safety and operational impacts of driver detention time on work hours, HOS and HOS violations, and crashes. The selected contractor will also conduct focus groups to assess driver, carrier, and shipper opinions and perceptions regarding detention times and potential means that could be used to reduce detention times.

Ongoing Projects Evaluation of Heavy Vehicle Crash Warning Interfaces

While commercially available crash warning systems have been available for some time, the implementation of such systems has varied widely with regard to the human-machine interface. The purpose of this project is to examine aspects of the human-machine interface of heavy-vehicle crash warning systems and determine the potential benefits or disbenefits associated with certain display properties. The final product of this project will include comprehensive interface design guidelines for heavy-vehicle crash warning systems. This project is being sponsored by NHTSA.

Onboard Monitoring System Field Operational Test

The objective of this FMCSA-sponsored project is to determine whether an onboard monitoring system (OBMS) will reduce at-risk behavior among commercial drivers and improve driver safety performance. This project will determine if safe driving behavior may be enhanced by recording and reporting

58

safety-critical events (SCEs), with safety managers subsequently coaching the driver using these safety events as feedback. This system will also contain an EOBR that will be evaluated. Operator monitoring and feedback can be characterized as a behavior-based safety method. Safe behavior is rewarded, and unsafe behavior is coached, thereby proactively improving overall safety. The OBMS to be used during this study will record, through snippets of video and other performance/kinematic measures, unsafe driving behaviors and will provide real-time feedback to drivers. Recorded driver problems (e.g., hard braking) will then be transmitted to and reviewed by the driver’s fleet safety manager. Depending on the judgment of the fleet safety manager, the recorded incident can then be shown to the driver during a

coaching session with the goal of pinpointing the problematic behavior and providing instruction about how to avoid that problem in the future. Corrected action and improved behavior are the expected results of drivers viewing their recorded errors alongside their safety managers and receiving instruction as to the nature of the problematic behavior. Hypothetically, successful implementation of the OBMS program may significantly reduce the number and severity of crashes involving CMVs.

Case-Control Commercial Driver Individual Differences Study

Sponsored by FMCSA, the objective of the Case-Control Commercial Driver Individual Differences Study (CDIDS) is to examine an array of driver and situational factors and

59

determine the prevalence of these factors and their relationships to crash involvement. The goal of CDIDS is to identify and prioritize commercial driver individual differences with respect to risk factors. These risk factors will comprise personal elements such as demographic characteristics, medical conditions, personality traits, personal attitudes, and behavioral history. Risk factors will also include conditions of the work environment, such as carrier operations type and compensation methods. The study will identify risk factors by linking the characteristics of individual drivers with their driving records during the duration of the study, especially the occurrence or absence of safety-related events (e.g., preventable crashes, crashes regardless of preventability, moving violations, and vehicle inspection violations).

Testing and Recommended Best Practices for Nurse Tank Safety

VTTI is the prime contractor on this project, and Iowa State University is serving as the subcontractor. This project aims to support the enforcement and possible rulemaking for the USDOT Modal Administrations. FMCSA and the Pipeline and Hazardous Materials Safety Administration (PHMSA) both have responsibilities in the safe transportation of hazardous materials and are responsible for nurse tank regulation. As a result of the National Transportation Safety Board (NTSB) investigation of the April 15, 2003, hazardous materials accident involving nurse tanks near Calamus, IA, NTSB made a safety recommendation regarding periodic, nondestructive testing of nurse tanks. This project is aimed at developing the testing and recommended best practices designed to address this recommendation. This project is sponsored by FMCSA.

Distribution of Stress Corrosion Cracks and Testing Specifications

VTTI is the prime contractor on this project, and Iowa State University is serving as the

subcontractor. The main task of this project was to conduct ultrasonic testing on a range of agricultural nurse tanks during the summer of 2012. This study will provide data as to the extent of cracking that currently exists in the nurse tank population, the location of the cracking as it exists in each tank, and a measure of the size of indications found. With this data, valid statistical statements can be made for the first time concerning the distribution of cracks as a function of year of manufacture and location of cracking. Currently, only anecdotal information exists concerning where cracking can be expected to occur. The data will also provide a basis for subsequent recommendations concerning best practices for inspection. Finally, the study provides the foundation for further research about crack growth. Crack growth can be monitored during subsequent years via regularly scheduled inspections to determine how crack growth that occurs due to actual service conditions compares to predicted growth models developed during previous research. This project is sponsored by FMCSA.

Completed ProjectsThe Development of Guidelines and Materials to Enable Motor Carriers to Implement a Fatigue Management Program

Commercial carriers, regulators, and commercial vehicle drivers have historically responded to fatigue management by working/driving within prescribed HOS rules. Recent fatigue management research indicates that other factors are involved in driver fatigue and safety performance. There was sufficient knowledge available to facilitate the development of a guide for motor carriers that addresses the design of a Fatigue Management Program (FMP) and implementation into ongoing carrier operations. This project, sponsored by the Canadian Council of Motor Transport Administrators, developed an FMP as a series of modules, each covering required

60

topics and directed at specific audiences.

Performance-based Testing of Driving Skills/Capability

VTTI was the prime contractor on this project, and the University of Alabama at Birmingham (UAB) Edward R. Roybal Center for Translational Research on Aging and Mobility served as the subcontractor. The study focused on the analysis of crash statistics to determine whether older commercial drivers were at increased risk of crash involvement relative to their younger counterparts. Crash statistics from the 2011 commercial driver records were analyzed, and results indicated that commercial drivers aged 66 years or older had elevated risks for both fatal and injurious crashes relative to their younger counterparts. A literature review was conducted and reduced to those peer-reviewed studies in which a performance-based measure was used to predict prospective crash involvement. Few relevant publications were identified, indicating a need for additional data collection. A meta-analysis of the existing studies was conducted, and several performance-based measures were found to be associated with increased crash risk among older drivers. Based on the findings of this Phase I study, a Phase II study may be warranted to evaluate the costs and benefits of including performance-based tests that supplement the fit-for-duty exam mandated every two years for commercial drivers by the federal government.

Heavy Vehicle Crash Data Collection and Analysis to Characterize Rear and Side Underride and Front Override

VTTI was the prime contractor for this project, and UMTRI served as the subcontractor. While much analysis has been completed on

crash and causation in heavy-vehicle crashes, front override and side underride have not been systematically studied. The purpose of this project was to enhance data collection and the understanding of the standards governing override and side underride guards by collecting and analyzing Trucks Involved in Fatal Accidents (TIFA) data. This effort was combined with a detailed clinical analysis of the Large-Truck Crash Causation Study (LTCCS) to develop an understanding of and critical features associated with rear and side underride SCEs. The final product of this project will expand the data available to assist in establishing better guidelines for fleets, identify gaps in existing data for analysis, and provide insight into safety risks associated with these heavy-vehicle components. This project was sponsored by NHTSA.

Driver Distraction: Eye-glance Analysis and Cognitive Distraction

This research project involved an analysis of existing naturalistic data collected and owned by SmartDrive Systems, Inc. Methods included the collection of these data to assess the prevalence of cell phone use and other distractions while driving a truck or bus. SmartDrive also assessed visual distraction and conversation workload. The objective of this FMCSA-sponsored project was to better understand the relationship of conversation load and visual distraction during mobile phone conversations or interactions while the driver is experiencing real-world driving conditions and pressures. The data set provided by the technology vendor only included vehicles with a gross vehicle weight of >10,000 pounds (e.g., trucks, buses, and three- [or more] axle trucks). Approximately 14,350 vehicles from 117 distinct fleets that

61

had a gross vehicle weight >10,000 pounds were in the database of the technology vendor. Approximately 20,000 crashes and near-crashes and 100,000 baselines were made available for analysis.

Expanded Research and Development of the Enhanced Rear Signaling System for Commercial Motor Vehicles

This project, sponsored by FMCSA, investigated methods designed to mitigate those crashes during which a heavy truck has been struck from behind by another vehicle. A series of static and dynamic empirical data collection efforts were made during a prior study (Phase III) to test and evaluate potential countermeasures. The most promising candidate was an enhanced rear signaling (ERS) system comprising 12 light-emitting diode (LED) units positioned on the rear of a trailer and a radar-based, collision warning activation system. Results indicated that the system performed well at detecting and signaling rear-end crash threats, drawing the gazes of distracted following-vehicle drivers back to the forward roadway, and did not result in any unintended safety-related consequences for surrounding traffic. The results were derived from controlled testing performed during fair weather and daylight hours on public roadways in Virginia. Although the prototype ERS system performed well, three system refinement efforts were identified as necessary prior to the ERS system being slated for real-world deployment. The objective of the current project was to conduct three development efforts towards the completion of a stand-alone ERS system ready for implementation in a field operational test. The first effort involved the refinement of the radar target identification firmware to reduce the

likelihood of false alarms in lower speed, high-traffic scenarios. The second effort involved the design and modification of the ERS system into a unit designed for simple truck and trailer installation. The third effort involved testing the eye-drawing capability and associated discomfort glare of the rear warning-light system during nighttime conditions.

Linking Carrier Descriptive Attributes to Crash Patterns – An Untapped Tool in State Motor Carrier Safety Improvement Programs (Phase II)

This project was the second phase of a joint Virginia Department of Motor Vehicles (DMV) and Virginia DOT (VDOT) project that began in November 2010. A recommendation that resulted from the Phase I combination-unit truck (CUT) effort was that a separate analysis was warranted of single-unit truck (SUT)-involved fatal crashes similar to that conducted for CUTs. A preliminary analysis of the Virginia SUT-involved fatal crash data from 2005 to 2009 showed that 199 SUTs were involved in fatal crashes. That represents more than 40 percent of the total large-truck fatal crashes. More than 80 percent of these SUT fatal crashes occurred on non-interstate roads. A preliminary analysis also showed that almost 70 percent of the fatal crashes that occurred on non-interstate roads involved Virginia-domiciled carriers. To better understand the problem of non-interstate crashes, an analysis was conducted of the SUT fatal crashes that occurred in Virginia from 2005 to 2009.

62

Center for Vulnerable Road User Safety (CVRUS) personnel conduct research and outreach activities focused on enhancing safety for all vulnerable road users, including senior and teen drivers, bicyclists and other vehicle riders, and pedestrians (especially the very young and the elderly). Vulnerable road users comprise all age groups and a variety of demographics. Their one shared trait is that they are all at increased risk of suffering a traffic-related crash or injury. They all require special concern and warrant research to support their continued safe transportation needs. The Center currently encompasses two groups: Teen Risk and Injury Prevention (TRIP) and Senior Mobility Awareness, Safety, and Health (SMASH).

Center for Vulnerable Road User Safety

VTTI Teen Driver Safety Days • photo by John McCormick

63

Ongoing ProjectsPractice Driving Study

This research, sponsored by the National Insti-tute of Child Health and Human Development (NICHD), assesses the factors that are impor-tant during the practice driving phase when a teenager is driving with a learner’s permit. The study will be an observational one of the nine months of the learner’s permit (practice driv-ing) phase and the first 12 months of indepen-dent driving. Driving skills and safety outcomes will also be assessed. The study will be con-ducted using the VTTI naturalistic data collec-tion method and continuous data recording.

Previous research has shown that crash rates of novice teenage drivers are elevated during the first six months and 1,000 miles of independent driving. The amount of supervised practice driving has not been carefully measured, and little is known about the amount, nature, and timing of practice driving that adolescents obtain prior to licensure. The purpose of this study is to determine the effects of greater and lesser amounts of supervised practice driving on the driving performance of newly licensed teens.

Ninety teenaged participants were recruited to participate in this study prior to obtaining their learner’s permits. All participants completed a series of questionnaires and surveys before and during their participation. A naturalistic method was used in which the participants’ vehicles were instrumented with cameras, sensors, and radars. Instrumentation occurred on the vehicle in which most practice driving was anticipated to occur. Teenage driving was continuously recorded during the nine-month learner’s permit phase and for 12 months after study participants received their licenses. Cam-eras were mounted unobtrusively to facilitate naturalistic driving behavior. Participants were

instructed to drive the vehicles as they nor-mally would throughout the learner’s permit phase and the first 12 months of licensure. This resulted in a maximum of 24 months of data col-lection. Data were downloaded regularly from the vehicles without requiring any special effort from participants.

Study participants and their parents/supervisors were not instructed to practice in any particu-lar way. However, the amount and variety of practice provided by the parent/supervisor and compliance with state laws (i.e., 45 supervised practice hours, 15 of which must be at night) will be analyzed. The first nine months of practice driving will then be compared with the outcomes of the first 12 months of independent driving.

Comparing the Driving Safety Benefits of Brain Fitness Training Programs for Senior Drivers

There is now substantive evidence that tar-geted training and training-related activities can improve the efficiency of the brain and that neural plasticity (i.e., changes in the struc-ture, function, and organization of neurons in response to new experiences) is the mechanism that affords and supports cognitive changes throughout a person’s life. Recent research efforts have indicated that older individuals can enjoy fairly long-term driving safety benefits from a variety of cognitive-training protocols. If such enhancements due to training can be suc-cessfully verified during actual driving, a break-through may be made in terms of maintaining safe mobility and independence among the older population.

The goal of the current study is to evaluate the efficacy of two different training-related proto-cols. The evaluation will be based on key per-formance metrics of driver behavior and safety to be measured initially and during a one-year,

Director: Dr. Jon Antin

64

post-training period.

Sixty-three male and female licensed drivers aged 70 and older will be recruited from the VTTI area to participate in the study. The training programs include:

• DriveSharp™ by Posit Science, an “at home,” com-puter-based training program aimed at improving seniors’ driving safety;

• An in-vehicle tool and protocol created by Toyota engineers that incorporates constructs related to useful field of view; and

• A control group that will undergo no protocols.

A 2012 Toyota Camry has been procured to serve as the experimental vehicle for this project, and experimental hardware, software, and protocols have been established. Pilot testing has been com-pleted, and participant recruiting will soon com-mence.

This project is closely related to the Comparing the Driving Safety Benefits of Brain Fitness Train-ing Programs for Senior Drivers project within the VTTI National Surface Transportation Safety Center for Excellence (NSTSCE).

Driver Distraction: Operational Definitions and Data Set Creation

The Second Strategic Highway Research Program (SHRP 2) naturalistic driving data set provides an unprecedented opportunity to investigate dis-tracted driving behavior. The goal of this proj-ect, funded by the Toyota Collaborative Safety Research Center (CSRC), is to develop a data set of distracted-driving epochs and an associated data set of non-distracted baseline epochs. This data set will be provided to the SHRP 2 research commu-

nity in the future to enable targeted investigation of distracted driving.

To enable the creation of such a data set, it was first necessary to operationally define distrac-tion. This was the subject of a workshop in Washington, DC, which was followed by a report from VTTI expanding the results and placing them in the context of prior research. These operational definitions will be used to identify and code distracted driving events. The final data sets will comprise verified epochs of distracted driving and non-distracted, baseline driving.

Canada Naturalistic Driving StudyThe Canadian Deputy Ministers of Transport and Safety have funded a large-scale naturalistic driving study (NDS) to be conducted in Canada. The deputy ministers have selected one data col-lection site in Saskatoon, Saskatchewan, and 125 participants will be recruited to drive either 24, 18, or 12 months. This staggered data collection will result in 175 data-years of driving on Cana-dian roadways. The sampling plan for subject recruitment has yet to be decided.

The study role of VTTI is similar to the one it performed during the SHRP 2 S06 project (i.e., the team will provide coordination and over-sight during the data collection process). Unlike SHRP 2, VTTI will be directly involved in data collection and will be responsible for data stor-age during the Canada NDS. It is anticipated that, by storing both SHRP 2 and Canada NDS data, researchers will be able to query both data sets to answer important highway safety research questions.

65

VTTI Teen Driver Safety Days • photo by John McCormick

66

Automated Vehicle Systems

Google partners with VTTI for automated vehicle research • photo by Steven Mackay

The Automated Vehicle Systems (AVS) initiative pursues an interdisciplinary approach to studying all aspects related to the automation life cycle in the transportation field. This initiative is anchored in applied research and strengthened by collaborations with national and international partners in vehicle automation. AVS partners include groups involved in research, planning, and policy, as well as the production of automated vehicles. The growth and variety of automated vehicles currently being developed, and already implemented around the world, should be anchored in research. AVS offers pragmatic research based on a scientific approach that emphasizes the importance of safety, security, reliability, and user acceptance. The goal is to strengthen the safety benefits of automation across all levels of the transportation industry.

67

New ProjectsField Study of Heavy-vehicle Collision Avoidance Systems

Substantial advancements have been made in collision avoidance system (CAS) technol-ogy, including advanced radar sensors, better camera and vision technologies, improved object detection algorithms, and automatic braking. Heavy vehicles can now be equipped with the following CASs: 1) Forward colli-sion warning (FCW) systems, which generate audible and visual alerts when a rear-end con-flict emerges; 2) Collision mitigation braking (CMB) systems, which automatically deceler-ate the vehicle when a driver fails to respond to a rear-end conflict; and 3) Lane-departure warning (LDW) systems, which alert the driver when the vehicle drifts past the lane markings. In an effort to evaluate the reliability of these systems, the National Highway Traffic Safety Administration (NHTSA) has contracted VTTI to perform a field study of heavy-vehicle CASs. This field study is designed to evaluate CAS performance by measuring its operation on 150 trucks. Two CAS suppliers are involved in this study: Bendix® and Meritor WABCO. These vendors will install their CAS technologies on approximately 75 trucks each. Each truck will be equipped with the VTTI Mini Data Acquisi-tion System (MiniDAS). The MiniDAS records both video of the roadway and the driver. It also records parametric data from the CAS and vehicle network. Participating drivers will drive the instrumented vehicles for up to 12 months each. The participating fleets’ satisfaction and acceptance levels with the collision mitigation technologies will be assessed at the end of the test period. This study will generate an unprec-edented amount of insight into CAS reliability, driver response performance when using the CAS, and fleet acceptance of the technology.

Human Factors Evaluation of Level 2 and Level 3 Automated Driving Concepts

Automation has the potential to improve high-way safety by supporting or supplementing the driver, thereby providing precise vehicle con-trol during normal driving, and by maintain-ing appropriate driver attention to traffic and roadway conditions. This project aims to answer some of the most fundamental human fac-tors research questions focused on the issue of drivers transitioning into and out of automated driving states enabled by Level 2 and Level 3 automated vehicles. Collaborating with General Motors, Google, Southwest Research Institute, Battelle Memorial Institute, and Bishop Consult-ing will ensure that the issues addressed by this work are those resulting from emerging real-world applications and system concepts. This effort will help both identify the fundamental human factors research questions related to automated driving and further the community’s understanding of the education, development, deployment, and assessment needs of automated vehicle systems.

Ongoing ProjectsEvaluation of Heavy-vehicle Collision Warning Interfaces

While commercially available crash warning systems have been available for some time, the implementation of such systems has varied widely with regard to the human-machine inter-face. The purpose of this project is to examine aspects of the human-machine interface of heavy-vehicle crash warning systems and deter-mine the potential benefits or disbenefits associ-ated with certain display properties. The final product of this project will include comprehen-sive interface design guidelines for heavy-vehicle crash warning systems. This project is being sponsored by NHTSA.

Group Leader: Dr. Myra Blanco

68

I-81 Corridor Coalition

The I-81 Corridor Coalition is committed to making I-81 a safe, efficient, environmentally sensitive, economically viable, and intermodal transportation corridor. I-81 runs from the Knoxville, TN, area to the Canadian border, serving the eastern portion of the U.S., primarily within the Appalachian region. It parallels I-95 to the western side and is a growing alternative to I-95 for freight movement. The primary concern of the Coalition is safety along the corridor, particularly incident management and freight route choices.

69

The I-81 Corridor Coalition was originally estab-lished in 2007 and is governed by a Steering Com-mittee that includes representatives from state, local, federal, and nonprofit organizations.

Members of the I-81 Corridor Coalition are com-mitted to working together to improve freight and passenger movement through the corridor via sharing of information and coordinated decision making, management, and operations.

Targeted Research Areas Safety

I–81 is a major truck freight corridor. There are frequent crashes involving trucks that cause lengthy periods of congestion. Previous studies have shown that driver distraction and long hours behind the wheel are root causes in many cases. The Coalition partners with regional Public Safety Working Groups to host incident management workshops that provide technical instruction about proper safety procedures and quick crash clearance.

Strategic Transportation VisioningThe Coalition intends to collect data about traffic and planning efforts related to I–81 and build a database of information relevant to the corridor.

As a first initiative, the Appalachian Regional Commission (ARC) has contracted with the Coalition to research opportunities for transportation facilities in the Appalachian region. The goal is to more fully integrate Appalachian Development Highway System (ADHS) corridor segments with

Interim Director: Mr. Kevin Cole

other regional highway, rail, and navigable waterway transportation resources. This will be accomplished in a way that increases coordination and cooperation and maximizes the social mobility of Appalachia and its domestic and international access.

As a second initiative, the Coalition will work with the six state departments of transportation (DOTs) through which I-81 runs to house and maintain a central data repository for state transportation data, plans, and studies relevant to the corridor. This initiative is a direct result of the I-81 Multistate Corridor Study, a pooled-fund study led by the Virginia DOT (VDOT).

Administrative PlanningAn operating structure (or a procedural guideline) is currently being developed that will enable the Coalition to move forward with additional funding strategies. Other efforts include building upon the existing website and visiting public jurisdictions and private organizations involved in corridor-related initiatives to continue expanding the membership base and stabilize funding.

Research InitiativesA large part of the interest of the Coalition is researching issues of importance in the corridor, including freight movement, intermodal relationships, environmental planning, safety, and corridor-wide information and coordination efforts. Each of these subject areas will be explored for additional funding opportunities.

70

Motorcycle Research Group

Motorcycle equipped with VTTI data collection unit • photo by Logan Wallace

71

The Motorcycle Research Group was founded in 2007 with the objective of applying the multidisci-plinary research capabilities of VTTI to real-world motorcycle riding. The group was born from a history in transportation research; concern about increasing numbers of motorcyclist fatalities and injuries; and the excitement of a large number of VTTI engineers, staff, researchers, and family who are riders. The Motorcycle Research Group focuses on the rider and his or her machine while consider-ing other factors in the surrounding transportation system.

New ProjectsMotorcycle Safety Foundation Naturalistic Study

The Motorcycle Safety Foundation (MSF) and its members partnered with VTTI for the first large-scale, naturalistic motorcycle riding study. The study includes seven models of motorcycles that provide a range of engine sizes and bikes categorized as cruisers, sport, or touring. One hundred motorcycles have been instrumented at four sites: California, Florida, Virginia, and Arizona. Participants will ride with instrumen-tation for six to 18 months to create a com-prehensive picture of factors contributing to both crashes and near-crashes. Approximately 330,000 miles of data have been collected to date; more than 500,000 miles are expected to be included when the study is complete. All participants will be completed by November 2013. The data analysis is already under way.

NHTSA Instrumented On-road Study of Motorcycle Riders

This study will instrument 160 motorcycles in Southern California with the objective of col-lecting real-world motorcycle riding behaviors to identify countermeasures that reduce unsafe riding behavior. There will be two approaches to instrumentation: 1) 60 of the bikes will use

the VTTI Next Generation data acquisition system (DAS) with radar, independent brake lever sensing, and five camera views; and 2) 100 of the motorcycles will use the MiniDAS with two cameras.

Hardware for the 60 Next Generation DASs is produced and ready for use. The MiniDASs are being produced. Currently, the project is on hold while an application for a Certificate of Confidentiality is under review by the National Institutes of Health.

photo by Logan Wallace

Group Leader: Dr. Shane McLaughlin

72

The Virginia Green Highway Initiative (VGHI) is a partnership between VTTI, the Virginia Department of Transportation (VDOT), the Virginia Center for Transportation Innovation and Research (VCTIR), the Virginia Tech Institute for Critical Technology and Applied Science (ICTAS), the Virginia Tech College of Engineering, and the Virginia Tech Office of the Vice President for Research. VGHI is centered at VTTI with access to resources such as the Virginia Smart Road, VTTI researchers, and additional VTTI support staff.

Virginia Green Highway Initiative

photo by Michael Kiernan

73

The objectives of the Virginia Green Highway Ini-tiative (VGHI) include:

• Creation of innovative approaches designed to increase energy efficiency and reduce carbon emis-sions in the surface transportation domain. • Establishment of Virginia at the forefront of the sustainable transportation revolution. • Exploration and development of new technolo-gies, methods, and policies that will minimize the negative impacts associated with surface transpor-tation on Virginia ecosystems.

These goals will be achieved using the capabilities of Virginia Tech, VDOT, and other Virginia uni-versities to pursue federal, state, and private sources of research funding and program investment. The success of VGHI will make an economic impact on Virginia, resulting in research, development, and manufacturing jobs.

New ProjectsBlacksburg Transit Dynamic Bus Routing and Scheduling Study

Traditional transit operations use scheduled routes and on-demand, or “tripper” buses, in their daily operations to address normal and unexpected system loads. These strategies have long been the best approach to serving the needs of the commuting public while work-ing within the constraints of limited resources. Recent technological advances in comput-ing and communications and the advent of connected vehicles have paved the way for a real-time assessment of bus capacity and rider demand. Coupled with the increased usage of smartphone and web applications, these capacities may well enable a paradigm shift with respect to how transit operators can increase the dependability of their services while best using their limited resources.

An accurate, real-time measurement of bus passengers and bus stop queue counts and dynamic dispatch and re-routing of buses may allow transit operators to better serve the riding public while decreasing operating expenses and adverse environmental impacts. Technology that allows accurate real-time determination of bus loading is currently available and used.

Magnetic card reading, near-field communi-cation (NFC), radio frequency identification (RFID), or machine-vision technologies may be used either actively or passively (dependent upon the technology) to assess demand in real time through a measurement of bus queues. Using the information collected via these technologies, innovative new models for bus routing can be developed that either eliminate traditional sched-uled routing through dedicated, on-demand routing only or allow application of a hybrid model where both traditional scheduled and on-demand routing are employed with temporal and/or spatial variations. Real-time data about bus occupancy can also be used to dynamically adjust traffic signal preemption priorities for transit precedence to enhance system reliability.

This project is funded through the Federal Transit Administration Transit Investments for Greenhouse Gas and Energy Reduction (TIGGER) program and is being conducted in collaboration with Blacksburg Transit.

Prediction of Roadway Surface Conditions Using On-Board Vehicle Sensors

A method for the prediction of compromised roadway conditions is proposed. The differen-tial rotational displacement of driven versus free-rolling wheels of a vehicle traveling along a stretch of roadway is used to predict the rela-tive coefficient of friction between the tire and pavement. This method does not rely upon initiation of onboard safety systems, such as antilock brakes. Instead, the method provides for notification of diminished tire traction before safety system activation thresholds are attained. As roadway conditions change due to pave-ment properties, weather, or contamination, this information can be shared across the connected-vehicle network to provide alerts to approaching drivers and modified operational parameters for use by onboard safety systems. Such real-time data will also enable optimized roadway main-tenance operations, such as salt application and cleaning, to reduce costs and improve safety and sustainability.

This project is funded through the Road Weather Management Division of the Federal Highway Administration (FHWA).

Initiative Leader: Mr. Andy Alden

74

National Surface Transportation Safety Center for Excellence

VTTI works to ensure the safety of all transportation users • photo by John McCormick

The National Surface Transportation Safety Center for Excellence (NSTSCE) at VTTI was established by the Federal Public Transportation Act of 2005 to develop and disseminate advanced transportation safety techniques and innovations in rural and urban communities. NSTSCE uses a synergistic approach across four research focus areas to maximize resources. These research focus areas comprise safety devices and techniques that enhance driver performance, evaluations of the built roadway environment and infrastructure-based safety systems, safe mobility for vulnerable road users, and driver impairment.

75

The vision of the National Surface Transporta-tion Safety Center for Excellence (NSTSCE) is to become recognized as The National Center for Surface Transportation Safety, make a significant impact in improving surface transportation safety, and leverage partner and sponsor relationships to disseminate results.

NSTSCE has formed a Stakeholders’ Committee comprising organizations that share its vision for improving road-user safety locally and nationally. The Stakeholders’ Committee members represent the Federal Highway Administration (FHWA), General Motors Corporation (GM), the Virginia Department of Transportation (VDOT), the Virginia Center for Transportation Innovation and Research (VCTIR), the Federal Motor Carrier Safety Administration (FMCSA), Travelers, and VTTI.

New Projects

The Effects of Adverse Conditions on Senior Drivers’ Vehicle Control

Adverse driving conditions (e.g., rain, darkness, fog, etc.) pose risks for all drivers. However, senior drivers may be differentially at risk due to the physical and cognitive challenges associ-ated with aging. Few research endeavors have been conducted to determine the real-world driving behavior of drivers of different ages in adverse conditions, but the Second Strategic Highway Research Program (SHRP 2) data set provides an unprecedented opportunity to do so. This study will use numeric SHRP 2 vari-ables to create a data set of vehicle network and kinematic variables during driving epochs in four lighting and weather conditions. Driver behavior will be compared across young, mid-dle-aged, and elderly participants. The goal of this study is to understand how driver vehicle control changes across weather and age. Such

understanding could lead to improvements in driver training and licensing, roadway/signage design, and/or in-vehicle technology.

Improving the Licensing Ceremony Curriculum

Virginia has a unique aspect to its driver’s licensing process. To receive the actual driver’s license, both a parent and the teenaged driver must appear before a family district court judge and participate in the Virginia Driver’s Licens-ing Ceremony. This is a poignant moment during which safety information is dissemi-nated to both parent(s) and their novice driv-ers. These ceremonies are written and created primarily by district court judges. While some judges have taken a great deal of time to com-pile excellent information, others are unsure about the information that should be relayed. This project will use a systematic approach to developing a research-based curriculum that ensures teens and their parents receive relevant information during this critical time in teen safety.

Application of Proximity Sensors to In-vehicle Data Acquisition Systems

There is a new suite of sensors coming to market that provides novel driving-related data. Specifically, these sensors measure the position and motion of particular parts of the human body. These sensors are enabling user interfaces based on gestures performed in the air. One example of such technology is employed in the Microsoft Xbox game system under the name Kinect. There are additional sensor technolo-gies coming to market with similar capabilities and low price points. These technologies can be applied to provide detection and tracking of the driver’s hands or other body parts. Such infor-mation could provide measures of the hand position (e.g., steering wheel, center stack, etc.),

Director: Dr. Jon Hankey

76

thus augmenting and possibly replacing costly manual data reduction processes for classify-ing driver actions. This project is designed to review and evaluate sensor technologies that are now emerging at lower prices to establish their viability of adoption from a cost/performance perspective.

Tips for Sharing the Road with Commercial Motor Vehicles: A Web-based Approach

NSTSCE has sponsored two recent projects focused on investigating light-vehicle driver education programs and the methods used to instruct young drivers on how to share the road with heavy vehicles. These projects were initi-ated in response to consistent research literature showing that larger proportions (approximately 78 percent) of light-vehicle drivers are at-fault in incidents involving light-vehicle/heavy-vehicle interactions. This larger proportion of light-vehicle at-fault incidents may be a result of inadequate training of heavy-vehicle dynamics in light-vehicle driver education programs. Cur-rently, the NSTSCE research team is developing a best practices document to help instructors find and develop new techniques and updated materials. However, the NSTSCE team is in a unique position to do more. The objective of the current project is to develop a web-based tool using naturalistic videos to provide Tips for Sharing the Road with Commercial Motor Vehicles (CMVs).

This website will act as a supplemental driving tips training program accessible to the public and based on naturalistic driving data. The pur-pose of this project is to develop a website dedi-cated to providing video examples of real-world scenarios involving light-vehicle/heavy-vehicle interactions and proper sharing-the-road driv-ing behavior. If sharing-the-road scenarios exist that have not been previously captured by naturalistic studies (or if participant consent

for using the videos cannot be obtained), the Smart Road and/or VTTI Commercial Train-ing & Prototyping Simulator (CTAPS) will be used to recreate/simulate and video record these scenarios for upload to the website. This project will culminate in a letter report describing the project efforts and a live website featuring tips for sharing the road with CMVs.

Validation and Improvement of an Emotional Conversation Reduction Protocol

This study aims to validate reduction protocols for identifying emotional conversation. Current protocols based on the Facial Action Coding System have been applied to naturalistic driv-ing studies (NDSs) but need to be validated and improved for use in future studies. This study comprises a re-analysis of existing NDS data sets. Short clips of drivers displaying emotions during hand-held and hands-free cell phone conversations will be produced. Reductionists will apply the current protocols to the clips to evaluate the types of emotion displayed and the intensity of the emotions. Ratings will be com-pared across reductionists to evaluate the level of agreement between them. Disagreements in the reduction will be used to assess how the protocols can be improved.

Crash Trifecta: A Complex Driving Scenario that Describes Crash Causation

The crash trifecta concept does not consider crash genesis as a simple unitary element but as a convergence of elements. Specifically, the crash trifecta is defined as three separate yet converging events:

1. Unsafe pre-incident behavior or maneuver (e.g., speeding, tailgating, unsafe turn).

2. Transient driver inattention (which may be related [e.g., mirror use] or unrelated [e.g., reaching for an object] to driving).

77

3. An unexpected traffic event, such as unex-pected stopping of the lead vehicle.

NDSs and crash databases (compiled from police accident reports) emphasize the critical reason (CR) as a primary proximal cause in the crash/event. However, other factors have been identi-fied as associated factors, and neither data collec-tion approach has identified contributing factors in a systematic way. That is, no factor other than the CR has been specified as directly contribut-ing to crash/event genesis. In some ways, this appears to be a matter of convenience as it is easy to report and understand that speeding was the primary proximal cause during a truck crash. Yet, the CR variable comprises choices that could be ongoing pre-event behaviors (e.g., tailgating) and others that are more likely to be transient, precipitating errors (e.g., inattention). Not every element of the crash trifecta occurs during every crash/event, but two or more elements are often present. Naturalistic driving data allow research-ers to directly observe crashes/events and to observe convergences of multiple elements, such as the common pattern outlined above in the crash trifecta.

A pilot test of the crash trifecta concept was performed by Bocanegra et al. (2010) on 272 safety-critical events (SCEs) in two naturalistic truck databases. The crash trifecta concept seems intuitive, yet, until recently, it has been difficult to measure an unexpected traffic event. The video data collected from NDSs allow data ana-lysts an opportunity to make a subjective inter-pretation about whether the SCE involved an unexpected traffic event. Information about the other two crash trifecta elements (i.e., transient inattention and at-risk driving behavior) is read-ily available through video review. Though lim-ited in sample size, the pilot study showed what appeared to be a trend in the percent of all crash trifecta elements being present as the severity level of the SCE increased (0.0 percent in unin-tentional lane deviations, 9.4 percent in crash-

relevant conflicts, 20.0 percent in near-crashes, and 25.0 percent in crashes). Thus, the crash trifecta concept appears to imply that, given the three crash trifecta elements, the probability of a crash is greater than the probability of a crash given only one of the crash trifecta elements.

This study will apply the crash trifecta con-cept to the SCEs found in a number of exist-ing naturalistic driving data sets from studies conducted by VTTI. Crashes, near-crashes, and crash-relevant conflicts will be identified in existing naturalistic driving data sets (e.g., 100-Car Study, 8-Truck Study, 34-Truck Study, SHRP 2 NDS). Unsafe driving behaviors (e.g., following too closely, failed to signal) were recorded during previous data reductions. From these data, an indicator variable will be created to allow for easy detection of such behaviors. Previous data reductions have also already calculated the total time the driver’s eyes were off the forward roadway. The pilot study by Bocanegra et al. (2010) used a thresh-old of more than one second for the determi-nation of transient driver inattention (this was consistent with the threshold for a significant increase in the odds of involvement in an SCE documented during the three NDSs). Thus, two of the three crash trifecta concepts have already been reduced during prior data reduction efforts. However, new data reduction will be required to determine if an unexpected traffic event was present during the crash/event. Using the same operational definition developed in Bocanegra et al. (2010), data analysts will examine the 10 seconds prior to the trigger to obtain all the information needed to determine if an unexpected traffic event occurred. This could indicate movement by another vehicle/object/animal that was unexpected and/or an unexpected event due to a lack of attention.

The value of the crash trifecta concept and convergence concepts in crash causation is that it provides a structure for understanding the

78

complexities of crash genesis. The results of the pilot study, though limited in sample size, suggest high-severity SCEs based on the con-vergence of multiple elements and low-severity SCEs based on a unitary element (such as CR). Thus, the crash trifecta concept may help explain the differences between the genesis of a crash and low-severity SCE.

Bocanegra, J., Hickman, J.S., & Hanowski, R.J. (2010). Comparative Analysis of the Large Truck Causa-tion Study and Naturalistic Driving Data (Contract #DTMC75-07-D-0006). Federal Motor Carrier Safety Administration.

Effective Use of Commercially Available Onboard Safety Monitoring Technologies: Guidance for Commercial Motor Vehicle Carriers

Motor vehicle crashes are often predictable and preventable, yet many drivers choose to behave in ways that put themselves and others at risk for a vehicle crash and/or serious injuries. At-risk driving behaviors have been found to be the primary contributing factor in crashes; thus, reduction of at-risk driving behavior will lead to a reduction in crashes and their associated fatalities and injuries. Behavioral approaches to safety have provided robust positive results when applied in organizations seeking to reduce employee injuries due to at-risk behaviors. However, almost all prior behavioral safety research has been applied in work settings where employees can systemati-cally observe the safe versus at-risk behavior of their coworkers. By contrast, truck and bus drivers typically work alone in relative isolation and thus require alternative strate-gies. Until recently, the primary problem with implementing behavior-based approaches has been obtaining quality behavioral data about driving behaviors. New technologies are currently available that provide objective measures of driver behavior. These in-vehicle technologies, or onboard safety monitoring (OSM) technologies, are able to provide con-

tinuous or event-based measures for a variety of driving behaviors previously unavailable to fleet safety managers. Thus, OSM technologies have the potential to be used in conjunction with behavioral safety techniques to greatly reduce a variety of at-risk behaviors.

However, various OSM technologies exist, each with their own strengths and weaknesses. More-over, less is known about the safety efficacy of these technologies and how the technolo-gies work. These factors can make it difficult for a fleet safety manager to be well informed about the OSM technology that best fits his or her organization. The implementation of OSM technologies involves more than simply install-ing the technology in trucks; it requires detailed planning and involvement from all levels within the organization. What is needed is a manual or guide for commercial motor carriers that pro-vides a detailed overview of each OSM technol-ogy and describes how to most effectively use and implement these OSM technologies.

This study will pursue the possibility of working with several OSM providers, such as DriveCam, SmartDrive, Qualcomm, and GreenRoads, that currently have corporate outreach on their respective websites. The research team will contact the aforementioned companies to request assistance in the development of materi-als for the creation of a guide for motor carrier fleets regarding the effective use of OSM. The research team is well positioned to conduct this research as it has already established rela-tionships with several of the OSM vendors noted above. Some of the potential topics to be addressed include: training, safety culture, development of a steering committee, employee involvement and commitment, etc.

Common Data Elements between the Large Truck Crash Causation Study Investigations and Commercially Available Onboard Monitoring Systems

At the heart of traffic safety is the identification

79

of factors that lead to crashes. Thus, interven-tions can be developed to mitigate or prevent these factors from occurring in future crashes. The epidemiological approach, used in the Large Truck Crash Causation Study (LTCCS), uses post hoc reconstructions based on physi-cal reconstruction and interviews with drivers and witnesses. Another approach, naturalistic driving, is a proactive approach that involves data collection while drivers carry out their day-to-day operations in vehicles instru-mented with sensors and video cameras. Both approaches provide in-depth information but have contrasting strengths and weaknesses; thus, there is a great opportunity to learn about crash causation by analyzing and comparing data from both approaches.

Currently, there are several commercially avail-able onboard monitoring systems (OBMSs) in use with thousands of CMVs. Thus, there are likely many more crashes available for analysis and comparison in these naturalistic data sets. The inherent, contrasting strengths and weak-nesses of these two fundamental approaches provide an opportunity for synergistic com-parisons to complement each other, which will lead to a more complete understanding of crash genesis and potential countermeasures. It would also address one of the primary limita-tions in the Bocanegra et al. (2010) study by comparing crashes in the LTCCS to crashes found in the data sets provided by vendors that distribute OBMSs (e.g., DriveCam, Smart-Drive, etc.). However, before such comparisons can be made, a data directory of common variables, mutually exclusive variables, and new variables must be developed. This data directory will guide what research questions are possible. For example, the LTCCS has hun-dreds of variables regarding the driver, envi-ronment, and vehicle, but vendors of OBMS technologies typically code only a few vari-ables. However, as video and kinematic data from the crash are available, it is possible to go back and code variables using the same opera-

tional definitions found in the LTCCS.

This study is designed to create a data directory of common data elements in the LTCCS and crash data collected from commercially avail-able OBMSs. It is likely that a few of the LTCCS and naturalistic driving variables are defined similarly or identically. However, there will be many occasions where the naturalistic driving data require additional data reduction to make this data set consistent with the LTCCS. The research team will work with the leading OBMS vendors to assess their current data reduction processes; the research team has already estab-lished relationships with the top two vendors, DriveCam and SmartDrive. Comparisons of these variables will be made with the LTCCS codebook. The video and kinematic data will be used to assess which LTCCS variables could potentially be coded using the naturalistic crash data. Currently, this is not part of the existing data reduction approach used by the vendors.

Access Maintenance VTTI has made portions of the 100-Car and 8-Truck data sets publicly available. Support activities for the data distribution website include culling invalid user accounts, respond-ing to user questions, and rectifying errors as they are discovered.

Ongoing ProjectsData Sharing Across Borders

Traffic crashes continue to be a leading cause of death in countries around the world. If possible, NDS data should be made available to research-ers from other countries to help improve driv-ing safety and reduce traffic crashes in these countries. This may prove to be especially useful for countries unable to mount such stud-ies due to limited resources. VTTI has a goal of becoming an international naturalistic data warehouse. In some cases, the international community has the ability to collect natural-istic data but not the tools for storage and use.

80

There are many challenges to overcome before cross-border data sharing can be implemented. Project researchers are currently investigating the issues involved in cross-border data sharing and are developing a workbook of suggested practices for other researchers seeking access to naturalistic driving data collected in other countries.

VTTI is working with the international research community to assess and address issues associ-ated with data sharing across borders. Issues to be addressed include the fact that not all countries have the equivalent of the Institu-tional Review Board (IRB). Researchers from countries without such institutional protections should be trained in the issues and safeguards corresponding to the use of naturalistic data. Researchers should be made familiar with the terms of the original consent forms signed by research participants. Language and cultural barriers surrounding human subjects’ protec-tion issues may be a larger impediment to cross-border data sharing than the relatively minor differences in driving habits and behaviors.

The Office for Human Research Protections (OHRP; part of the U.S. Department of Health and Human Services) annually assembles and publishes The Compilation of International Human Research Protections. The publication contains a section about international policy (through the United Nations Educational, Sci-entific and Cultural Organization [UNESCO]) and a country-by-country guide. Links are provided in six categories: general; drugs and devices; privacy/data protection; human biolog-ical materials; genetics; and embryos, stem cells, and cloning. This NSTSCE project will focus on the general and privacy/data protection areas.

Several countries were selected for review (i.e., countries in which NDSs have been conducted, are currently being conducted, or where such

studies are being planned). Their international policies and guidelines are currently being evaluated in addition to those of the follow-ing countries: U.S., Canada, Australia, Sweden, China, Germany, Japan, Great Britain, France, New Zealand, and Israel.

Several VTTI researchers are currently involved in conducting NDSs in other countries, with involvement ranging from guidance and con-sulting to active data collection. Th is project is designed to provide guidance about IRB and data-sharing concerns as part of researchers’ participation. Th e principal investigator has developed a brief “best practices” document for use during these situations. Th is document is available upon request and will likely be similar to the conclusions section of the fi nal report.

Secure Feedback for Onboard Monitoring System Training

The VTTI Driver Coach project is an experi-mental study designed to test whether teenage drivers can benefit from receiving both real-time and post hoc monitoring and feedback about their driving performances. Specifically, the post hoc feedback will require that trig-gered events be automatically uploaded to VTTI servers so that reductionists can review, record, and annotate critical information. Parents and teens will then be provided web links to the video and aggregate data for both the individual teenager and the performance of the teenager in relation to all teenaged study participants. To support the data collection and analysis efforts of the Driver Coach project, computer server hardware and software development efforts are required. These systems will support the receipt of safety-related events from Driver Coach participants, the reduction and annotation of these events, and their dissemination to the participants and their parents via a web portal environment.

81

Programmers have established the Driver Coach database. Software work has continued on the web-based data reduction tool and the feedback website. This effort was focused on working towards a final product for the pilot study.

Driver Coach: Bedford/Montgomery, Virginia Evaluation Project

The purpose of this project is to forward the concept of teen driver coaching and monitoring to eliminate behaviors that can result in injuri-ous and fatal crashes. Teen drivers are three times more likely to be involved in fatal crashes than their adult counterparts. The causes of teen crashes include: excessive speed, alcohol use, distraction, and failure to recognize hazards. VTTI has been independently approached by two Virginia counties (Bedford and Montgom-ery) to help design a program that mitigates what they believe is a tragic and growing prob-lem in their communities. VTTI has recom-mended a “three-pronged” approach to help reduce teen deaths and injuries. The approach comprises: 1) Parent-teen contracts with ele-ments of an enhanced graduated driver’s licens-ing (GDL) program, 2) Training of specific skills at a specially designed training facility, and 3) A teen driver monitoring and coaching program that uses advanced in-vehicle technology. This project will support all three approach elements with emphasis placed on the driver monitoring and coaching program. The driver monitor-ing and coaching will be accomplished via an unobtrusive data collection system designed to provide both real-time monitoring (i.e., instantaneous feedback for the teen driver) and delayed summary feedback (for the parent).

As part of the outreach portion of the Teen Task Force, VTTI researchers participated in seven Parent/Teen Safe Driving Meetings held at seven local high schools. Meeting attendance during

2012 was as follows:

• Northside, 73 parents and teenagers• Cave Spring, 38 parents and teenagers• William Byrd, 38 parents and teenagers• Glenvar, 35 parents and teenagers• Blacksburg, 44 parents and teenagers• Auburn, 56 parents and teenagers• Staunton River, 80 parents and teenagers

Improving Driving Safety for Teenagers with Attention Deficit and Hyperactivity Disorder (ADHD)

Past research conducted by the Centers for Disease Control has shown teenaged drivers with attention deficit hyperactivity disorder (ADHD) have five times the number of traffic tickets and are seven times more likely to be involved in more than one accident compared to non-ADHD teens. To better assess the rate of driver errors and crash/near-crash rates of ADHD teenagers, this study will instrument 10 vehicles of clinically diagnosed ADHD teenag-ers. Data will be collected through the learner’s permit phase during the first six months of independent driving. Driving performance for these ADHD teenage drivers will be compared to non-ADHD teenagers and borderline ADHD teenagers (as identified in the Supervised Prac-tice Driving Study [SPDS]). The types of errors and crashes/near-crashes will be assessed to provide support for a large-scale ADHD teen-age driving study.

Impacts of Safety-critical Events on Driver Behaviors

The objective of this study is to evaluate the impacts of crashes on driving behavior. Specifi-cally, the driving behavior is measured by two primary metrics: 1) The near-crash and SCE rates, and 2) Driver distraction. The VTTI team defined a certain time window before and after a crash; the near-crash and SCE rates during

82

these windows were compared. According to data, the smallest interval between two crashes occurred for the same driver in 0.0308 hours (approximately two minutes). This is because a second accident occurred immediately after the first. Most crash intervals are generally longer than 20 hours; only 10 percent of intervals are less than 20 hours. Thus, 10 hours was chosen as the initial window of time before and after a crash.

A time-to-event method was implemented to analyze critical event risk before and after a crash. This approach overcomes one major drawback of the previous time-window-based approach (i.e., the window has to be arbitrarily defined and is sensitive to the censoring caused by the ending of data collection). The results show a significant difference before and after a crash.

Developing Bayesian Models for a Naturalistic Driving Study

The Bayesian method has become an important branch in transportation safety studies. Com-pared to the classical statistical method, the Bayesian method has advantages of ease of inter-pretation, flexibility to accommodate spatial/temporal correlation, the ability to incorporate prior information, and a natural hierarchi-cal structure in modeling multi-center/group studies. This project focuses on developing robust Bayesian models for two types of primary approaches for the NDS: the case-crossover and the case-control method.

The first part of this study focuses on the case-crossover method. Based on a complete case-crossover study sponsored by the National High-way Traffic Safety Administration (NHTSA), the VTTI team used the reduced data to develop a semi-parametric Bayesian model for matched case-crossover data. The proposed model is a significant improvement over the traditional

conditional logistic regression model, which essentially only uses a small proportion of the data where the status of a risk factor is differ-ent within a stratum. The team has theoretically proven that the proposed model provides less bias and more robust results than the conven-tional logistic regression model.

The team is currently working on the second part of the study during which drivers are divided into different groups based on demo-graphic characteristics. It is hypothesized that driver distractions such as cell phone use will have different impacts on each group. Several Bayesian hierarchical models have been pro-posed to evaluate the distraction risk for differ-ent age and gender groups. The detailed model specification and conditional posterior distribu-tion have been completed.

Generic Motorcycle Bracketry and Housings

VTTI is currently conducting two safety-related naturalistic motorcycle studies. The first study for the Motorcycle Safety Foundation (MSF) fielded 100 motorcycles in four states (Califor-nia, Florida, Virginia, and Arizona). This data collection is nearing completion, and all bikes are being de-instrumented over several months. The second study (the NHTSA Instrumented On-road Study of Motorcycle Riders) is near-ing initiation in Southern California and will include 160 motorcycles. The original bracketry and accessory housings (e.g., radar, global posi-tioning system [GPS], cameras) were designed for a small number of motorcycles with no accessories or modifications. This second natu-ralistic project will make use of bracketry and housings that can be used on a range of motor-cycle models.

Through a process of reviewing current brack-etry, bike design, and common bike accesso-ries, photo and tabular reference libraries were

83

developed that quantified dimensional differ-ences between bikes. Off-the-shelf bracketry was being reviewed, and samples purchased and selections made could support research needs. Where off-the-shelf components were not suffi-cient, prototype work was completed for generic bracketry, especially in the areas of cameras and radar mounts. The parts were reviewed by installers, and designs were finalized. Produc-tion parts were manufactured according to the design for an upcoming naturalistic study. The output of this work is currently being shipped to California for use on the 160 motorcycles in the NHTSA study. It will support both the Next Generation data acquisition system (DAS) and components and the first motorcycle use of the MiniDAS.

Attention and Drowsy Driver Assist This project was redefined to focus on auto-mated detection of driver drowsiness and driver

attention to or away from the forward roadway. The literature review conducted as part of this project was used to support development of a strategy for detection and a preliminary algo-rithm design. The algorithm will integrate eye-gaze data with driver performance to character-ize driver attention and drowsiness. Data from distracted driving studies are currently being reviewed to guide code development. Subse-quent steps include code development and test-ing, video review and validation, and algorithm finalization and documentation.

Comparing the Driving Safety Benefits of Brain Fitness Training Program for Older Drivers

Recent research has indicated that older indi-viduals can enjoy fairly long-term driving safety benefits from a variety of fairly modest cognitive training protocols. If this approach could be suc-cessfully applied and verified via driving behav-

VTTI older driver study

84

iors and performance metrics in addition to the long-term safety outcomes, it may represent a breakthrough in terms of helping maintain safe mobility and independence for the older mem-bers of society.

This project comprises the following activities:

Training Program Selection – The following training approaches will be evaluated: 1) Drive-Sharp™, a Posit Science desktop computer pro-gram designed to enhance older driver safety; and 2) An in-vehicle system designed and devel-oped by Toyota Motor Company that is based on the concept of useful field of view.

Participant Recruitment and Selection – Sixty-three male and female drivers aged 70 and older are being recruited from the areas around VTTI to participate in the study. Selection criteria include perceptual and cognitive functional abilities and metrics related to driving frequency and safety. For instance, individuals with sub-stantially impaired peripheral vision may not be able to benefit from useful field-of-view train-ing, which is a crucial element of both of the selected training programs. Each participant will be briefly assessed on key functional abilities at the outset so that post hoc analyses can be con-ducted to determine what type of individual may benefit most from such training.

Training Program Administration and Evalua-tions – Participants are being randomly assigned to one of three treatment groups: 1) desktop, 2) in-vehicle, or 3) control (i.e., a group that receives no training). A series of driving tests using a specially instrumented 2012 Toyota Camry are being conducted on the Smart Road. These tests have been devised in such a way that the efficacy of the selected training programs can be evaluated. Such tests include potential hazard detection and identification distance and driver-centric peripheral detection and vehicle tasks (accuracy and latency). In addition, a naturalis-tic component has been implemented wherein participants will drive an on-road route in the

surrounding area to facilitate evaluation of driv-ing performance on public roads in a variety of conditions.

Data Analysis and Reporting – Results will be evaluated during the various formative and sum-mative phases of the research effort to determine the effectiveness of the two training programs relative to the performance observed with the control group. Post hoc analyses will attempt to determine how personal characteristics interact with the effectiveness of the various programs evaluated.

This project is closely related to the Compar-ing the Driving Safety Benefits of Brain Fitness Training Programs for Senior Drivers project within the Center for Vulnerable Road User Safety.

FMCSA’s Advanced System Testing using a Data Acquisition System on the Highway

The safety objective of FMCSA is to save lives and reduce injuries by preventing and mini-mizing the severity of truck and bus crashes (FMCSA, 2010). According to FMCSA, the development, evaluation, and deployment of advanced safety technology will be necessary to realizing this objective.

Currently, there are numerous safety systems in development that have the potential to signifi-cantly reduce crashes on the nation’s roadways. For a variety of reasons, however, including lack of supporting tests and evaluations, the poten-tial benefits that these systems may provide in reducing crashes may never be realized. The FMCSA envisions, through cooperation with the commercial vehicle industry, an influx of com-mercial vehicle safety technologies that support the expanding role of the commercial vehicle industry to safely, securely, and efficiently trans-port the nation’s goods, products, and people. Information from motor carriers and other organizations about the effectiveness of these systems in improving safety will be valuable in

85

advancing their further use in the commercial vehicle industry.

The objective of the FMCSA’s Advanced System Testing using a Data Acquisition System on the Highway (FAST DASH) program is to perform a quick turnaround of independent evaluations of promising safety technologies aimed at com-mercial vehicle operations (CVOs). The goal of the FAST DASH program is to determine the efficacy of the safety system using the following high-level metrics:

• Crash reduction effectiveness (e.g., safety improvements),

• Unintended consequences (e.g., safety disben-efits), and

• User (e.g., driver, safety manager) acceptance (e.g., subjective opinions).

Evaluation of Light-vehicle Driver Education Programs Targeting Sharing the Road with Heavy Vehicles: Case Study Analysis

A recent project sponsored by NSTSCE sur-veyed light-vehicle driver education program administrators/teachers in each state in the U.S. to assess the presence of curricula relevant to heavy-vehicle characteristics and procedures for sharing the road. Survey results showed that while a large proportion (91 percent) of light-vehicle driver education programs include a component about how to safely share the road with heavy vehicles, there may be room for improvement regarding the content of these pro-grams (82 percent perceived effectiveness). The purpose of this project is to investigate current light-vehicle driver education programs that contain components about sharing the road with heavy vehicles and to develop a best practices document detailing these components. A case study will also be performed with a light-vehicle driver education program in a single state that does not yet include the components identified in the best practices document. A group of stu-dents who participated in the driver education

program prior to implementation of the new components and a group who participated after implementation will each be interviewed two to three months later, and knowledge retention will be measured. This project will culminate in a letter report that will provide best practices in driver education programs that include a component about sharing the road with heavy vehicles and a description of the case study performed.

Investigating Drivers’ Compensatory Behavior when Using a Mobile Device

This study comprises a re-analysis of exist-ing NDS data sets and has two goals. The first goal was to determine whether the drivers of light vehicles and CMVs compensated for the increased workload when conversing on a cell phone by changing their driving performance. The second goal was to investigate the relation-ship between drowsiness and the SCE risk from mobile device use.

With respect to the first goal, a controlled inves-tigation was performed by comparing driver performance when conversing on a cell phone to driving performance 30 seconds prior to ini-tiating the call. Overall, both light-vehicle and CMV drivers were not found to change their longitudinal safety margins when conversing on a cell phone. However, all drivers were found to look forward more frequently when conversing on a cell phone. This behavioral change alone may be why multiple NDSs have not found con-versing on a cell phone to increase SCE risk.

With respect to the second goal, all analyses regarding the relationship between drowsiness and the SCE risk of mobile device use were completed. A main finding was that commercial drivers had more mobile device use between 2 a.m. and 4 a.m. than any other time inter-val examined. However, it was also found that drivers’ mobile device use did not differ based on how much sleep they obtained during the previous 24 hours. The results of this study generate insight into commercial drivers’ use of

86

cell phones when they are drowsy. A final report documenting the results is being prepared.

Assessing the Risk of Talking during High and Low Driving Task Demands

Previous research has shown that using a cell phone while driving is associated with an increased risk of involvement in an SCE. How-ever, examination of cell phone use by its con-stituent subtasks revealed that complex subtasks (e.g., texting and dialing) were associated with an increased SCE risk, while talking/listening on a device was not. The current study investi-gated the risk of involvement in an SCE associ-ated with using a mobile device as a function of driving task demands. Data from NDSs involv-ing CMV drivers and light-vehicle drivers were re-analyzed. The NDS data sets were partitioned into low, moderate, and high task demand subsets using criteria from the workload litera-ture. Odds ratios for mobile device use and its subtasks were then computed. During low task demands, only dialing was associated with an increased risk for light-vehicle drivers. During moderate task demands, cell phone use (col-lapsed across subtasks) was associated with an increased risk for CMV drivers. During this condition, texting and dialing were associated with an increased risk, while talking/listen-ing was not. Furthermore, talking/listening on a hands-free phone or CB radio was associ-ated with a decreased risk. During high task demands, cell phone use (collapsed across sub-tasks) was associated with a decreased risk for both CMV and light-vehicle drivers. However, cell phone use during this condition primarily comprised talking/listening, which on its own was associated with a decreased risk. Overall, the risk related to talking/listening on a mobile device was not found to increase during the three driving task demand conditions examined. Furthermore, unlike light-vehicle drivers, CMV drivers’ mobile device use was lowest during high task demands, suggesting that CMV driv-

ers may regulate their mobile device use differ-ently than light-vehicle drivers as the driving task demands vary.

Evaluating the Sleeper Berth Provision: Investigating Usage Characteristics and Safety-critical Event Involvement

The purpose of this study is to further assess (on both shift and driver levels) if SCE occur-rence varies as a function of sleeper berth provision (SBP) use. In the current hours-of-service (HOS) regulations, CMV drivers may restart a duty shift by splitting the required 10 consecutive off-duty hours into a period of at least eight (but less than 10) consecutive hours in the sleeper berth plus a period of at least two (but less than 10) consecutive hours in the sleeper berth, off duty, or a combination of both. Because the SBP comprises two shorter breaks, the former may provide CMV drivers greater flexibility in obtaining rest when they need it. However, the rest periods may result in less adequate rest than that provided by a 10-hour or more restart break.

This proposed study will use existing data from the VTTI Naturalistic Truck Driv-ing Study (NTDS) and will build off of the recently completed Blanco et al. (2011) study about current HOS regulations. Using the existing algorithm developed in Blanco et al. (2011), shifts and drivers that used the SBP were identified. These data were used to assess the relationships between SBP use and SCE occurrence, driver demographics, and drive hour/work hour schedules.

Visual Behavior in RoundaboutsThe focus of this project is to examine driver eye-glance behavior in roundabouts and how it pertains to pedestrian safety. Participants will drive a route through Blacksburg, VA, which will include 12 different maneuvers through two roundabouts. During the drive, participants will wear an eye-tracker device

87

so their glance behaviors may be recorded for analysis. Pedestrians will sometimes be stationed at points of interest at each roundabout so that typical glance patterns can be determined with and without a pedestrian present. The proposed research has the potential to provide infor-mation about driver eye-glance behavior in roundabouts, which can help determine where conflicts with pedestrians might occur and how those conflicts may be mitigated.

Color CameraThis project focuses on the development of a camera system that accurately defines color in a driver’s environment and allows for color analysis during projects. The camera captures a succession of images at a rate of approximately four frames per second; the camera will be used in conjunction with the already developed lumi-nance camera system. A calibration technique was developed. Following ongoing evaluations conducted on public roads, the color camera will be incorporated into other ongoing projects and the Roadway Lighting Mobile Measurement System (RLMMS).

To confirm the calibration quality of the Color Camera, the spectral distribution of multiple light sources needed to be further investigated. Of particular interest were the reflections of both high-pressure sodium and daylight reflect-ing off the squares of a color checker chart and how these squares are ultimately rendered under such light sources.

Comparisons were made between measure-ments taken with a spectrometer and images taken by a daylight-calibrated Color Camera. Squares from the standard color chart were mea-sured with a calibrated spectrometer. The colors of squares were split into their X, Y, and Z color components. An image of these same squares was taken and analyzed with the Color Camera as calibrated in the daylight.

To provide an idea of how the Color Camera

performs in the environment it will be used, a vehicle was instrumented with a Color Camera calibrated using the color chart and the vehicle’s tungsten-halogen headlamps as the light source. Following this, a route was driven, and images were recorded with the camera.

Active and Adaptive Roadway Delineation Systems

This assessment will benefit both Virginia and the Federal Highway Administration (FHWA) through further analysis of safety needs and guidance for the development of active delinea-tion system standards.

A selected vendor has pre-agreed (though not final yet) to loan VTTI a system that will com-prise 100 units across 2,000 ft., which is the length of the Smart Road all-weather system. The markings will be temporarily placed just outside the edge line to avoid being hit by the participant vehicle. The equipment includes light-emitting diode (LED) markers that use ultra-bright 1.6 million candela/m² LEDs for full daytime visibility and includes the follow-ing characteristics: a flat profile (snowplow and bike safe), maintenance-free design, a variety of available activation devices and methods, environmentally friendly, low-power consump-tion, solar-power option, and compliant with the Manual on Uniform Traffic Control Devices (MUTCD). Some specific characteristics that will be studied are:

• Sequencing/Chasing: The delineators are capable of sequencing under different speeds and patterns.

• Flashing: Though not typically used on straight roadways, the team is considering test-ing the delineators for different flashing rates.

• Spacing: A spacing of 20 ft. was requested along with the capability to “deactivate” some of the markers, thus resulting in 40, 60, or 80 ft. of spacing.

88

• Luminous Intensity: It is expected that the delineators will be dimmable.

• Color (amber).

Surrogate measures that will be used to deter-mine the effect of different delineation condi-tions include vehicle speed and lane position. Additional data will be collected by subjective ratings of the systems provided by participants.

Initial Investigation of Intersection Lighting

Based on the results of rural intersection analy-ses and a potential urban intersection review,

new design criteria for intersection lighting can be developed. The current design standard is based on illuminance only and represents inefficient design methodologies of summing the lighting in roadways and over-lighting the intersection. New strategies can be investigated, including the impact of broad-spectrum sources and peripheral pedestrian detection strategies.

A literature review of current intersection lighting design methods is nearing completion. Alternate lighting designs are being assessed for testing. This project will be linked with the results of the Rural Intersection Lighting Safety Analysis project.

photo by Rebecca Craig

89

Visual Information ModelingAn analysis of a driver’s nighttime visual envi-ronment requires consideration of multiple interrelated variables, including human factors and roadway features and lighting. A driver’s field of view contains such features as the road-way, the hood of the vehicle, the instrument panel, off-roadway facilities and roadway fix-tures (e.g., signs, traffic signals, and pavement markings), and the activities of other road users. From this environment, a driver must continu-ously draw information about the presence of potential hazards in the roadway, navigate using roadway signage and delineation, and main-

tain control of the vehicle. Drivers must attend to and select which objects present important information and determine those that are superfluous. Reviewing and identifying, where possible, what attracts a driver’s gaze towards an object while driving at night can provide insight into visual behavior.

The results from this project have been exten-sively presented.

Nighttime Bicycle VisibilityThe Bicycle Visibility project will analyze the conspicuity of certain types of visibility aids dis-played by both cyclists and their bicycles. These

90

aids are necessary to improving the visibility of cyclists at night so they can be seen by motorists.

An initial bicycle visibility test that was incorpo-rated into the Headlamp Sag study was com-pleted. This project included the evaluation of lighting alternatives as a bicycle crossed the path of a vehicle. The test vehicles featured differing headlamp types, and the results will be used to narrow the experimental design in terms of the inclusion of headlamp types. The data have been analyzed, and a report of the analyses has been initiated.

A follow-up project has been conducted and completed. This project included the evaluation of varying visual aids placed on cyclists, joggers, or bicycles and used different viewing angles. One viewing angle involved a parked participant vehicle facing a crossing lane through which a cyclist or jogger traveled. The other angle included a stationary cyclist or jogger on the right shoulder of the roadway as the test vehicle approached. The test vehicles featured differing headlamp styles. The data are currently being analyzed.

A third part of the nighttime bicycle investi-gation will be incorporated into the NSTSCE Roundabout study. The study will involve plac-ing cyclists on public roads and assessing their visibility using various lighting and reflective methods placed on both the cyclist and on the bicycle. As drivers navigate the course, they will verbally identify the presence of cyclists who will either be in the drivers’ lanes, in an opposing lane, or stopped at an intersection. This study should help apply much of what has been deter-mined during previous studies into a naturalistic setting (e.g., a public road). A comprehensive literature review of bicycle visibility is ongoing.

Prescription and Over-the-counter Drug Use and its Relationship to Involvement in Safety-critical Events

The purpose of this study is to conduct a com-prehensive analysis of CMV drivers’ prescription

and over-the-counter (OTC) drug uses and their relationships to involvement in SCEs. Impair-ment by drugs, especially related to legal drug use, has received considerable attention during the last few years. In fact, NHTSA co-sponsored a workshop discussing the effects of drugs in transportation (Transportation Research Board, 2006). Studies have shown an increase in crash risk while driving under the influence of alco-hol, cannabis, and benzodiazepines (Beirness et al., 2006; Stewart, 2006). Although the adverse effects of alcohol and illicit drug use while driv-ing have been widely documented, less is known about the adverse consequences of driving while under the influence of prescription and OTC medications.

The LTCCS found that almost 30 percent of truck drivers involved in a one-truck/one-passenger-vehicle crash had an associated factor of prescription drug use (FMCSA, 2006). At first glance, these statistics appear noteworthy. However, there are several methodological con-siderations to be made before researchers can conclude that prescription and OTC drug use while driving results in significant crash risks. More data are needed to support this conten-tion, including: a) Base rate of prescription and OTC drug use in non-crash-involved truck driv-ers, b) When the drug was taken in relation to the crash, c) If the drug affects the truck driver’s performance, attention, or decision-making abilities, d) If the illness itself or the drug con-tributed to these decrements, e) If the critical reason or primary contributing factor is related to the drug’s adverse effect on performance, attention, or decision-making capabilities, and f) Other mitigating factors (e.g., sleep before crash, alcohol or illicit drug use, etc.).

A case-control study could address most, if not all, of these issues. However, case-control studies are expensive and time-consuming. The VTTI NTDS database provides an excellent opportu-nity to assess the relationships between prescrip-tion and OTC drug use and SCE involvement.

91

Included in the NTDS are daily driver logs in which drivers self-reported what medications they had taken, the time the medication was taken, and the medication dosage. Thus, this research will use the NTDS to address some of the methodological issues described above and, potentially, provide more data to suggest a link between prescription and OTC drug use and SCE involvement.

Case Study on the Impact of Treating Sleep Apnea in Commercial Motor Vehicle Drivers

This project will: 1) Assess the overall effective-ness of the Schneider National, Inc. (SNI) sleep apnea program; 2) Document two different sleep apnea programs implemented by truck carri-ers (SNI and J.B. Hunt [JBH]); and 3) Develop a sleep apnea implementation manual to include a set of best practices for a successful obstruc-tive sleep apnea (OSA) treatment program. The manual may serve as a guide for trucking fleets wishing to implement an OSA treatment program to improve the health of their driv-ers, reduce fatigue-related crashes and traffic incidents, and reduce health- and safety-related costs. The goal will be to distribute the OSA treatment manual to other trucking fleets. To this end, VTTI has enlisted the assistance of several other agencies, including the National Institute for Occupational Safety and Health (NIOSH), the Federal Transit Administration (FTA), the National Sleep Foundation (NSF), the American Transportation Research Institute (ATRI), and the American Sleep Apnea Asso-ciation (ASAA). The research team anticipates the manual produced during this study will be beneficial to other transportation modalities and industries.

The goals of the current study are:

1. Evaluate the efficacy of OSA treatment, including automatic positive air pressure (APAP), while CMV drivers are on the job;

2. Assess the safety and health benefits of treat-

ing OSA (e.g., reduced crashes and improved health profile);

3. Evaluate the overall return-on-investment (in terms of reduced healthcare premiums, lower crash rates, and increased driver reten-tion compared to the costs of treatment);

4. Develop models to predict beneficial health and safety outcomes (e.g., compliance rates, age, gender, etc.); and

5. Develop a set of best practices for imple-menting and maintaining a successful OSA program for the trucking industry.

Focus groups and phone interviews were con-ducted with drivers and staff at SNI and JBH. The purpose of these focus groups and phone interviews was to assess participants’ percep-tions and opinions of their respective OSA programs and to gain insight from those who participated in these programs. Findings from this study will provide recommendations as to how carriers should implement an OSA pro-gram in an effective and cost-efficient manner.

Case Study on a Worksite Health and Wellness Program for Commercial Drivers

Given the distributed operations in long-haul trucking, limited access to healthy food options, and sedentary lifestyles, it is not surprising that the prevalence of obesity among commercial drivers far outpaces that of the U.S. adult population. Approximately two-thirds of the U.S. adult population is overweight or obese, and nearly one-third of U.S. adults may be considered obese. Studies in the U.S. have reported overweight and obesity rates in commercial drivers to be as high as 87 percent and 57 percent, respectively (Whitfield, 2007). Thus, there is a need for fleets to implement health and wellness (H&W) programs for their driver populations. This study will examine and detail the SNI H&W program for commer-cial drivers by conducting phone interviews

92

with key executives from Atlas Ergonomics (Atlas, which manages the SNI H&W pro-gram), United Healthcare (UHC), and SNI. Questionnaires will be administered to partici-pating SNI drivers and staff at Atlas, UHC, and SNI to inquire about their opinions, percep-tions, and satisfaction with the H&W program.

The goals of the current study are to: 1) Con-duct phone interviews with company execu-tives and detail the SNI commercial driver H&W program with Atlas and UHC; 2) Exam-ine driver and program staff opinions, percep-tions, and satisfaction with the H&W program via questionnaires; and 3) Develop a set of rec-ommendations for applying and maintaining a successful carrier-implemented H&W program for commercial drivers. These recommenda-tions will be useful for trucking fleets wishing to implement a driver-focused H&W program to improve driver health.

Heavy-vehicle Safety OutreachWhile many forums are available for research-ers to disseminate and discuss heavy-vehicle safety research, there are few channels of com-munication from research to the implementa-tion level. Thus, many safety managers at com-mercial fleets may not be aware of the latest heavy-vehicle research findings in areas (e.g., fatigue and distraction) that could help shape their fleet policies and practices. The purpose of this outreach effort is to create an instruc-tional package for fleet safety managers and officials that may be delivered in an informal manner. This package will provide informa-tion about the latest research findings related to heavy-vehicle safety. The culmination of this project will be a pilot session of the instruc-tional package with a group of safety managers.

Distraction Index FrameworkA number of surrogate measures of distrac-tion exist, but their contributions to the overall construct have not been quantified. The goal of this research was to examine the relative

contribution of the most important surrogate indicators of distraction to the occurrence of different crashes and near-crashes and to the types of avoidance maneuvers that are attempted by drivers. The long-term goal is to establish a framework for the creation and validation of a “Distraction Index.” The concept is similar to that of the widely used (in the musculoskeletal arena) NIOSH Lifting Index. When fully devel-oped, the concept will be implemented as a published research guideline that can be used as a common measure across studies.

Crash/Near-crash AlgorithmA common problem in working with naturalistic driving data is the large number of false alarms observed when extracting events of interest from a large data set. Identifying events is typically accomplished through an iterative process of threshold triggering on kinematic data followed by video validation with trained reviewers.

In an attempt to improve the accuracy of auto-mated threshold triggering, statistical classifica-tion methods are being evaluated. These meth-ods will be tested using valid and invalid events from the original 100-Car Study analysis as a gold standard to judge algorithm performance. Once the methods are developed with a 100-Car Study analysis, algorithm performance will be evaluated using other naturalistic data sets.

MiniDASThe MiniDAS prototype has been developed. Procurement plans are in place to purchase 100 systems. This DAS allows epoch and continuous recording. It contains many of the same features as the Next Generation DAS, including:

• A three-axis accelerometer,

• GPS technology,

• Both forward and driver video,

• Network variables, and

• Machine-vision applications, such as lane tracker and head tracker.

93

The MiniDAS is designed to be mounted quickly on the windshield or the dashboard. It can also support onboard monitoring and driver feedback on both traditional vehicles and nontraditional vehicles.

Current estimates on procurement plans are to receive the systems during the third quarter of 2013.

Publication AnalysisVTTI maintains the largest repository of natu-ralistic driving data in existence: more than 100 terabytes (TB) and counting. The goal of this project is to develop a comprehensive and cohesive data-mining, analysis, and publication plan for this ever-growing data set in a manner that synergistically addresses the foundational concerns of NSTSCE: age-related driving issues, fatigue, lighting and infrastructure, driver decision making and performance, and devices and techniques designed to enhance driver performance. While all publications reflect VTTI safety studies, the current focus is on those featuring naturalistic data.

Completed Projects

Supporting Commercial Motor Vehicle Driver Distraction Outreach

The FMCSA-hosted, VTTI-developed “CMV

Web-Based Driving Tips” site provides CMV drivers with practical guidance for the safe oper-ation of a heavy vehicle. This site has proven to be popular, gathering more than 100,000 views since its creation. Due to increased attention about distracted driving, the site pages dealing specifically with this topic have received more traffic. This presents a unique opportunity to expand and enhance the driver distraction sec-tion of the site. This project involved reviewing the distracted driving information available on the existing site in comparison to research pub-lished after the creation of the site and updating the site with information about distraction risks as needed.

Oversight of the Driving Healthy resources was transferred to Travelers and Northland. The project team has been working with Travelers and Northland to increase the visibility and use of the Driving Healthy resources in a mutually beneficial manner.

Older Driver Fitness-to-drive StudyThe fitness-to-drive project was a follow-up work of Antin et al. (2012). In that paper, the researchers compared the fitness profiles of older drivers and non-drivers in an initial effort to develop fitness-to-drive assessment models. The current project used the same fitness pro-file data collected for the project. The objectives

VTTI MiniDAS

94

of this study were twofold: 1) Investigate the relationship between fitness profiles of older drivers and their crash and near-crash risk, and 2) Construct statistical models to quantify such relationships.

The fitness profile data set used 53 assess-ment metrics to evaluate the characteristics of 49 older participants (26 drivers and 23 non-drivers). Antin et al. (2012) classified the 53 metrics into four categories: physical ability (13 metrics), visual ability (24 metrics), general and health-related information (10 metrics), and cognitive ability (6 metrics). During this study, the driver’s risk was measured by the crash and near-crash events. The data analysis and statis-tical modeling comprised two stages. During each stage, a principal component analysis was performed to reduce the dimensionality of a large number of metrics. This was followed by the Poisson regression and negative binomial (NB) regression designed to model the relation-ship between crash/near-crash risks and driver fitness characteristics.

During initial stages of the analysis, the princi-pal component analysis was performed for each category of metrics among the 53 metrics. Six-teen significant principal components (Physical 1-3, Visual 1-7, General 1-3, and Cognitive 1-3) were identified. The Poisson and NB regres-sions of crash/near-crash events based on each component showed that four components (Visual-2, Visual-5, Visual-6, and General-3) had significant impacts on crash and near-crash risk. Moreover, within these four components, 13 metrics had significant factor loadings (i.e., made significant contributions).

During the second stage of analysis, a principal component analysis was performed for these 13 metrics. As expected, four significant com-ponents were identified (Components 1-4). The exhaustive model selection on the Poisson model showed that the model of crash/near-

crash events based on Components 1 and 3 was ideal. Component 1 included five metrics regarding right-eye contrast sensitivity; Com-ponent 3 included a discomfort glare rating, the total number of color-vision plates correct, and right-eye contrast sensitivity.

In summary, initial analyses indicated that some visual characteristics may have a signifi-cant impact on older drivers’ crash/near-crash risks.

International Driver Behavior Comparison Using Shanghai NDS

China has become one of the world’s most important auto markets. However, the traf-fic conditions and driver behaviors in China could be dramatically different from the United States. This difference will affect vehicle design and control parameters, such as forward colli-sion control settings and adaptive cruise con-trol settings. NDSs are by far the most powerful method to collect those characteristics during real-life driving. This study, conducted in partnership with the General Motors Company (GM) and Tongji University (Tongji), instru-mented five vehicles and collected NDS data in Shanghai, China.

NSTSCE researchers provided and installed the Next Generation DAS developed by VTTI. The Tongji team managed the data collection process. The collected data were transferred to the VTTI secure data server for data decryp-tion and processing. The collected data pro-vided crucial information about the traffic flow characteristics and driver behaviors in one of the major cities in China.

Driving Scenario Classification During this period, a method was developed that uses GPS data in combination with digital map data to address the bulk of the objectives of the scenario classification effort. The method reveals when participant vehicles are tran-

95

sitioning from one road segment to another (e.g., turning at intersections, taking ramps off freeways, traveling on interstates or rural roads, etc.). The association with additional descriptors in digital map data provides further scenario-related quantification, including fac-tors such as number of lanes, road class, speed limit, etc. In addition to being accurate, the method has other benefits. It is more efficient with respect to computational and database query demands than previously used roadway classification methods. It also only uses latitude and longitude, so research questions that are reliant upon kinematic-dependent measures are not affected.

The method for associating GPS points with roadway segments was documented and submitted to Virginia Tech Intellectual Prop-erties for review. It was then submitted to the U.S. Patent office and has begun the patent review process (U.S. Patent Application No: 61/829,024). The next step will be to finalize a description of the method in an NSTSCE report.

Senior Mobility DayThe Senior Mobility Awareness Symposium was a community outreach activity held December 6, 2012. Its purpose was to channel the latest research findings and policy per-spectives to the hands-on professionals who daily support seniors and their transportation needs. The event lineup included speakers from: NHTSA, the University of Michigan Transportation Research Institute (UMTRI), AARP Virginia, Virginia Department of Motor Vehicles (DMV), the Massachusetts Institute of Technology (MIT) AgeLab, VTTI, and the Virginia Tech Center for Gerontology. The Inn at Virginia Tech and Skelton Conference Center served as the venue, and each attendee received continuing education credit. The long-term goals of the project were to: 1) Foster

a community of researchers, transportation leaders, physicians/therapists, gerontologists, and other senior service providers in the New River Valley who regularly meet and work together to creatively solve senior mobility issues; and 2) Develop a program suitable for implementation within other communities across the United States.

Age-related Driver Difficulties at Intersections III

This project represented a meta-analysis of data collected during two VTTI naturalistic driving efforts. One focused on drivers aged 65 and older, and another focused on newly licensed teen drivers and their middle-aged parents.

Results of this work indicated that visual scan-ning differs between age groups during unpro-tected T-shaped intersections. In particular, there was a significant difference in visual entropy for drivers of all age groups while negotiating a left turn in the presence of traffic in intersecting streams. The analysis showed that young drivers scan more narrowly than other driver groups when no traffic is present at an intersection but scan more broadly (and more randomly) when in the presence of traf-fic at the intersection. A link analysis revealed that younger teen drivers look at more loca-tions during their turns and are more random in their glance patterns. Analyses of glance distribution and glance duration revealed that older drivers spend a slightly greater propor-tion of time looking at the direction (or direc-tions) from which traffic could strike them during a turn if they were to emerge towards the intersection than did other driver age groups. Further, the individual glances made by older drivers to these areas were longer, perhaps suggesting that it took these drivers longer to extract the information they needed.

96

Using Naturalistic Driving Data to Compare the Behaviors of American and Australian Older Drivers Turning at Intersections

VTTI and researchers at the Monash University Accident Research Center (MUARC) in Mel-bourne, Australia, collected naturalistic driving data about older drivers. The team compared key aspects of driving behavior across two conti-nents. Metrics included those related to second-ary task engagement and distraction at unpro-tected turns-across-path intersections. Finding commonalities and/or differences between the two continents and driving environments assisted in making a statement about the univer-sality of seniors’ driving behaviors.

Data analysis plans were coordinated, refined, and finalized with Australian colleagues. Data reduction and data analyses of the reduced data set were completed. Analyses revealed that the two driver populations were similar but that the U.S. sample may have been more impaired than the Australian sample. Intersection types (e.g., uncontrolled, partly controlled, or fully con-trolled) were distributed roughly equally across the two driver samples. Preliminary results indicated that the U.S. driver sample was more willing to engage in the use of a cell phone while moving through an intersection. Analyses across both samples indicated a sensible tendency to moderate overall engagement in secondary activities with respect to intersection complexity (i.e., reduced engagement at partially controlled and uncontrolled intersections compared with engagement at fully controlled intersections).

Light Sources in FogA method of measuring particles using a plane of laser light has been devised. During this method, a laser is fitted with an optic that pro-duces a plane of laser light in a 90-degree angle. The laser light illuminates particles in the air, creating a sort of cross section. A special camera

tuned to the wavelength of the laser then photographs the plane. A computer analysis of a predetermined area of the image (e.g., one square foot) should provide a measure of fog density.

The objects required to build the fog measure-ment system were acquired, and preliminary tests were conducted as a proof of concept. The system underwent construction by the Hardware Engineering Lab at VTTI. This system comprises a laser that emits light in a plane and a camera with a filter tuned to the same wavelength of the laser. The fog caught within the plane of the laser light refracts light towards the camera. The denser the fog, the more light is refracted, thus creating a brighter image. A computer analysis of images cap-tured this way in natural fog conditions pro-vided a means for calibrating the Smart Road all-weather system to similar densities. This effort is gaining priority as VTTI has been requested to measure the visibility of change-able speed limit signs in fog conditions.

Identifying Cognitive Load from Naturalistic Data

The goal of this project was to develop a methodology that used naturalistic data to identify epochs of cognitive activity during driving. The input measures for the algorithm comprised eye-behavior indicators typically present in the stream of data derived from naturalistic studies. The project leveraged pre-vious findings that relate cognitive load while driving with drops in blink rate, concentration of long glances on the forward roadway, and narrowed breadth of scanning. The results showed promise for a “Cognito” protocol that can be used to distinguish cognitive load from other types of visual, manual, or mental activity present in naturalistic driving data. The algorithm focused on long glances to the forward roadway and reduced peripheral scanning.

97

Public Access to VTTI-maintained Data Sets

VTTI maintains naturalistic databases rel-evant to many driving safety research efforts. The ability to make portions of these data sets publicly available has been developed. There were two primary objectives for this project: 1) Develop the tools and procedures necessary to provide timely access to data sets, and 2) Allow VTTI personnel to gain experience in provid-ing appropriate levels of service to external researchers.

The knowledge gained during this project was used to create a forum and data distribution website for the SHRP 2 NDS (forums.shrp2nds.us). This website will be used to support many aspects of this study, including S08 analysis proposals, user workshops, and access to analy-sis tools (e.g., the open-source Community Viewer).

Supporting Commercial Motor Vehicle Driver Health Outreach Efforts

The project website (www.drivinghealthy.org) was redesigned and updated to improve the utility of the site. A detailed Driving Healthy analytics report was prepared and presented to Travelers Insurance for its consideration. Additionally, the team fostered a relationship established with Crete Carrier Corporation through which the Driving Healthy daily tips Rich Site Summary (RSS) feed is shared with Crete Facebook and Twitter users. Daily tips reflect feedback received about previous Driv-ing Healthy tips posted on Facebook.

The research team updated the Driving Healthy website, Facebook, and Twitter sites. Taking advantage of the new Facebook timeline, the team worked to increase driver engagement and sought feedback and recom-mendations for future health focus topics and resources.

VTTI vehicle instrumentation • photo by John McCormick

98

Market Guide to Fleet Telematics Services

The objective of this project was to provide a detailed market guide about current telemat-ics solutions offered by both heavy- and light-vehicle telematics providers. To that end, a draft market guide about fleet telematics services was developed. This guide provides an overview of the currently available third-party, aftermarket telematics solutions. The focus of this review was complete telematics solutions aimed at benefiting overall fleet operations (i.e., solutions that are designed to improve a range of driving, safety, and operational tasks).

The guide includes a review of identified solu-tion providers in the U.S., Canada, United Kingdom, Ireland, and the European Union. For each provider, available telematics features were identified and grouped into the following categories:

1. Integration Features: These features relate to the operation of vehicles and include those solutions associated with vehicle location, safety, diagnostics, communication, and inter-activity.

2. Usability Features: These features relate to the usability of the solution and refer to solu-tion types offered (e.g., small fleets/individual users, overall fleet management, specialized fleets or services), features describing how data are filtered and presented to the user (e.g., web-based reporting/data access program, custom-izable dashboard, multiple report types), and how data are integrated into company opera-tions (e.g., staff management, risk reduction).

3. Service Region: Solution providers vary greatly not only in comprehensiveness of solu-tions but in their service regions.

99

100

National Tire Research Center/SoVa Motion

National Tire Research Center LTRe machine • photo by Logan Wallace

101

The National Tire Research Center (NTRC) com-menced operations during Fiscal Year 2013, cel-ebrated by a grand opening of its renovated building in October 2012 and the first earned revenue in February 2013. The NTRC will serve as an advanced tire research center and test facility specializing in independent research, testing, and assessments that supplement activities performed by global tire and vehicle manufacturers.

Force and Moment MachineDuring the first half of the fiscal year, work was completed on the $11.2 million force and moment machine (LTRe) created for passenger-car, light-truck, and motorsport tires. The LTRe is a superior product representing a transfor-mational leap in technology by offering at least twice the capability in major performance areas across current tire test machines.

The LTRe was tested by the manufacturer during early summer; it was then loaded onto eight tractor trailers to be shipped to Alton, Va., where it was re-assembled. The machine was deemed ready for external customer use during February. The LTRe has since generated more than $1 million of revenue (twice the budgeted amount). The operation now has 20 employees and runs two shifts per day.

Economic ImpactIt is expected that the unique capabilities offered by the NTRC will attract other companies in the automotive or racing industries to locate in the Southern Virginia region. Using a method-ology developed by SRI International, a study projected that the NTRC will have an economic impact of $147 million on the Southern Virginia region during its initial 10 years of operation, creating 183 jobs in the region by 2020 (direct jobs created were estimated at 87; indirect and induced jobs were estimated at 96).

The NTRC is working to enhance visibility and offer expertise in support of this expectation

through travel to national and international conferences and trade shows, website improve-ments, publications, facility tours, and inter-action with the regional community. Global customers are already joining regional industry leaders coming to Southern Virginia to see this facility and to tap into the unique capabilities offered. These visits carry associated benefits to the regional economy that result from the simple acquisition of goods and services from other firms during NTRC-related visits.

Research EndeavorsThe NTRC provides the transportation indus-try the research and testing capabilities needed to engineer and develop tires that will provide greater fuel economy and lower emissions while meeting federal vehicle requirements and cus-tomer expectations. For example, researchers are pursuing the application of innovative materials and design to create a super tire. This tire can adjust on the fly with the car and road without sacrificing wear or traction and can increase fuel efficiency, potentially saving billions of gal-lons of fuel annually. This level and breadth of research, development, and testing in one loca-tion does not currently exist anywhere else for automotive and tire manufacturers.

The NTRC will create additional research and funding opportunities for vehicle manufacturers, tire manufacturers, the motorsports industry, local educational institutions, and government agencies. Transportation industry engineers and scientists will continue to work together to conduct research and testing that enable the industry to more rapidly introduce vehicles with newly developed technology.

SoVa Motion and Future Equipment PlansThe NTRC has partnered with the Southern Virginia Vehicle Motion Labs (SoVa Motion), which features an 8-post Test Rig, Wheel Force Transducers, and two of Cruden’s Simulators.

Director: Mr. Frank Della Pia

102

This equipment encompasses the tools needed to address virtual components prior to con-ducting ride and handling tests on the Virginia International Raceway world-class circuit and designated local roads.

The NTRC plans to incorporate state-of-the-art rolling resistance machinery that will enable tire and automotive manufacturers to accelerate the development of green tire technology, reproduce real-world events, and improve vehicle handling and stability. Additionally, the NTRC has a long-term goal of expanding equipment and facilities targeted at the development of related markets,

such as heavy-truck and military-vehicle tires.

The NTRC is a collaborative effort led by VTTI in alliance with the Institute for Advanced Learning and Research (IALR), General Motors, and the Virginia Tobacco Indemnification Commission for the purpose of advancing the strength and quality of life in Southern Virginia. This initiative is in keeping with the Virginia Tech mission of “transforming knowledge to practice through technological leadership and by fueling economic growth and job creation locally, regionally, and across Virginia.”

SoVa Motion 8-post Test Rig

103

SoVa Motion Cruden’s Simulator • photo by Logan Wallace

104

A consortium comprising Virginia Tech, the University of Virginia (UVA), and Morgan State University (MSU) has teamed to develop a Tier 1 University Transportation Center (UTC) headquartered at VTTI. The resulting Connected Vehicle/Infrastructure UTC (CVI-UTC) will address basic and applied research, education and workforce development, and technology transfer centered upon the technical area with the greatest potential to impact the future of transportation safety and efficiency: the CVI environment.

Connected Vehicle/Infrastructure University Transportation Center

VTTI connected-vehicle instrumentation • photo by Logan Wallace

105

The connected vehicle/infrastructure (CVI) envi-ronment provides an unprecedented opportunity to solve a number of transportation problems by enabling the sharing of real-time information across vehicles and infrastructure elements. Robust communication between vehicles, infrastructure, and devices will facilitate applications designed to address the U.S. Department of Transportation (USDOT) strategic goals of safety, state of good repair, economic competitiveness, livable communi-ties, and environmental sustainability.

CVI-UTC CoreVTTI has assembled a notable core of Con-sortium members, partners, and stakeholders with the capabilities and experience required to conduct state-of-the-art research, education, and technology transfer in the area of connected vehicles.

Consortium Members• The University of Virginia (UVA) Center for Transportation Studies (CTS)

• The National Transportation Center (NTC) at Morgan State University (MSU)

Center Partners• Virginia Center for Transportation Innovation and Research (VCTIR)

Supporting Stakeholders• Nissan

• Volvo Trucks

• Virginia Department of Rail and Public Transportation

• The County of Fairfax, VA

New ProjectsSafety and Human Factors of Adaptive Stop/Yield Signs using Connected-vehicle Infrastructure

Adaptable stop/yield signs have been pro-

posed by some traffic professionals to improve travel time, reduce air pollution, increase fuel economy, and adjust to different traffic condi-tions, such as peak hours, weather, or emergency vehicles. With the advent of connected-vehicle technology, the ability exists to change these signs based on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications. The placement of a sign type has been tradition-ally based upon traffic conditions. However, more and more stop signs are being placed instead of yield signs due to liability risks, resi-dent concerns, and potential worst-case crash scenarios.

While adaptable signs have great potential, they must be properly designed and tested to ensure that: 1) The net safety benefits are positive, 2) Drivers interpret and respond correctly to the signs, 3) Drivers pay appropriate attention to signs without adaptation in the form of rely-ing on past history (e.g., the sign may be dif-ferent than the prior 10 times the intersection was crossed), 4) There are no other unintended consequences when signs are deployed, and 5) Driver acceptance of the technology is high.

Connected-vehicle Applications for Adaptive Overhead Lighting

Adaptive lighting refers to an emerging tech-nology in which lighting systems are tailored to the needs of the environment. In the case of roadway lighting, this would imply dimming or shutting off lighting when it is not required. This technology is enabled through the use of recently developed electronic ballasts for the lighting system and controllers that can provide dimming capability. In addition to dimming, an instant on-and-off capability can be achieved through the implementation of solid-state or induction lighting technology, which does not require the warm-up period that traditional lighting systems do. This instant on-and-off capability leads to the ultimate extension of adaptive lighting: “lighting on demand,” during which the lighting system is triggered by the presence of a vehicle. This adaptive lighting

Director: Dr. Thomas A. Dingus

106

process requires a selection of the light output level based on a series of inputs. These inputs include the traffic volume, vehicle speed, ambi-ent weather conditions, and the presence of pedestrians. Once the lighting level is selected, it is then implemented on the roadway through a luminaire control system. A fully controllable lighting system has already been implemented on the Smart Road, which coincides with one of the connected-vehicle test beds. In terms of refining this process, VTTI is performing a major research project funded by the Federal Highway Administration (FHWA). The project includes an evaluation of crashes under a variety of traffic and lighting conditions and a series of in situ measurements of the lighting system performance. This effort is designed to establish the link between lighting level and traffic safety. This project will also set the criteria used to select the required lighting level that establishes the required inputs for the lighting system. The application of connected-vehicle technologies will gather the required roadway usage data as inputs to the system. Traffic volume, vehicle speed, and pedestrian volume all have the poten-tial to be captured through connected-vehicle technologies. There are a multitude of benefits that result from the implementation of adaptive lighting, including a reduction in light pollution and maintenance. The most significant result of adaptive lighting technology is energy sav-ings. It is estimated that a lighting system can be dimmed to a 50 percent level for at least 50 per-cent of the system burn time. This represents a 25 percent energy savings in the lighting system cost. In 2001, it was estimated that outdoor lighting in the U.S. used 57.35 Terawatt-hours of electricity, thus costing $5.9 billion. With a 25 percent savings, this represents $1.49 billion in savings.

Intersection Management Using In-vehicle Speed Advisory/Adaptation

Since the initialization of research based on vehicle infrastructure integration (VII) and connected vehicles, numerous in-vehicle tech-

nologies are being deployed that use wireless communications. These advanced technologies lay the foundation for the proposed research effort to test vehicle speed advisories and adap-tation systems on intersection performance. The main idea of the speed advisory system is to display a suggested speed to the driver, who has the choice to follow or ignore the advice. Alter-natively, the speed adaptation system entails automatic control of the vehicle speed using advanced cruise control systems. The research group has developed a simulation/optimiza-tion tool that manages intersection operations, entitled iCACC. The main idea of this tool is to optimize the trajectories of vehicles approach-ing an intersection to prevent crashes and to reduce the total intersection delay simultane-ously. Simulations using this tool showed sig-nificant savings in total delay and fuel consump-tion when compared to traditional intersection control. Consequently, this research effort proposes a field test of the iCACC tool using the Smart Road connected-vehicle test bed. The research will attempt to study five different cases in the field experiments: signal control with no exchanged information (base case), signal con-trol with displayed speed advisory and green/red time countdown, flashing signal control with speed advisory, flashing signal control with speed adaptation, and a roundabout case study. The research findings are expected to provide researchers, automobile manufacturers, and decision makers with information regarding the degree of acceptance of drivers and the potential of such systems for use in intersection control.

Field Testing of Eco-speed Control Using V2I Communication

This project, which is sponsored by the AERIS program under the FHWA Research and Inno-vative Technology Administration (RITA), and the Eco-Cooperative Adaptive Cruise Control (ECACC) project laid ample foundation for the feasibility of reducing vehicle fuel consump-tion levels in the vicinity of signalized intersec-tions when signal phasing and timing (SPaT)

107

information is communicated to approaching vehicles. Informed drivers/vehicles can alter their speeds in the vicinity of such intersections to minimize idling and, in many cases, loss of inertia. Two approaches to this logic were stud-ied using agent-based simulations in MATLAB: 1) Eco-speed control, during which an in-vehi-cle device receives SPaT information, performs the calculations, and provides instantaneous speed advisories to drivers. If followed accu-rately, this can benefit the driver by lowering the vehicle fuel consumption; and 2) ECACC, which uses SPaT information and lead/queued vehicle information and automatically controls

the vehicle speed to achieve the “advised fuel-optimum velocity trajectory.” Fuel consumption reductions of up to 23 percent were found based on simulation studies of a single vehicle.

However, these simulations make some assump-tions that may not be realistic, where either the driver perfectly follows the speed advisory or the ECACC is 100 percent accurate. This is in addition to the neglected uncertainties regard-ing the dedicated short-range communication (DSRC) and any communication latencies. Field tests are sought for further analysis and research regarding eco-speed control, and the connected-vehicle test beds of Montgomery County and potentially Northern Virginia are deemed to be an ideal candidate for this effort.

The objective of this research is to implement the eco-speed control system using connected-vehicle test beds and to gain hands-on expe-rience of the implementation issues for this system. The proposed experiments are antici-pated to provide valuable information about the following: 1) Actual benefits sought when eco-speed control or ECACC is implemented and the feasibility of the system, 2) Error func-tions when a typical driver follows a proposed speed profile, 3) Deviation from the proposed speed profile when an automated cruising unit is used, 4) The human-machine interface needed for an eco-speed control unit, and 5) The effect of non-test vehicles in the traffic mix on (a) fuel benefits of the test vehicle and (b) the feasibility of speed adjustments.

Innovative “Intelligent” Awareness System for Roadway Workers Using Dedicated Short-Range Communications

The movement of vehicles (e.g., traffic, dump trucks, and powered mobile construction equip-ment) around a work zone poses a significant safety risk to nearby workers-on-foot (WOFs). Each year, more than 20,000 injuries and more than 100 fatalities occur at road construction zones. Nearly two-thirds (62 percent) of these incidents involved a worker being struck by a vehicle. This project will use the expertise of

Connected test bed roadside unit • photo by Logan Wallace

108

the research team in the fields of V2V commu-nication and pervasive computing to develop an innovative “intelligent” awareness system. The system will comprise DSRC technology mounted on vehicles and worn by WOFs. Since WOFs are required to wear Class 2 or 3 apparel (e.g., reflective vests) while working in right-of-ways on federal-aid highways, the DSRC tech-nology will be embedded within these garments and present on roadway workers during dan-gerous situations. The objectives of this study are twofold. The first is to develop and test an “intelligent” system of awareness device, called InZoneAlert, to be deployed on both vehicles and WOFs. The system will alert WOFs and vehicle operators of impending struck-by inci-dents. This system will alert workers only in the case of accidental close interactions and will not provide false alarms for intentional close interactions between traffic and the equipped worker. The alert system should provide warn-ings in sufficient time to allow the accident to be avoided and should require minimal, cost-effective redesign of both vehicles and workers’ clothing. The second objective is to evaluate the functional effectiveness of the developed InZoneAlert system under operational condi-tions. This evaluation will occur on the Smart Road. This project will provide a solid research-to-practice approach to mitigating work zone struck-by incidents via the development of a novel countermeasure specific to the problem and verification of its effectiveness under realis-tic operational conditions.

Connected Vehicle-Infrastructure Application Development for Addressing Safety and Congestion Issues Related to Public Transportation, Pedestrians, and Bicyclists

The concepts of connected-vehicle, V2V, and V2I communications will result in a new genera-tion of highway infrastructure, traffic controls, and vehicle/driver functions. These concepts will revolutionize the traditional role of the driv-ers, which has been to perceive the surround-ings, evaluate the situation, make a decision,

and execute it. This is a passive role given the operating environment. Further, individual driv-ers perform these processes independent of one another. The lack of coordination among the drivers has annually resulted in 1.6 million rear-end crashes and 634,000 side crashes (Consumer Reports, April 2012). How connected vehicles will specifically change the traditional concept of driving is yet to be seen, although many com-ponents of connected vehicles are already being tested and marketed today (e.g., advanced warn-ing of a vehicle braking ahead, forward collision warning, and blind spot/lane-change warning).

How these technologies will be integrated into the connected-vehicle system is not precisely known at this time. Hence, it is timely to explore ideas about all aspects of connected vehicles and to identify implications. It appears that, at this time, the application of the connected-vehicle concept is concentrated on the operations of cars and trucks. The proposed research examines how the connected-vehicle concept can include the operations of public transportation vehicles (including school buses), transit passengers, pedestrians and school children, and bicyclists. The research will develop a smartphone-based application for addressing some of the safety and congestion issues related to public transporta-tion, pedestrians, and bicyclists.

Emergency Vehicle-to-vehicle Communication

V2V communication can be used to improve the safety and efficiency of emergency response. With driver compliance to guidance, such com-munication can ease driver stress associated with trying to accommodate an approaching emergency vehicle but encountering roadside obstacles or limited space to maneuver to the right. The communication can also aid emer-gency vehicle turning movements, particularly right turns, by clearing the right lane rather than the left. Based on instrumented vehicle data, this project will develop and test algorithms for guiding personal vehicles out of the path of the emergency vehicles and will develop a message communication prototype.

109

Emergency vehicles must often navigate through congested conditions to reach the people requesting assistance or to bring them to hos-pitals for treatment. While these vehicles may travel on shoulders, against traffic, or proceed through red lights, these are risky situations for which the emergency vehicle driver will be held liable if a crash occurs. Other vehicles on the road are supposed to slow down and pull over to the right to facilitate the travel of the emergency vehicle. However, not every driver does so. In some situations, there is little room for drivers to pull to the right as traffic may be gridlocked or shoulders may have obstructions. On arteri-als, the emergency vehicle may need to turn right but may find it difficult to do so because of the drivers on the right. V2V communica-tion can help alert vehicles to the presence of an emergency vehicle and can provide informa-tion about the desired maneuvers of emergency vehicles. Personal vehicles can be better directed to accommodate the emergency vehicle. This cooperative behavior will make emergency vehicle travel safer and will allow police and first responders to reach those in need faster.

The goal of this study is to facilitate emergency vehicles reaching their destinations. Specific objectives include: 1) Identifying roadside obstructions with instrumented vehicles, 2) Determining the best location for vehicles to stop so the emergency vehicle may pass, 3) Determining the best path for the emergency vehicle through traffic, and 4) Developing a message display prototype for personal vehicles.

Infrastructure Pavement Assessment and Management Applications Enabled by the Connected Vehicles Environment Research Program - Phase I: Proof-of-Concept

A fundamental role of transportation agencies is to effectively manage the enormous public investment in pavement. This includes develop-ing strategies and systems to periodically assess pavement conditions, developing maintenance plans to maximize pavement life within limited budgets, and making tactical decisions regard-

ing treatment during adverse weather conditions to keep roadways functional. A fundamental requirement in this management activity is to collect data to assess the condition of the pavement. The current state of the practice in pavement condition data collection is to use specialized sensors and equipment. This rep-resents a significant cost burden on agencies, and this technical approach to data collection scales poorly. In other words, given the need for specialized equipment and sensors, it is diffi-cult to collect data at more locations in a timely, cost-effective manner. A potential advantage offered by connected vehicles is that this pro-gram promises to closely tie the infrastructure to the vast vehicle fleet using the infrastructure. Given the large set of sophisticated sensors inte-grated into modern vehicles, it is possible that these vehicular sensors may be used as a means to assess pavement conditions. In other words, the entire vehicle fleet can be transformed into probes measuring pavement conditions at all locations during frequent time intervals. The purpose of this collaborative research program between Virginia Tech and UVA is to conduct the applied research necessary to investigate the feasibility of this concept through component and system prototyping and testing on the CVI-UTC Virginia Connected Test Bed. The work will specifically address pavement applications, roughness measurement, and friction assess-ment during snow and rain.

Connected Motorcycle Crash Warning Interfaces

This study is testing potential auditory, visual, and tactile connected-vehicle displays for motorcyclists. The project will focus on the fol-lowing primary objectives:

• Refine the base connected motorcycle system to include warning capabilities;

• Design and develop the warning interface for riders; and

• Evaluate prototype interfaces.

Hardware and firmware are currently being developed that will permit demonstration of

110

these three interface modes on participant motorcycles. Participants will ride with the connected-vehicle technology in a backpack, and the various warning modes and sample connected-vehicle scenarios will be demon-strated. Participants will provide feedback about the different implementations.

Developing and Evaluating a Smartphone Application Aimed at Reducing Crashes Involving Motorcycles and Bicycles

Per current statistics, fatal crashes are consid-erably more likely to happen when riding on motorcycles than any other means of transpor-tation. Bicycles, which are similar to motor-cycles in structure, also account for a significant number of crashes. Connected-vehicle tech-nologies have enabled researchers to develop safety applications using DSRC. A highlighted characteristic of DSRC is its low latency, which is critical for real-time applications. However, recent developments in cellular technologies,

as reported by cell phone provider companies, introduced Fourth Generation, Long Term Evolution (4G LTE), which also provides low latency services. To reduce and mitigate crashes involving motorcycles and bicycles, a smart-phone application is proposed to gather required information and to inform riders and drivers of potential conflicts in real time. The goals of this research are twofold: 1) Safety improve-ments regarding crashes involving motorcycles/bicycles, and 2) Use of cellular communication. In developing the smartphone application, the Appcelerator titanium and PhoneGap mobile development platforms will be considered. The application will require a server for which Python and PHP programming languages will be considered. Two processing methods for server design will be evaluated, namely central-ized and distributed approaches. Image pro-cessing will be applied to improve the accuracy of built-in global positioning system (GPS) receivers of smartphones. Five scenarios will be

VTTI connected vehicles • photo by Logan Wallace

111

developed and examined to test the applicability of the application. Scenarios will be constructed with regard to the following factors: 1) Use of 4G LTE, 2) Use of DSRC, 3) Use of high sensitivity GPS receivers, and 4) Data processing method. To compare the scenarios, the following features will be taken into account: 1) Latency, 2) Accu-racy, 3) Cost, and 4) Convenience.

By creating a smartphone application that all drivers can download at a minimal cost that will offer both general state and infrastructure noti-fications (e.g., bad weather) and small-vehicle specific warnings (e.g., motorcycle ahead), this offers all drivers more time to make adjustments and better decisions in their driving behavior. This, in turn, will improve safety with minimal temporal or fiscal adjustments from original equipment manufacturers, drivers, and state DOTs. Cellular technology as a means of com-munication needs to be compared with devel-oped warning systems that use DSRC to study and quantify the benefits of both systems.

The objectives of this study can be summarized as follows:

• Identify significant factors leading to crashes involving motorcycles and bicycles,

• Develop a smartphone application to reduce/mitigate these crashes,

• Test and evaluate the applicability of the appli-cation using Smart Road facilities, and

• Compare cellular communication versus DSRC.

Reducing School Bus/Light-vehicle Conflicts through Connected-vehicle Communications

In 2010, 249 buses were involved in fatal crashes, and approximately 12,000 buses were involved in crashes that resulted in injuries. The total number of buses involved in crashes with other motor vehicles, pedestrians, or objects was approximately 54,000 in the United States. Of the 249 fatal crashes reported above, 114 involved school buses, 37 involved cross-coun-try/intercity buses, 83 involved transit buses, and

15 involved other or unknown bus types. Buses are particularly susceptible to rear-end conflicts due to their frequent decelerating and stop-ping behaviors in traffic. Statistics indicate that the rear of the bus is the most frequent initial point of impact during a crash (approximately 28 percent of the 54,000 crashes). The rear-end collisions that occurred during 2010 resulted in 35 fatalities, 2,000 injuries, and 13,000 incidents of property damage. Fatalities resulting from collisions with passenger buses are often the light-vehicle motorists. When analyzing Buses Involved in Fatal Accidents (BIFA) data, Blower et al. found that driver error leading to the crash was more likely to have occurred in the striking vehicle than the vehicle being struck. Therefore, rear-end collisions with buses are a concern for the entire motoring public. Blower et al. stated that the high proportion of rear-end crashes during which the bus was struck sug-gested that improved conspicuity and increased awareness of the stopped bus could enhance the safety of the situation. While today’s vehicles are equipped with safety technologies (e.g., collision warning systems, forward collision warnings [FCW], adaptive cruise control), it is recognized that these current safety technolo-gies have limitations around curves and over hills. For instance, when an FCW-equipped vehicle is traversing a sharp curve, the stopped vehicle may not be within the sensor range of the system due to its limited azimuthal cover-age. The same can be said for situations during which an FCW-equipped vehicle crests a hill, at which point the FCW sensor coverage is aimed above the descending roadway on the other side. Connected-vehicle communications, particu-larly DSRC, could be used to provide following traffic with in-vehicle notifications of a stopped bus, especially when the bus is stopped over a hill or around a blind curve. DSRC provides an “extended information horizon” and lets the drivers “see over hills and around curves.” This project will provide a novel opportunity to apply this enhanced capability designed to facilitate increased awareness of stopped buses during moments when they are obscured from the flow of traffic.

112

Although connected-vehicle communications (e.g., DSRC, cellular, WiFi) could be applied to all passenger bus types (e.g., transit, school, motorcoach), this work will focus on school buses engaged in pupil transportation.

School bus drivers face unique safety concerns as professional drivers. They carry what is perhaps the nation’s most precious cargo: our children. Every school day, more than 25 mil-lion school-aged children are transported to and from school on nearly 480,000 school buses. This annually equates to approximately 20 bil-lion boardings and de-boardings of school buses throughout the United States. Many of these boardings and de-boardings result in school buses stopped in the roadway. This scenario is

considered one of the most dangerous situations for a school bus and its student riders. Con-nected-vehicle technology could be the solution for improving bus conspicuity and increasing awareness among other roadway users of a stopped school bus.

The objectives of this 12-month study are three-fold. First, the research team will develop a Con-cept of Operations (ConOps) for the connected school bus. Second, the research team will develop a prototype, in-vehicle message display for following vehicles to alert them of a stopped school bus. Finally, the team will conduct pre-liminary testing of the prototype driver-vehicle interface (DVI) on the Virginia International Raceway (VIR) in Southern Virginia.

Using connected-vehicle technology, VTTI is working to reduce rear-end crashes with school buses

113

Connected Motorcycle System Performance

This study is testing the effectiveness of con-nected technology on motorcycles. The project will focus on the following objectives:

• Characterize the impact of antenna configu-rations on communications and positioning performance.

• Characterize the target classification perfor-mance of vehicles when communicating with a motorcycle across varied terrain and roadway geometries.

• Compare motorcycle-mounted system per-formance to performance found in automotive testing.

• Compare differences between two automobiles communicating versus mixed vehicle communi-cations.

• Report observations and provide recommen-dations.

Develop and Test Connected-vehicle Freeway Speed Harmonization Systems

The objective of speed harmonization is to dynamically adjust and coordinate maximum appropriate vehicle speeds in response to down-stream congestion, incidents, and weather or road surface conditions to prevent/reduce vehicle crashes and maximize traffic through-put. The proposed research effort builds on and extends existing research efforts being con-ducted at FHWA by developing a novel speed harmonization algorithm that is predictive as opposed to reactive in nature. Specifically, the speed harmonization algorithm extends research being conducted at the Saxton Traffic Operations Laboratory (STOL) by developing an algorithm that predicts the occurrence of shock-waves up to five minutes before their occurrence using a combination of macroscopic traffic modeling and Bayesian filtering techniques. The wireless communications between vehicles and vehicle-to-roadside equipment (RSE) provide a unique environment in which to collect traf-fic data in addition to traditional sensor data. Traffic data gathered from connected vehicles

as probes will be combined with fixed-location traffic sensor data to predict downstream recur-rent and non-recurrent traffic conditions, including speed and shockwave temporal-spatial evolutions. Based on the predicted traffic condi-tions and weather and road surface conditions, the speed harmonization algorithm will make recommendations about the optimum course of action in an attempt to reduce vehicle crashes, maximize traffic throughput, and reduce vehicle emissions. A field test will be conducted to validate the proposed algorithm using the test vehicles that will be developed as part of the FHWA STOL effort and the connected-vehicle test bed in Northern Virginia.

The goal of this research effort is to develop a dynamic speed harmonization (SPD-HARM) application that uses the frequently collected and rapidly disseminated multi-source data drawn from connected travelers, roadside sen-sors, and infrastructure. The application may be a vehicle-integrated device (e.g., a vehicle manufacturer-installed or aftermarket inte-grated device); a personal wireless application (e.g., a smartphone or other handheld device); or another application capable of collecting, receiving, and disseminating movement and location information. The goal of SPD-HARM is to improve the nature, accuracy, precision, and speed of dynamic decision making by both system managers and system users.

In reaching the identified goal, the objec-tive of the project is to develop speed decision algorithms to achieve the mobility, safety, and environmental goals of dynamic speed harmo-nization. A connected-vehicle environment will enable systems and algorithms that can generate traffic condition predictions, alterna-tive scenarios, and solution evaluations in real time. This will entail developing a simulation-based optimization tool to compute the opti-mum speed recommendations. Note that this requires an increase in computational capability and long-term storage of historical data. Per-formance measurements will play an important role in evaluating and improving dynamic speed harmonization algorithms and methods.

114

Research and Development

VTTI data collection unit • photo by Logan Wallace

115

include: design and acceptance testing of the data acquisition system (DAS); overseeing procedures for protection of participant data; coordinating study protocols; developing the more than 100 approved consent forms and related supplemental materials; facilitating successful Institutional Review Board (IRB) submissions across all IRBs involved; training of S07 project personnel in terms of administering driver assessments, DAS installation, and data handling; overseeing participant recruitment and screening; adhering to the sampling plan; managing the triage response to all remote DAS self-“health” check and automated collision notification messages; monitoring the process and progress of hard drive removals and data uploads to the VTTI data center; maintaining the data collection schedule; and processing, storing, and providing access to study data for use in ongoing and subsequent research projects. As part of its oversight role, VTTI produces several reports each month about inventory tracking, data quality, data accumulation,

Ongoing Projects Technical Coordination and Quality Control for the SHRP 2 NDS (S06)

The Transportation Research Board (TRB) of the National Academy of Sciences (NAS) administers the Safety Area of the Second Strategic Highway Research Program (SHRP 2). VTTI is a key player in helping TRB achieve its goals in the safety arena via the institute’s leadership role in the SHRP 2 Naturalistic Driving Study (NDS), the largest such research study ever undertaken and the model for similar efforts being pursued internationally. VTTI is working closely with SHRP 2 staff and site contractors who are staffing each of six data collection sites in the following areas: Buffalo, NY; Tampa, FL; Seattle, WA; Durham, NC; Bloomington, IN; and State College, PA.

The overall goal of the VTTI effort is to ensure that all study data are collected accurately and stored securely while maintaining human subjects protections. VTTI’s responsibilities

Camera instrumentation on motorcycle • photo by Logan Wallace

Senior Associate Director: Dr. Jon Hankey

116

and projections. VTTI also manages the distribution of available study hardware across the six data collection sites in a manner that best supports TRB goals.

The first DAS was installed in a vehicle during October 2010. Approximately 1,900 vehicles are currently on the road, and nearly 1,260 participants have completed the study. To date, more than 3,400 vehicle-years of data have been collected; an additional five to six vehicle-years are daily added to that total. Collected data comprise several continuous video images, including the driver’s face and the forward roadway. Other data streams being continuously collected include acceleration in three dimensions, global positioning system (GPS) information, forward radar, the presence of alcohol in the cabin, and ambient illumination. Onboard machine-vision algorithms produce lane-tracking and head pose/rotation data. For security reasons, all data are encrypted on the solid-state data drive of the DAS.

DAS Procurement The goal of the DAS Procurement project (under the SHRP 2 S12A) is to obtain all DASs and related warranties needed to support the SHRP 2 NDS (S06 and S07 projects) within budget and within a timeframe that considers project scheduling constraints. A viable contract manufacturer was awarded with the assistance of the selection committee, which included VTTI- and SHRP 2-nominated personnel. This selection committee reviewed and approved all procurement processes, documentation, Requests for Information (RFI), and the Request for Proposal (RFP). Following the initial equipment orders, supplemental replacement components have been ordered as needed to fulfill the data collection needs. Acceptance testing is

completed except in those cases where new or novel situations occur.

Completed ProjectsPortable Devices

While existing industry and government guidelines discuss appropriate levels of distraction arising from integrated in-vehicle devices, the potential effects of portable devices has yet to be fully addressed. The purpose of this project was to review existing literature and guidelines on distraction related to portable aftermarket and voice-controlled devices and determine their relevance in application to the in-vehicle environment. The final deliverable of this project will be a compendium and review of academic articles, technical reports, guidelines, and standards related to portable device use and their potential effects on in-vehicle distraction. This project was sponsored by the National Highway Traffic Safety Administration (NHTSA).

A Continued Investigation into Secondary Task Alternatives: Purely Speech-based versus Combined Speech/Vision Methods

Agero, an independent provider of personalized telematics services, sponsored a research effort designed to evaluate speech-based alternatives to in-vehicle tasks that are traditionally vision-based. This research incorporated three approaches: manual, speech-only, and a combination of speech and manual inputs. These approaches were compared in terms of their effects on driving performances while executing destination-entry tasks. Measurements of lateral and longitudinal impacts on driving while engaged in these secondary tasks included both speed and lane maintenance. An eye-glance analysis was expected to determine which approach requires the least amount of eyes-off-road time.

117

Subjective feedback was expected to classify a perceived favorite, but objective data will ultimately dictate which approach should be used to inform future applications.

Usage and Risk Differences When Using Hands-Free and Hand-Held Cell Phones: Data Analysis And Documentation

Existing data on distraction has been an excellent starting platform for improving our understanding of driver distraction. NHTSA’s Driver Distraction Program (DOT HS 811 299) aims to improve our understanding of driver

distraction when using cell phones. This study investigated drivers’ interactions with three types of cell phones – hand-held, portable hands-free, and integrated hands-free – to determine the relative exposure and risk of each type. This study involved reducing NDS data to identify the following three aspects of this interaction: how much drivers use a cell phone while driving; their driving performance while using the cell phone; and the risk of a safety-critical event associated with using the cell phone. This project was sponsored by NHTSA.

VTTI researcher Greg Fitch conducts distraction research • photo by Logan Wallace

118

Exte

rnal

ly sp

onso

red

expe

nditu

res a

t VTT

I inc

reas

ed 1

7 pe

rcen

t fro

m th

e pre

viou

s fisc

al ye

ar, e

xclu

ding

VTT

LLC

. Dur

ing

FY13

, the

Nat

iona

l Tire

Re

sear

ch C

ente

r (N

TRC)

laun

ched

ope

ratio

ns u

nder

VTT

LLC

. Alth

ough

VTT

I rep

orts

thro

ugh

the V

irgin

ia T

ech

Foun

datio

n as

an L

LC, t

he In

stitu

te

also

cont

inue

s to

be ac

tivel

y inv

olve

d in

man

agem

ent a

nd re

port

ing.

VTT

LLC

mor

e tha

n do

uble

d its

expe

nditu

res d

urin

g st

art-u

p op

erat

ions

.

Financial Information

$-

$5,

000,

000

$10

,000

,000

$15

,000

,000

$20

,000

,000

$25

,000

,000

$30

,000

,000

$35

,000

,000

$40

,000

,000

$45

,000

,000

$50

,000

,000

FY08

FY09

FY10

FY11

FY12

FY13

VT

TI T

otal

Ext

erna

lly S

pons

ored

and

Sta

te E

xpen

ditu

res F

Y08

thro

ugh

FY13

E&G

Exp

endi

ture

sR

etur

ned

Ove

rhea

d Ex

pend

iture

sV

TT L

LC (f

orm

erly

NTR

C)Ex

tern

ally

Spo

nsor

ed E

xpen

ditu

res

$30.

3M E

xt S

pons

ored

$8.9

M V

TT L

LC$3

.6M

Ret

urne

d O

H$4

.2M

E&

G

$35M

Ext

Spo

nsor

ed$6

M V

TT L

LC$4

M R

etur

ned

OH

$4.3

M E

&G

$8.4

MD

AS

Equi

pmen

t

FY14

Pr

ojec

ted

119

VTT

I fin

ished

FY1

3 w

ith $

31.2

mill

ion

in sp

onso

red

awar

ds. A

ward

s hav

e dou

bled

dur

ing

the p

ast f

ive y

ears

, and

V

TTI h

as se

en aw

ards

tota

ling

mor

e tha

n $3

0 m

illio

n fo

r fou

r con

secu

tive y

ears

.

$-

$5,

000,

000

$10

,000

,000

$15

,000

,000

$20

,000

,000

$25

,000

,000

$30

,000

,000

$35

,000

,000

$40

,000

,000

$45

,000

,000

2008

2009

2010

2011

2012

2013

$17.

7M$1

6M

$32M

$34.

1M

$42.

4M

$30.

9M

VT

TI S

pons

ored

Res

earc

h Aw

ard

His

tory

120

VTT

I pro

posa

ls ha

ve co

ntin

ued

to ex

ceed

$50

mill

ion

durin

g ea

ch o

f the

pas

t fou

r yea

rs, w

ith F

Y12

inclu

ding

on

e $40

mill

ion

prop

osal

to th

e U.S

. Dep

artm

ent o

f Def

ense

.

$-

$20

,000

,000

$40

,000

,000

$60

,000

,000

$80

,000

,000

$10

0,00

0,00

0

$12

0,00

0,00

0

2008

2009

2010

2011

2012

2013

$25.

2M

$44.

2M

$69.

6M

$53.

5M

$110

.7M

$64.

9M

VT

TI S

pons

ored

Res

earc

h Pr

opos

al H

isto

ry

121

The VTTI research sponsor base diversification trend included more than 50 different sponsors during FY13. The private sector research reflects continued industry confidence, and growth is expected as the economy strengthens.

National Institutes of Health

1%

Penn State University

1%

National Highway Traffic Safety

Administration10%

Other Federal1%

Federal Highway Administration

5%

Canadian Council of Motor Transport Administrators

1%

MAC (20)2%

CAMP7%

Federal Motor Carrier Safety Administration

8%

The National Academies

10%

VTT LLC22%

Other Private8%

U.S. Dept. of Defense

6%

Virginia Center for Transportation

Innovation and Research9%

Wake Forest University

1%MAC (7)

4%

Transportation Association of

Canada1% U.S. Dept. of

Transportation2%

FY13 Research Sponsors

Sponsored Research

81.1%Sponsored Research

Cost Share.5%

E&G and Overhead Funding15.5%

VTTI Facilities Expense

2.4%

Virginia Tech Foundation

.5%

FY13 Total Expenditures by Funding Type

Federal44%

Private35%

State8%

Federal Flow Through

13%

FY13 Total Sponsored Expenditures by Segment

122

$-

$1,000,000

$2,000,000

$3,000,000

$4,000,000

$5,000,000

$6,000,000

$7,000,000

FY08 FY09 FY10 FY11 FY12 FY13 FY14

VTTI Earned Overhead Distribution FY08 through FY13

VTTI Returned OverheadRental ExpenseDistribution to Other UnitsState and Central Capital Distribution

$2.2M VTTI ROH$1.1M Rental Expense

FY13 VTTI Earned Overhead Distribution VTTI Stakeholder Overhead

Distribution % of Total OH

EarnedTotal Overhead Earned * 6,844,509

State Distribution 2,044,308 29.9%Central Capital Account II 681,516 10.0%

Pre-rent Subtotal 4,118,684

Rental Expense "Off the Top" 1,023,672 15.0%Available for Distribution to Stakeholders 3,095,012

College of Engineering (COE) 52,928 0.8%College of Science (COS) 12,628 0.2%Civil and Environmental Engineering (CEE) 121,051 1.8%Electrical and Computer Engineering (ECE) 3,571 0.1%Mechanical Engineering (ME) 13,325 0.2%Statistics (STATS) 11,601 0.2%Center for Injury Biomechanics (CIB) 73,333 1.1%School of Biomedical Engineering and Sciences (SBES) 85,043 1.2%Math (MATH) 1,031 0.0%Office of the Vice President for Research (OVPR) 189,069 2.8%Central Capital Account 1 (CCA 1) 337,647 4.9%

VTTI Returned Overhead 2,193,786 32.1%

100.0%

* National Tire Research Center (NTRC) earned overhead allocation agreement is 100% to the Center andis therefore excluded from the above distribution analysis. NTRC earned $109,218.15 in overhead during FY13.

123

VTTI Indirect CostGenerated $6.84M

Rent paid for VTTI$1.02M

Total Non direct FundsAvailable to VTTI

$6.48M

Remainder Returnedto VTTI $2.19M

Return toUniversity E&G

$2.04M

CCA 1 Debt Service onUniversity Buildings

$337k

CCA 2 Rent for use ofOther Depts. at CRC

$681k

Return to ParticipatingDepts./Colleges

$374k

Return to VP forResearch$189k

Virginia Tech E&GInvestment$4.29M

Net Marginal Cost tothe University

= $669k*

FY13 VTTI Funding Model

Ratio Analysis: Gross Research Expenditures per $1 investment:Research Expend/Total Available = $39.22M/$6.48M = 6.05xResearch Expend/E&G = $39.22M/$4.29M = 9.14xResearch Expend/Net Marginal Cost = $39.22M/$669k = 58.6x*Net Marginal Cost = Virginia Tech E&G Investment less Return to University E&G, CCA 1, CCA 2, Return to Departments, and Return to VP for Research

VTTI ResearchExpenditures$39.22M

124

Virginia Center for Transportation Innovation and

Research (VCTIR)17%

MAC (20)16%

Agero5%

National Highway Traffic Safety

Administration (NHTSA)

6%

Virginia Polytechnic

Institute and State University

(VT)2%

Federal Motor Carrier Safety Administration

(FMCSA)2%

MAC (7)19%

Federal Highway Administration

(FHWA)8%

Battelle4%

National Academy of

Sciences (NAS)1%

Texas A&M17%

Other2%

TORC Technologies

1%

FY13 Smart Road Sponsorship

Federal16%

Federal Flow Through

26%

State12%

University3%

Private43%

FY13 Smart Road Funding Sources

Center for Truck and Bus Safety

9%

University Transportation

Center3%

Center for Infrastructure-Based Safety

Systems30%

Smart Road

Division9%

Center for Sustainable

Transportation Infrastructure

6%

Center for Automotive

Safety Research42%

Other VTTI and VT Departments

1%

FY13 Smart Road Usage by VTTI Center

*After serving as the incubator for several VTTI research centers, center directors, and key researchers, the Center for Automotive Safety Research was retired in 2013. The size and success of this center led to its retirement and spawned the development of the following three new research centers: the Center for Advanced Automotive Research, the Center for Data Reduction and Analysis Support, and the Center for Vulnerable Road User Safety, all of which came on-line effective July 1, 2013.

*

125

Smart Road sponsor usage will continue to be diverse. In addition, Smart Road time demand is expected to generate record recoveries.

$185,243

$-

$20,000

$40,000

$60,000

$80,000

$100,000

$120,000

$140,000

$160,000

$180,000

$200,000

FY09 FY10 FY11 FY12 FY13

5-Year Smart Road Cost Recoveries

1,182

1,500

0

200

400

600

800

1,000

1,200

1,400

1,600

FY09 FY10 FY11 FY12 FY13 FY14

Hou

rs5-Year Smart Road Hours Usage

Projectio

n

126

$-

$2,000,000

$4,000,000

$6,000,000

$8,000,000

$10,000,000

$12,000,000

$14,000,000

Center for AutomotiveSafety Research (CASR)

Other VTTI Centersunder $2M

Center for Truck andBus Safety (CTBS)

Center for InjuryBiomechanics (CIB)

UniversityTransportation Center

(UTC)

National Tire ResearchCenter (NTRC)

FY11FY12FY13

FY13 VTTI Research Expenditures by Center (more than $2M)

* CASR excludes DAS procurement equipment expenditures for comparative purposes

* See below

$-

$200,000

$400,000

$600,000

$800,000

$1,000,000

$1,200,000

$1,400,000

$1,600,000

$1,800,000

Smart RoadDivision (SR)

Center forSmart

Infrastructureand SensingTechnology

(CSIST)

Center forSustainable

Mobility(CSM)

Center forInfrastructure-

Based SafetySystems(CIBSS)

Center forSustainable

TransportationInfrastructure

(CSTI)

SurfaceTransportationSafety Centerfor Excellence

(STSCE)

Center forProduct

Development(CPD)

Virginia GreenHighwayInitiative(VGHI)

ECECollaborative

Research

I-81 CorridorCoalition (I-

81C)

FY11FY12FY13

FY13 VTTI Research Expenditures by Center (under $2M)

127

$-

$2,000,000

$4,000,000

$6,000,000

$8,000,000

$10,000,000

$12,000,000

$14,000,000

$16,000,000

$18,000,000

$20,000,000

Center for AutomotiveSafety Research

(CASR)

Center for Truck andBus Safety (CTBS)

Sustainable Mobility(CSM)

UniversityTransportation Center

(UTC)

VTTI Research Centersunder $5M*

FY13 Proposal and Award Activity for VTTI Centers (more than $5M)

ProposalsAwards

* see below

$-

$500,000

$1,000,000

$1,500,000

$2,000,000

$2,500,000

$3,000,000

$3,500,000

$4,000,000

Infrastructure-Based Safety

Systems(CIBSS)

SmartInfrastructure

and SensingTechnology

(CSIST)

Smart RoadDivision (SR)

Center forInjury

Biomechanics(CIB)

SustainableTransportationInfrastructure

(CSTI)

National TireResearch

Center(NTRC)

TransportationSafety Centerfor Excellence

(NSTSCE)

Virginia GreenHighwayInitiative

I- 81 Coalition(I-81C)

FY13 Proposal and Award Activity for VTTI Centers (under $5M)

ProposalsAwards

128

Ext

erna

lly S

pons

ored

Pro

ject

Act

ivity

:0r

g N

o.Fu

nd N

o.Sp

onso

rPr

ojec

tR

even

ues

Exp

endi

ture

s%

Bal

ance

Uni

vers

ity T

rans

porta

tion

Cent

er (U

TC) -

-Dr.

Thom

as D

ingu

s, D

irect

or03

08-0

144

8651

Virg

inia

Dep

artm

ent o

f Tra

nspo

rtatio

n (V

DO

T)C

VI-

UTC

931,

401

1,26

7,37

0

465,

912

03

08-0

145

1156

Dep

artm

ent o

f Tra

nspo

rtatio

nTI

ER I

UTC

577,

485

736,

771

4,26

9,23

2

03

08-0

145

1179

Dep

artm

ent o

f Tra

nspo

rtatio

nU

TC A

dapt

ive

Stop

/Yie

ld19

,174

19,2

95

13

0,70

4

0308

-01

4511

80D

epar

tmen

t of T

rans

porta

tion

UTC

Ada

ptiv

e Li

ghtin

g22

,509

31,3

93

11

8,60

7

0308

-01

4511

81D

epar

tmen

t of T

rans

porta

tion

UTC

ICA

CC

Fie

ld E

valu

atio

n2,

394

2,

394

14

7,60

6

0308

-01

4511

82D

epar

tmen

t of T

rans

porta

tion

UTC

EC

AC

C F

ield

Eva

luat

ion

17,9

98

22

,936

127,

064

03

08-0

145

1183

Dep

artm

ent o

f Tra

nspo

rtatio

nU

TC V

TTI I

nZon

e A

lert

usin

g D

SRC

8,39

5

8,39

5

60,8

15

03

08-0

145

1185

Dep

artm

ent o

f Tra

nspo

rtatio

nC

V T

rans

it A

pplic

atio

ns18

,336

21,1

62

53

,838

0308

-01

4511

86D

epar

tmen

t of T

rans

porta

tion

UTC

Em

erge

ncy

Veh

icle

20,0

06

34

,005

112,

375

03

08-0

145

1194

Dep

artm

ent o

f Tra

nspo

rtatio

nU

TC P

avem

ent A

sses

smen

t and

Mgm

t.26

,635

35,9

03

64

,097

0308

-01

4512

28D

epar

tmen

t of T

rans

porta

tion

Con

nect

ed M

otor

cycl

e C

rash

War

ning

4,02

1

18,0

42

14

7,98

3

0308

-01

4512

29D

epar

tmen

t of T

rans

porta

tion

CV

UTC

Mot

orcy

cle

and

Bic

ycle

-

4,

647

14

5,35

2

0308

-01

4512

30D

epar

tmen

t of T

rans

porta

tion

UTC

- Sc

hool

Bus

/Veh

icle

Con

flict

s-

-

15

0,00

0

0308

-01

4512

32D

epar

tmen

t of T

rans

porta

tion

Con

nect

ed M

otor

cycl

e Pe

rfor

man

ce3,

494

5,

294

14

4,31

1

0308

-01

4512

33D

epar

tmen

t of T

rans

porta

tion

UTC

- C

onne

cted

Veh

icle

Fre

eway

-

-

150,

000

03

08-0

145

7904

Dep

artm

ent o

f Tra

nspo

rtatio

nV

TT L

LC M

anag

emen

t Agr

eem

ent

32,9

04

38

,858

53,1

56

U

nive

rsity

Tra

nspo

rtat

ion

Cen

ter

Tota

l1,

684,

751

2,

246,

465

50

.9%

6,34

1,05

1

Cent

er fo

r Aut

omot

ive

Safe

ty R

esea

rch

(CAS

R) --

Dr.

Jon

Han

key,

Dire

ctor

0308

-02

4155

86Th

e N

atio

nal A

cade

mie

sS0

6 (2

,000

Car

)2,

879,

608

2,

991,

758

3,

603,

280

0308

-02

4161

48Th

e N

atio

nal A

cade

mie

sD

AS

Proc

urem

ent

102,

010

101,

118

309,

136

03

08-0

241

6467

Wes

tat I

nc. (

FFT

NH

TSA

)C

ell P

hone

Pilo

t(5

)

(262

)

1,83

4

0308

-02

4165

62C

AM

PD

river

Clin

ics S

uper

viso

r29

,652

72,1

37

99

,558

0308

-02

4165

82Tr

anSe

curit

y LL

CD

row

sine

ss M

itiga

tion

251,

935

220,

769

23,0

02

03

08-0

241

6804

The

Nat

iona

l Aca

dem

ies

S31-

S08

Supp

ort

172,

951

108,

803

23,9

90

03

08-0

241

6815

CA

MP

Mod

el D

eplo

ymen

t2,

759,

267

2,

517,

055

37

7,55

6

0308

-02

4168

34Th

e N

atio

nal A

cade

mie

sN

DS

Dat

a D

issi

min

atio

n A

ctiv

ities

S28

,876

23,5

21

5,

821

03

08-0

241

6835

The

Nat

iona

l Aca

dem

ies

S31

- Trip

Sum

mar

ies

56,9

55

22

4,37

9

66

7,73

1

0308

-02

4168

36Th

e N

atio

nal A

cade

mie

sC

ontra

ct S

31: N

DS

Dat

a D

isse

min

atio

144,

329

212,

314

165,

486

03

08-0

241

6837

The

Nat

iona

l Aca

dem

ies

S31-

Early

Pro

duct

ion

46,9

36

10

5,19

4

65

,345

0308

-02

4168

38Th

e N

atio

nal A

cade

mie

sS3

1-U

serW

orks

hop

52,7

33

50

,913

0

0308

-02

4168

39Th

e N

atio

nal A

cade

mie

sS3

1-N

on S

HR

P232

,858

36,0

82

23

,935

0308

-02

4170

77Sc

ienc

e A

pplic

atio

ns In

tern

atio

nal C

orpo

ratio

n (F

FT F

HW

A)

STO

L - Y

ear 1

Tas

k 3

-

93

,331

15,0

41

03

08-0

243

1691

Nat

iona

l Ins

titut

es o

f Hea

lth (N

IH)

Supe

rvis

ed P

ract

ice

Driv

ing

on D

riv60

1,12

7

55

5,83

9

15

8,81

1

0308

-02

4405

72V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

)V

ario

us F

und

- CA

SR1,

817

57

,284

104,

968

03

08-0

244

0998

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)V

ario

us F

und

- APT

E6,

728

11

,701

8,51

3

0308

-02

4417

38V

irgin

ia T

ech

Foun

datio

n In

c.S

Proj

ect 2

012

-

80

,193

553

0308

-02

4418

10V

irgin

ia T

ech

Foun

datio

n In

c.D

hw M

aint

enan

ce30

,000

5,07

0

24,9

30

03

08-0

244

1819

Virg

inia

Tec

h Fo

unda

tion

Inc.

Mot

orcy

cle

Safe

ty R

esea

rch

Supp

ort

100,

000

61,4

36

38

,564

0308

-02

4432

32M

otor

cycl

e Sa

fety

Fou

ndat

ion

MSF

Nat

ural

istic

410,

260

134,

054

16,0

34

03

08-0

244

8606

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

VC

TIR

-Driv

er C

oach

24,5

74

10

8,40

0

28

7,86

7

0308

-02

4511

24N

atio

nal H

ighw

ay T

raff

ic S

afet

y A

dmin

. (N

HTS

A)

60 M

otor

cycl

e68

8,66

0

86

1,43

2

1,

501,

227

0308

-02

4511

26N

atio

nal H

ighw

ay T

raff

ic S

afet

y A

dmin

. (N

HTS

A)

Porta

ble

Dev

ices

41,6

19

13

,256

(0)

03

08-0

245

1127

Nat

iona

l Hig

hway

Tra

ffic

Saf

ety

Adm

in. (

NH

TSA

)H

FCV

_Int

egra

te &

Gui

de1,

275,

354

1,

499,

761

91

0,59

4

0308

-02

4511

45N

atio

nal H

ighw

ay T

raff

ic S

afet

y A

dmin

. (N

HTS

A)

Cel

l Pilo

t Ana

lysi

s32

7,60

8

24

7,35

0

0

03

08-0

245

7113

Maj

or A

utom

otiv

e C

ompa

ny (7

)B

lack

box

-

5,

922

32

,237

0308

-02

4571

21M

ajor

Aut

omot

ive

Com

pany

(7)

F-M

ini

25,4

75

14

6,37

6

32

7,04

5

Fina

ncia

l Act

ivity

Rep

ort

For

Yea

r E

ndin

g Ju

ne 3

0, 2

013

Fisc

al Y

ear

2012

-201

3

129

0rg

No.

Fund

No.

Spon

sor

Proj

ect

Rev

enue

sE

xpen

ditu

res

%B

alan

ce

Cent

er fo

r Aut

omot

ive

Safe

ty R

esea

rch

(CAS

R) C

ontin

ued

0308

-02

4573

17In

sura

nce

Inst

itute

IIH

S D

istra

ctio

n St

udy

23,7

96

13

,612

(0)

03

08-0

245

7325

CEI

Gro

upC

EI P

redi

ctiv

e A

naly

sis

19,5

29

-

1,72

1

0308

-02

4574

00M

ajor

Aut

omot

ive

Com

pany

(7)

Mor

gan

312,

638

230,

968

574,

796

03

08-0

245

7401

Maj

or A

utom

otiv

e C

ompa

ny (7

)C

yclo

ps46

,145

413,

588

17,9

31

03

08-0

245

7497

Maj

or A

utom

otiv

e C

ompa

ny (2

0)D

river

Coa

ch10

3,57

1

13

9,07

6

19

8,06

6

0308

-02

4575

02M

ajor

Aut

omot

ive

Com

pany

(20)

Toy

Trai

n75

,000

142,

441

56,5

16

03

08-0

245

7537

Maj

or A

utom

otiv

e C

ompa

ny (2

0)D

istra

ct: O

DD

122,

341

73,4

26

29

5,46

9

0308

-02

4576

24V

ario

us F

undi

ng S

ourc

esM

otor

cycl

e V

ario

us-

100,

175

(175

)

0308

-02

4576

36M

ajor

Aut

omot

ive

Com

pany

(7)

Flas

h15

3,27

7

12

0,62

6

2,

257

03

08-0

245

7637

Maj

or A

utom

otiv

e C

ompa

ny (7

)Fl

ash

180,

534

189,

149

36,7

40

03

08-0

245

7657

Age

roR

oost

er64

,078

83,1

17

7,

904

03

08-0

245

7676

Cer

net C

orp.

Shan

ghai

FO

T - O

ne60

,000

59,4

74

52

6

03

08-0

245

7677

Cer

net C

orp.

Shan

ghai

FO

T61

,000

19,3

69

41

,631

0308

-02

4577

03M

ajor

Aut

omot

ive

Com

pany

(7)

Qua

ke34

0,00

0

73

,560

271,

334

03

08-0

245

7714

Maj

or A

utom

otiv

e C

ompa

ny (1

4)M

axim

us II

72,1

32

72

,132

1,19

6

0308

-02

4577

18Tr

ansp

orta

tion

Ass

ocia

tion

of C

anad

aC

anad

a N

DS

360,

612

274,

033

1,56

1,81

3

03

08-0

245

7759

Maj

or A

utom

otiv

e C

ompa

ny (7

)H

inde

rnis

64,7

56

30

,108

34,6

48

03

08-0

245

7813

Maj

or A

utom

otiv

e C

ompa

ny (1

4)SD

I11

2,12

6

11

2,12

6

0

03

08-0

245

7826

Uni

vers

ity o

f New

Sou

th W

ales

Oz

ND

S Pi

lot

32,9

88

52

,230

550

0308

-02

4578

70M

ajor

Aut

omot

ive

Com

pany

(7)

Neo

-

62

,433

247,

122

03

08-0

245

7878

Maj

or A

utom

otiv

e C

ompa

ny (7

)N

ear C

rash

Ana

lysi

s37

,201

4,88

1

311,

328

03

08-0

245

7879

Maj

or A

utom

otiv

e C

ompa

ny (7

)H

ighw

ay S

tops

-

6,

523

67

,551

0308

-02

4578

86M

ajor

Aut

omot

ive

Com

pany

(7)

Phys

Tra

in L

it14

,866

14,8

66

13

4

03

08-0

245

7922

Maj

or A

utom

otiv

e C

ompa

ny (7

)Ev

alua

tion

of a

Driv

er M

onito

ring

S-

338

76,0

08

03

08-0

245

7923

Maj

or A

utom

otiv

e C

ompa

ny (7

)C

yclo

ps II

-

-

345,

137

03

08-0

245

7950

Maj

or A

utom

otiv

e C

ompa

ny (7

)C

ryst

al II

I-

4,03

3

251,

491

03

08-0

245

7996

The

Nat

iona

l Aca

dem

ies

Supp

ort f

or C

TRE

-

-

194,

887

03

08-0

245

7997

The

Nat

iona

l Aca

dem

ies

Supp

ort f

or M

RIG

loba

l-

-

13

5,68

0

0308

-02

4579

98Th

e N

atio

nal A

cade

mie

sSu

ppor

t for

SA

FER

-

-

379,

372

C

ente

r fo

r A

utom

otiv

e Sa

fety

Res

earc

h To

tal

12,3

47,9

19

12

,837

,469

32.9

%13

,904

,692

Smar

t Roa

d D

ivisi

on (S

R; S

AFET

EA-L

U; 5

11) -

- And

y Al

den,

Dire

ctor

0308

-03

4153

51V

CTI

R/F

HW

A S

AFE

TEA

-LU

Ear

mar

kSA

FETE

A-L

U_A

dvan

ced

Veh

icle

108,

464

100,

637

180

0308

-03

4153

52V

CTI

R/F

HW

A S

AFE

TEA

-LU

Ear

mar

kSA

FETE

A-L

U_S

R M

arke

ting

and

Publ

ic R

elat

ions

5,33

2

5,65

5

512

0308

-03

4153

53V

CTI

R/F

HW

A S

AFE

TEA

-LU

Ear

mar

kSA

FETE

A-L

U_S

R D

evel

opm

ent

144,

869

141,

466

41,9

03

03

08-0

341

5354

VC

TIR

/FH

WA

SA

FETE

A-L

U E

arm

ark

SAFE

TEA

-LU

_SR

Pav

emen

t Cen

ter

1,94

9

2,33

9

91

03

08-0

341

5546

VC

TIR

/FH

WA

SA

FETE

A-L

U E

arm

ark

SAFE

TEA

-LU

_Dile

mm

a Zo

ne40

,918

35,9

44

64

,072

0308

-03

4166

15N

atio

nal A

cade

my

of S

cien

ces (

NA

S)D

rive

Smar

t Mon

itorin

g Sy

stem

(14,

610)

3,39

1

19,6

10

03

08-0

343

7404

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

Smar

t Roa

d M

anag

emen

t Agr

eem

ent

375,

000

311,

605

473,

073

03

08-0

344

8602

Virg

inia

Dep

artm

ent o

f Tra

nspo

rtatio

n (V

DO

T)51

1 Ex

cept

ions

201

230

8,22

9

27

8,91

1

-

0308

-03

4486

44V

irgin

ia D

epar

tmen

t of T

rans

porta

tion

(VD

OT)

SR S

alem

Dis

t Mai

nten

ance

9,68

9

3,34

9

52,6

19

03

08-0

344

8750

Virg

inia

Dep

artm

ent o

f Tra

nspo

rtatio

n (V

DO

T)51

1 Ex

cept

ions

201

312

4,29

9

15

7,22

8

28

2,71

9

0308

-03

4572

93TO

RC

Rob

otic

s LLC

TOR

C -

MTV

R8,

788

3,

641

13

,434

0308

-03

4573

92SE

A L

td.

SR U

sage

- SE

A-

-

10

,000

0308

-03

4575

21M

ajor

Aut

omot

ive

Com

pany

(22)

SR U

sage

3,86

0

-

4,

307

03

08-0

345

7738

Car

lisle

Tire

Smar

t Roa

d U

sage

- C

arlis

le T

ire1,

388

1,

388

59

5

Sm

art R

oad

Div

isio

n To

tal

1,11

8,17

5

1,04

5,55

5

2.7%

963,

115

Fina

ncia

l Act

ivity

Rep

ort (

cont

inue

d)Fo

r Y

ear

End

ing

June

30,

201

3

130

0rg

No.

Fund

No.

Spon

sor

Proj

ect

Rev

enue

sE

xpen

ditu

res

%B

alan

ce

Cent

er fo

r Sm

art I

nfra

struc

ture

and

Sen

sing

Tech

nolo

gy (C

SIST

) -- D

r. Li

nbin

g W

ang,

Dire

ctor

0308

-04

4153

39Th

e N

atio

nal A

cade

mie

sA

pplic

atio

n to

LA

DA

R in

Agg

rega

te C

hara

cter

istic

s5,

000

-

0

0308

-04

4160

98W

este

rn R

esea

rch

Inst

itute

(FFT

FH

WA

)A

spha

lt R

esea

rch

Con

sorti

um19

3,20

3

16

2,14

5

42

,876

0308

-04

4482

69V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hM

AU

TC S

ensi

ng7,

484

-

166

0308

-04

4484

27V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hTh

in M

ixes

8,77

6

10,8

52

1

03

08-0

444

8429

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

Skid

Res

ista

nce

II36

(5

)

1

0308

-04

4510

30Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

Nan

o M

echa

nics

167,

512

163,

751

423,

935

03

08-0

445

1042

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)En

ergy

Pro

posa

l Let

ter/R

esea

rch

298,

541

251,

102

342,

007

03

08-0

447

8319

Nat

iona

l Sci

ence

Fou

ndat

ion

(NSF

)D

igita

l Mix

Des

ign

65,2

15

65

,974

108,

616

03

08-0

447

8320

Nat

iona

l Sci

ence

Fou

ndat

ion

(NSF

)D

igita

l Mix

Des

ign

(Sub

s)-

-

18

,000

0308

-04

4784

67N

atio

nal S

cien

ce F

ound

atio

n (N

SF)

NSF

Wor

ksho

p10

,173

10,1

73

0

03

08-0

447

8875

Nat

iona

l Sci

ence

Fou

ndat

ion

(NSF

)N

SF W

orks

hop

II3,

603

3,

603

4,

360

C

ente

r fo

r Sm

art I

nfra

stru

ctur

e an

d Se

nsin

g Te

chno

logy

Tot

al75

9,54

3

66

7,59

5

1.

7%93

9,96

2

Cent

er fo

r Sus

tain

able

Mob

ility

(CSM

) -- D

r. H

esha

m R

akha

, Dire

ctor

0308

-05

4157

90Pe

nn S

tate

Uni

vers

ity (F

FT U

SDO

T)M

AU

TC-P

enn

Stat

e36

,971

21,4

62

1

03

08-0

541

6124

Penn

Sta

te U

nive

rsity

(FFT

USD

OT)

MA

UTC

Gre

enho

use

Gas

es14

9,03

0

14

5,81

9

4

03

08-0

541

6406

Nat

iona

l Aca

dem

y of

Sci

ence

s (N

AS)

Hea

dlam

p Sa

g (S

ub fr

om C

IBSS

)15

,819

-

0

03

08-0

541

6634

Penn

Sta

te U

nive

rsity

(FFT

USD

OT)

MA

UTC

Rol

love

r Pro

pens

ity E

stim

atio

n11

,744

4,29

2

0

0308

-05

4168

11Pe

nn S

tate

Uni

vers

ity (F

FT U

SDO

T)M

AU

TC: D

ata

Qua

lity

Nee

ds A

sses

smen

119,

994

119,

994

6

0308

-05

4168

77Pe

nn S

tate

Uni

vers

ity (F

FT U

SDO

T)M

AU

TC P

enn

Stat

e63

,397

68,6

22

19

3,84

1

0308

-05

4168

80U

nive

rsity

of I

daho

Tran

LIV

E U

TC26

,590

24,5

51

57

4,47

0

0308

-05

4169

10Pe

nn S

tate

Uni

vers

ity (F

FT U

SDO

T)M

AU

TC S

plas

h an

d Sp

ray

35,4

89

42

,952

7,04

8

0308

-05

4169

41Pe

nn S

tate

Uni

vers

ity (F

FT U

SDO

T)PS

U In

cide

nt a

nd W

eath

er18

,554

24,4

34

36

,197

0308

-05

4169

42Pe

nn S

tate

Uni

vers

ity (F

FT U

SDO

T)C

onfe

renc

e on

Age

nt-B

ased

Mod

elin

g-

-

52

,442

0308

-05

4169

43Pe

nn S

tate

Uni

vers

ity (F

FT U

SDO

T)U

sing

Mob

ile P

robe

s to

Info

rm-

-

11

0,94

0

0308

-05

4171

00Pe

nn S

tate

Uni

vers

ity (F

FT U

SDO

T)A

Fea

sibi

lity

Stud

y of

Brid

ge D

eck

-

-

69,0

00

03

08-0

541

7101

Penn

Sta

te U

nive

rsity

(FFT

USD

OT)

MA

UTC

Tra

inin

g-

-

25

,000

0308

-05

4171

47Sc

ienc

e A

pplic

atio

ns In

tern

atio

nal C

orpo

ratio

n (F

FT F

HW

A)

STO

L Y

ear 1

Tas

k 1

-

-

21,6

14

03

08-0

541

7148

Scie

nce

App

licat

ions

Inte

rnat

iona

l Cor

pora

tion

(FFT

FH

WA

)ST

OL

- Yea

r 1 T

ask

2-

-

20

,309

0308

-05

4171

55Sc

ienc

e A

pplic

atio

ns In

tern

atio

nal C

orpo

ratio

n (F

FT F

HW

A)

Traf

fic B

ottle

neck

Iden

tific

catio

n-

-

2,

417

03

08-0

541

7156

Penn

Sta

te U

nive

rsity

(FFT

USD

OT)

Stre

et P

arki

ng-

-

28

,253

0308

-05

4171

57Pe

nn S

tate

Uni

vers

ity (F

FT U

SDO

T)Fr

eew

ay T

rave

l Tim

e Pr

edic

tion

-

-

120,

000

03

08-0

544

0813

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)V

ario

us F

und

- CSM

-

-

723

0308

-05

4414

76SA

ICSA

IC S

chol

arsh

ip S

uppo

rt FY

10-

-

2,

845

03

08-0

544

8075

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

Nex

t Gen

erat

ion

Traf

fic C

ontro

l27

,280

-

58

0

03

08-0

544

8609

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

MA

UTC

VD

OT

FY11

-

(6

,590

)

(0)

03

08-0

544

8688

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

MA

UTC

-VD

OT

Proj

ects

140,

787

139,

969

31

03

08-0

544

8689

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

MA

UTC

-VD

OT

Proj

ects

8,49

6

9,97

8

22

03

08-0

544

8690

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

Estim

atin

g D

ynam

ic T

rave

l Tim

es40

,000

40,0

00

0

03

08-0

544

9078

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

Use

of P

robe

Dat

a fo

r Arte

rial R

oad

-

-

60,0

01

03

08-0

545

7526

Ener

con

Serv

ices

Inc.

Blu

e C

astle

20,3

33

-

22,8

66

03

08-0

545

7613

Har

mon

ia In

c.Ec

o-Si

gnal

Eva

luat

ion

27,3

09

15

,188

39,4

30

03

08-0

545

7952

Scie

nce

App

licat

ions

Inte

rnat

iona

l Cor

pora

tion

(FFT

FH

WA

)ST

OL

Alte

rnat

ive

Inte

rsec

tions

-

1,

702

3,

298

03

08-0

545

7959

Qat

arN

PRP

5-12

72-1

-214

-

-

214,

365

C

ente

r fo

r Su

stai

nabl

e M

obili

ty T

otal

741,

794

652,

373

1.7%

1,60

5,70

4

Fina

ncia

l Act

ivity

Rep

ort (

cont

inue

d)Fo

r Y

ear

End

ing

June

30,

201

3

131

0rg

No.

Fund

No.

Spon

sor

Proj

ect

Rev

enue

sE

xpen

ditu

res

%B

alan

ce

Cent

er fo

r Inf

rastr

uctu

re-B

ased

Saf

ety

Syste

ms (

CIBS

S) --

Dr.

Ron

Gib

bons

, Dire

ctor

0308

-06

4163

43N

atio

nal A

cade

my

of S

cien

ces (

NA

S)H

eadl

amp

Sag

3,28

7

1,23

0

8,81

2

0308

-06

4166

54Te

xas A

&M

Res

earc

h Fo

unda

tion

Shin

y Si

gn17

0,76

5

16

4,50

4

99

8

03

08-0

641

6884

Nat

iona

l Aca

dem

y of

Sci

ence

s (N

AS)

Airp

ort G

arag

e Li

ghtin

g35

,667

50,3

34

24

9,66

6

0308

-06

4169

79B

atte

lle (F

FT)

NG

L Ju

dgin

g49

,635

49,6

35

36

5

03

08-0

644

0937

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)V

ario

us F

und

- Lig

htin

g16

,996

11,5

34

7,

583

03

08-0

644

8613

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

LED

Nig

ht36

,979

45,2

13

13

8,07

1

0308

-06

4486

52V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hTh

e A

sses

smen

t of C

hang

eabl

e Sp

eed

40,8

42

54

,659

142,

499

Cent

er fo

r Inf

rastr

uctu

re-B

ased

Saf

ety

Syste

ms (

CIBS

S) C

ontin

ued

0308

-06

4486

69V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hW

et V

is V

7,75

6

10,3

59

19

,524

0308

-06

4487

39V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hR

etro

Lau

ndry

3,55

8

11,9

42

(0

)

0308

-06

4490

14V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hV

CTI

R D

elin

eatio

n89

3

2,

741

23

1,09

3

0308

-06

4510

40Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

FHW

A S

afet

y ID

IQ57

,403

75,6

57

9,

311

03

08-0

645

1054

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)Sp

ectra

l Eff

ects

359,

293

315,

565

116,

594

03

08-0

645

1114

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)A

dapt

ive

Ligh

ting

417,

030

423,

986

226,

531

03

08-0

645

1123

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)A

ccel

erat

ing

Rou

ndab

out I

mpl

emen

tat

217,

837

196,

787

348,

236

03

08-0

645

1202

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)V

isib

ility

Sup

port

5,59

7

26,1

29

33

,871

0308

-06

4512

35Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

Safe

ty ID

IQ M

anag

emen

t-

-

20

,000

0308

-06

4574

20Sc

ienc

e A

pplic

atio

ns In

t.D

C N

ight

s3,

244

2,

567

6,

952

03

08-0

645

7589

Cla

nton

& A

ssoc

iate

sPa

cific

Nig

hts

38,0

56

42

,837

23,4

44

03

08-0

646

6099

Col

orad

o D

epar

tmen

t of T

rans

porta

tion

Trin

idad

Nig

hts

24,0

00

33

,429

26,5

71

Li

ghtin

g In

fras

truc

ture

and

Tec

hnol

ogy

Gro

up T

otal

1,48

8,83

9

1,51

9,10

9

3.9%

1,61

0,11

8

Cent

er fo

r Sus

tain

able

Tra

nspo

rtatio

n In

fras

truct

ure

(CST

I) --

Dr.

Ger

ardo

Flin

tsch,

Dire

ctor

0308

-07

4258

75Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

Spla

sh &

Spr

ay17

1,20

2

16

4,57

5

14

,271

0308

-07

4477

42V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hPa

vem

ent S

urfa

ces P

rope

rties

Con

sorti

um12

4,33

0

99

,176

52,1

98

03

08-0

744

8508

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

Stru

ctur

al In

dex

20,1

97

94

7

4

03

08-0

744

8538

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

Prev

entiv

e M

aint

enan

ce69

,583

85,9

19

38

,051

0308

-07

4485

41V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hFi

eld

Supp

port

for V

DO

T Q

uiet

Pav

em12

1,93

0

21

3,50

0

16

,789

0308

-07

4485

91V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hR

AP

Proj

ect

85,4

40

98

,672

800

0308

-07

4486

79V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hSu

stai

nabl

e Pa

vem

ents

80,0

87

10

1,91

7

23

,075

0308

-07

4487

38V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hSt

ruct

ural

Inde

x II

12,5

69

18

,268

63,6

75

03

08-0

745

1073

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)Fr

ictio

n M

anag

emen

t43

,853

-

30

0308

-07

4511

01Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

Eise

nhow

er-B

ryce

-

2,

051

-

0308

-07

4511

72Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

Eise

nhow

er-B

ryce

5,00

0

4,61

6

384

0308

-07

4511

73Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

Eise

nhow

er-D

ehgh

anis

anij

5,00

0

3,61

6

1,38

4

0308

-07

4512

44Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

Eise

nhow

er F

ello

wsh

ip (J

ames

Bry

ce)

5,00

0

-

5,

000

C

ente

r fo

r Su

stai

nabl

e Tr

ansp

orta

tion

Infr

astr

uctu

re T

otal

744,

191

793,

258

2.0%

215,

660

Cent

er fo

r Tec

hnol

ogy

Dev

elop

men

t (CT

D) -

- And

y Pe

ters

en, D

irect

or03

08-0

844

0975

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)C

TD re

sidu

al re

venu

e14

,584

-

14

,584

Cen

ter

for

Tech

nolo

gy D

evel

opm

ent T

otal

14,5

84

-

0.0%

14,5

84

Fina

ncia

l Act

ivity

Rep

ort (

cont

inue

d)Fo

r Y

ear

End

ing

June

30,

201

3

132

0rg

No.

Fund

No.

Spon

sor

Proj

ect

Rev

enue

sE

xpen

ditu

res

%B

alan

ce

Nat

iona

l Sur

face

Tra

nspo

rtatio

n Sa

fety

Cen

ter f

or E

xcel

lenc

e (N

STSC

E) --

Dr.

Jon

Han

key,

Dire

ctor

0308

-10

4257

68Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E C

rash

Nea

r Cra

sh A

lgor

ithm

-

-

31,4

61

03

08-1

042

5814

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Dis

tract

ion

Inde

x16

5

16

5

5,

698

03

08-1

042

5821

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Publ

icat

ion

Ana

lysi

s11

,291

8,29

0

6,16

2

0308

-10

4258

40Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E Fe

dera

l TB

D99

-

-

03

08-1

042

5870

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE-

Vis

ual I

nfor

mat

ion

-

-

689

0308

-10

4258

77Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E Fe

dera

l TB

D99

-

(0)

03

08-1

042

5883

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Driv

er C

oach

57,1

91

54

,752

5,05

8

0308

-10

4259

16Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E D

ata

Cen

ter

1,23

2

1,23

2

12,0

48

03

08-1

042

5957

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

J24

11,1

54

12

,424

107,

466

03

08-1

042

5958

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Bay

194

583

6,86

1

0308

-10

4259

59Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E M

askp

ost

4,06

5

4,06

5

311

0308

-10

4259

60Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E C

ube

5,26

6

4,58

3

1

0308

-10

4259

98Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E O

SA C

ase

Stud

y14

,554

14,2

81

5,

417

03

08-1

044

1319

NST

SCE

Indu

stry

Par

tner

sV

TF-N

STSC

E 10

0 C

ar R

e-A

naly

sis

-

-

23,5

93

03

08-1

044

1620

NST

SCE

Indu

stry

Par

tner

sV

TF-N

STSC

E B

rain

Tra

in-

18,6

75

23

,777

0308

-10

4418

40N

STSC

E In

dust

ry P

artn

ers

VTF

-NST

SCE

Ges

tura

l Sen

satio

n II

40,0

00

2,

445

37

,555

0308

-10

4485

44V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

Cog

nito

II3,

780

-

0

0308

-10

4485

45V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

Oin

ters

ect I

II3,

426

11

3

0

03

08-1

044

8546

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

STSC

E IM

U II

6,65

5

5,16

9

0

0308

-10

4485

47V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

Driv

ing

Hea

lthy

15,3

32

9,

073

(0

)

0308

-10

4485

48V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

Fog

26,9

10

25

,566

0

0308

-10

4486

01V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE-

Tele

mat

ics M

arke

t Gui

de3,

906

15

7

(0

)

0308

-10

4486

11V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

Oz

Col

lab

10,9

05

8,

284

0

03

08-1

044

8614

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

STSC

E Sh

angh

ai N

DS

11,8

11

10

,759

-

03

08-1

044

8626

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

STSC

E Fi

tnes

s to

Driv

e15

,046

11,9

81

(0

)

0308

-10

4486

48V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

- Stu

dent

Sym

posi

um4,

158

4,

158

0

03

08-1

044

8670

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

STSC

E Se

nior

Mob

ility

15,2

02

13

,995

0

0308

-10

4487

59V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

Cra

sh T

rifec

ta1,

913

2,

455

47

,945

0308

-10

4487

60V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

Fog

II-

-

37

,800

0308

-10

4490

03V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

Emo

Rad

ar20

0

24

9

12

,351

0308

-10

4490

04V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

Acc

ess M

aint

enan

ce35

5

61

0

2,

540

03

08-1

044

9051

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

STSC

E O

utre

ach

-

47

4

62

,526

0308

-10

4490

52V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

Rou

ndab

outs

Seq

uel

-

1,

656

17

,244

0308

-10

4490

69V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hST

SCE

Lice

nsin

g-

-

14

,150

0308

-10

4510

00Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E C

olor

Cam

era

15

15

894

0308

-10

4510

48Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E Fe

dera

l TB

D8,

951

8,

479

2,

395

03

08-1

045

1049

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Driv

ing

Scen

ario

Cla

ssifi

cati

13,0

30

5,

371

0

03

08-1

045

1052

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Wor

ksite

Hea

lth a

nd W

elln

ess

-

-

530

0308

-10

4510

60Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

FAST

DA

SH32

7,24

0

18

7,94

2

18

7,08

2

0308

-10

4510

61Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

STSC

E FM

CSA

Ann

ual D

ues

-

-

10,4

65

03

08-1

045

1065

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Dis

tract

ion

Out

reac

h1,

347

1,

058

28

8

03

08-1

045

1074

Fede

ral M

otor

Car

rier S

afet

y A

dmin

. (FM

CSA

)ST

SCE

Cog

nitiv

e D

istra

ctio

n2,

914

1,

620

82

0308

-10

4510

79Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

STSC

E In

ters

ectio

n In

vest

igat

ion

3,08

1

651

76,5

40

03

08-1

045

1090

Fede

ral M

otor

Car

rier S

afet

y A

dmin

. (FM

CSA

)ST

SCE-

Bic

ycle

Vis

ibili

ty16

,722

11,2

50

23

,082

0308

-10

4511

02Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E N

DS

Inte

rnat

iona

l3,

998

4,

174

82

6

03

08-1

045

1139

Fede

ral M

otor

Car

rier S

afet

y A

dmin

. (FM

CSA

)Sl

eepe

r Ber

th P

rovi

sion

23,8

57

5,

019

1,

143

03

08-1

045

1140

Fede

ral M

otor

Car

rier S

afet

y A

dmin

. (FM

CSA

)ST

SCE

Teen

Coh

ort

87,2

80

69

,795

36,1

66

03

08-1

045

1141

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Pres

crip

tion

Dru

g34

,290

28,6

96

2,

266

Fina

ncia

l Act

ivity

Rep

ort (

cont

inue

d)Fo

r Y

ear

End

ing

June

30,

201

3

133

0rg

No.

Fund

No.

Spon

sor

Proj

ect

Rev

enue

sE

xpen

ditu

res

%B

alan

ce

Nat

iona

l Sur

face

Tra

nspo

rtatio

n Sa

fety

Cen

ter f

or E

xcel

lenc

e (N

STSC

E) C

ontin

ued

0308

-10

4511

42Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

STSC

E A

dapt

ive

Beh

avio

r39

,964

39,1

80

9,

337

03

08-1

045

1143

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Impa

cts

6,38

5

6,38

5

17,6

28

03

08-1

045

1144

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Driv

ers E

d C

ase

Stud

y37

,169

34,3

60

4,

340

03

08-1

045

1157

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Rou

ndab

outs

38,4

69

36

,484

1,53

1

0308

-10

4511

58Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E D

elin

eatio

n13

,107

14,0

49

45

,843

0308

-10

4511

59Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E M

ini D

as-

-

10

0,00

0

0308

-10

4511

61Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E Se

cure

OB

MS

44,7

07

46

,639

28,3

61

03

08-1

045

1162

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Cyc

le B

rack

et15

,491

17,5

54

17

,446

0308

-10

4511

63Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E H

V S

afet

y O

utre

ach

30,3

54

33

,787

51,2

13

03

08-1

045

1164

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Snea

k Pe

ak28

,384

28,3

84

1,

616

03

08-1

045

1165

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)ST

SCE

Cab

oose

69,0

74

69

,333

3,09

8

0308

-10

4511

71Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E N

ew R

oadw

ay L

ight

ing

-

-

45,0

00

03

08-1

045

1188

Fede

ral H

ighw

ay A

dmin

istra

tion

(FH

WA

)O

z Se

quel

4,51

9

4,51

9

7,48

1

0308

-10

4511

95Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E Fi

tnes

s to

Driv

e II

14,2

53

14

,253

1,24

7

0308

-10

4512

00Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

STSC

E Se

nior

Mob

ility

II12

,259

12,2

59

6,

741

03

08-1

045

1218

Fede

ral M

otor

Car

rier S

afet

y A

dmin

. (FM

CSA

)ST

SCE

Ges

tura

l Sen

satio

n15

,165

27,0

99

2,

901

03

08-1

045

1219

Fede

ral M

otor

Car

rier S

afet

y A

dmin

. (FM

CSA

)ST

SCE

Roa

d Sh

are

4,02

9

3,61

8

(0)

03

08-1

045

1220

Fede

ral M

otor

Car

rier S

afet

y A

dmin

. (FM

CSA

)ST

SCE

Shar

ing

the

Roa

d W

ebsi

te-

4,78

6

41,6

14

03

08-1

045

1221

Fede

ral M

otor

Car

rier S

afet

y A

dmin

. (FM

CSA

)ST

SCE

Adv

erse

Con

ditio

ns72

2

72

2

64

,278

0308

-10

4512

22Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

STSC

E O

BSM

Gui

danc

e99

1

6,

150

28

,850

0308

-10

4512

23Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

STSC

E LT

CC

S D

ata

Elem

ents

237

5,72

5

9,27

5

0308

-10

4512

25Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

Shan

ghai

ND

S II

1,20

4

2,18

3

7,81

7

Surf

ace

Tran

spor

tatio

n Sa

fety

Cen

ter

for

Exc

elle

nce

Tota

l1,

164,

111

94

7,73

0

2.

4%1,

298,

029

Cent

er fo

r Tru

ck a

nd B

us S

afet

y (C

TBS)

-- D

r. Ri

ch H

anow

ski,

Dire

ctor

0308

-12

4169

05M

inne

sota

Dep

artm

ent o

f Tra

nspo

rtatio

nW

inte

r Mai

nten

ance

12,7

09

37

,294

87,6

97

03

08-1

241

6989

Wis

cons

in D

epar

tmen

t of T

rans

porta

tion

Driv

er T

rain

ing

Eval

uatio

n27

,263

52,7

21

32

,279

0308

-12

4259

42Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

OB

MS

FOT

1,26

0,40

7

1,09

8,23

0

955,

547

03

08-1

244

0875

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)V

ario

us F

und

- CTB

S1,

120

2,

706

4,

175

03

08-1

244

5329

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)A

S&A

Var

ious

40,3

24

44

40

,280

0308

-12

4484

43V

irgin

ia C

ente

r for

Tra

nspo

rtatio

n In

nova

tion

and

Res

earc

hR

ural

Tru

ck C

rash

es35

,524

31,8

24

1,

674

03

08-1

245

1062

Fede

ral M

otor

Car

rier S

afet

y A

dmin

. (FM

CSA

)C

DID

S36

2,15

1

33

4,08

3

2,

221,

366

0308

-12

4510

88Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

Pinh

ole

Leak

: Nur

se T

ank

207,

920

181,

903

14,1

50

03

08-1

245

1122

Fede

ral M

otor

Car

rier S

afet

y A

dmin

. (FM

CSA

)U

AB

Tru

ck D

river

Agi

ng37

,708

62,5

54

1,

519

03

08-1

245

1125

Nat

iona

l Hig

hway

Tra

ffic

Saf

ety

Adm

in. (

NH

TSA

)U

MTR

I Cra

sh D

ata

99,0

15

50

,499

1

0308

-12

4511

28N

atio

nal H

ighw

ay T

raff

ic S

afet

y A

dmin

. (N

HTS

A)

HV

-CW

I43

8,34

2

44

1,68

8

38

7,94

3

0308

-12

4511

30Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

Smar

t Driv

e22

2,22

4

27

8,42

8

0

03

08-1

245

1131

Fede

ral M

otor

Car

rier S

afet

y A

dmin

. (FM

CSA

)Pi

nhol

e Le

ak: N

urse

Tan

k II

108,

620

83,8

28

14

,393

0308

-12

4511

32Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

Truc

k ER

S Fo

llow

-on

143,

970

117,

330

4,59

3

0308

-12

4511

70Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

EOB

R20

9,99

7

16

7,97

8

18

2,02

2

0308

-12

4511

99N

atio

nal H

ighw

ay T

raff

ic S

afet

y A

dmin

. (N

HTS

A)

HO

S Fi

eld

Stud

y69

2,31

0

33

5,14

0

1,

164,

860

0308

-12

4512

04N

atio

nal H

ighw

ay T

raff

ic S

afet

y A

dmin

. (N

HTS

A)

Trus

t6,

420

7,

837

71

9,92

6

0308

-12

4512

05N

atio

nal H

ighw

ay T

raff

ic S

afet

y A

dmin

. (N

HTS

A)

UM

TRI A

naly

sis

50,8

26

96

,362

631,

638

03

08-1

245

1206

Nat

iona

l Hig

hway

Tra

ffic

Saf

ety

Adm

in. (

NH

TSA

)C

AS

FOT

123,

261

171,

894

356,

539

03

08-1

245

1207

Nat

iona

l Hig

hway

Tra

ffic

Saf

ety

Adm

in. (

NH

TSA

)A

utom

ated

Driv

ing

180,

993

283,

401

667,

033

03

08-1

245

1209

Nat

iona

l Hig

hway

Tra

ffic

Saf

ety

Adm

in. (

NH

TSA

)U

MTR

I HV

Cra

shw

orth

ines

s57

,901

80,9

39

80

,571

0308

-12

4512

10N

atio

nal H

ighw

ay T

raff

ic S

afet

y A

dmin

. (N

HTS

A)

Tool

Kit

13,6

55

20

,804

94,1

96

For

Yea

r E

ndin

g Ju

ne 3

0, 2

013

Fina

ncia

l Act

ivity

Rep

ort (

cont

inue

d)

134

0rg

No.

Fund

No.

Spon

sor

Proj

ect

Rev

enue

sE

xpen

ditu

res

%B

alan

ce

Cent

er fo

r Tru

ck a

nd B

us S

afet

y (C

TBS)

Con

tinue

d03

08-1

245

1212

Nat

iona

l Hig

hway

Tra

ffic

Saf

ety

Adm

in. (

NH

TSA

)D

eten

tion

Tim

e10

1,67

1

96

,085

208,

922

03

08-1

245

7407

Am

eric

an T

rans

porta

tion

Res

earc

h In

stitu

teFa

tigue

Man

agem

ent P

rogr

am33

7,76

6

27

5,01

4

16

0308

-12

4575

80M

otor

coac

h In

dust

ries

ICM

PI(1

9)

23

,298

19

03

08-1

245

7599

Nav

ista

rM

irror

less

Sup

erTr

uck

118,

072

78,3

97

21

6,92

8

Cen

ter

for

Truc

k an

d B

us S

afet

y To

tal

4,89

0,14

9

4,41

0,28

3

11.3

%8,

088,

285

Virg

inia

Tec

h Tr

ansp

orta

tion

Insti

tute

(VTT

I)/E

CE C

olla

bora

tive

Rese

arch

0308

-13

4259

37N

atio

nal G

eosp

atia

l-Int

ellig

ence

Age

ncy

IC C

AE

(sub

cont

ract

onl

y)20

4,48

6

11

3,99

3

16

3,16

1

0308

-13

4259

85N

atio

nal G

eosp

atia

l-Int

ellig

ence

Age

ncy

IC C

AE

134,

661

64,4

03

61

,951

Vir

gini

a Te

ch T

rans

port

atio

n In

stitu

te (V

TTI)

/EC

E C

olla

bora

tive

Res

earc

h To

tal

339,

147

178,

395

0.5%

225,

112

Cent

er fo

r Inj

ury

Biom

echa

nics

(CIB

) -- D

r. Cl

ay G

able

r, Co

-Dire

ctor

/ D

r. St

efan

Dum

a, C

o-D

irect

or03

08-1

441

6051

NC

HR

PM

otor

cycl

e-B

arrie

r Cra

shes

24,2

42

32

,152

335,

419

03

08-1

441

6274

Wak

e Fo

rest

Uni

vers

ityH

ead

and

Thor

acic

Inju

ry (H

ardy

)25

7,32

6

26

3,05

8

51

,086

0308

-14

4162

86W

ake

Fore

st U

nive

rsity

Hea

d an

d Th

orac

ic In

jury

(Dum

a)22

5,04

0

20

9,20

5

38

,696

0308

-14

4163

22N

atio

nal A

cade

my

of S

cien

ces (

NA

S)R

oads

ide

Dat

a30

,280

8,55

3

196,

660

03

08-1

441

6475

Wak

e Fo

rest

Uni

vers

ityC

IREN

23,7

69

48

,295

6,46

5

0308

-14

4166

97G

enev

a Fo

unda

tion

Late

ral F

acia

l Fra

ctur

es15

,870

(4,2

07)

1,

730

03

08-1

441

6882

NA

SATH

OR

Dro

p Si

mul

atio

n II

29,7

81

32

,556

10,1

72

03

08-1

441

6949

Wyl

e La

bora

torie

s, In

c.C

orre

latio

n of

TH

OR

-K F

inite

Ele

men

93,9

96

66

,356

102,

640

03

08-1

441

7001

Cas

e W

este

rn R

eser

ve U

nive

rsity

Synt

hetic

Pla

tele

ts95

,377

188,

437

249,

174

03

08-1

444

5138

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)C

IB V

ario

us --

S. D

uma

-

2,

020

12

1,67

7

0308

-14

4452

44V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

CIB

Var

ious

- H

ardy

-

46

22

7

03

08-1

444

5345

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)C

IB V

ario

us-K

empe

r/Dum

a67

,799

-

67

,799

0308

-14

4500

55U

.S. A

rmy

Mili

tary

Bio

mec

hani

cs II

1,04

4,36

7

1,11

0,64

9

4,01

7,59

5

03

08-1

445

0127

U.S

. Arm

yM

ilita

ry B

iom

echa

nics

43,6

92

36

,196

1,94

0

0308

-14

4501

52U

.S. A

rmy

Task

4.2

695,

226

1,06

8,63

3

158,

330

03

08-1

445

0160

U.S

. Arm

yIM

PAC

T-

94,1

28

5,

872

03

08-1

445

1091

Nat

iona

l Hig

hway

Tra

ffic

Saf

ety

Adm

in. (

NH

TSA

)W

inSm

ash

Upd

ate

11,4

87

10

,165

23,8

62

03

08-1

445

1121

Nat

iona

l Hig

hway

Tra

ffic

Saf

ety

Adm

in. (

NH

TSA

)ED

R U

pgra

de14

9,11

7

14

8,74

7

39

,554

0308

-14

4562

87R

owan

Uni

vers

ityN

ew Je

rsey

GD

L57

,563

48,4

24

52

6

03

08-1

445

6337

GH

BM

CG

HB

MC

-

4,

836

17

,327

0308

-14

4574

77R

owan

Uni

vers

ityN

J Res

trict

ed L

icen

ses

65,4

02

32

,446

98,0

09

03

08-1

445

7495

Maj

or A

utom

otiv

e C

ompa

ny (2

0)ID

W B

enef

its11

0,00

0

16

9,35

9

67

5,83

6

0308

-14

4575

43R

oadS

afe

LLC

Roa

dsid

e Fe

atur

es fo

r HSM

24,4

99

27

,184

27,8

16

03

08-1

445

7554

Maj

or A

utom

otiv

e C

ompa

ny (2

0)A

bdom

inal

Inju

ry P

atte

rns

104,

167

145,

425

243,

838

03

08-1

445

7584

TRW

Aut

omot

ive

Gm

bHSe

at B

elt S

yste

ms

186,

230

256,

520

120,

166

03

08-1

445

7585

Wak

e Fo

rest

Uni

vers

ityA

dvan

ced

Aut

omat

ed C

ollis

ion

Not

ifi5,

411

57

,441

13,3

39

03

08-1

445

7626

Maj

or A

utom

otiv

e C

ompa

ny (2

0)Th

orac

ic D

EQ E

valu

atio

n(1

27,3

40)

51

,552

77,3

40

03

08-1

445

7643

Maj

or A

utom

otiv

e C

ompa

ny (2

0)Th

orac

ic D

EQ E

valu

atio

n47

,037

45,9

68

2,

963

03

08-1

445

7750

Maj

or A

utom

otiv

e C

ompa

ny (2

0)A

bdom

inal

Inju

ry P

atte

rns

-

25

,452

74,5

48

03

08-1

445

7834

Maj

or A

utom

otiv

e C

ompa

ny (8

)A

ccid

ent A

naly

sis

78,0

00

79

,673

40,3

27

03

08-1

445

7924

Maj

or A

utom

otiv

e C

ompa

ny (2

0)D

EQ S

led

Test

ing

129,

140

6,11

1

661,

663

03

08-1

445

7961

Maj

or A

utom

otiv

e C

ompa

ny (2

0)TH

OR

FE

Mod

el-

28,2

06

1,

647,

682

Cen

ter

for

Inju

ry B

iom

echa

nics

Tot

al3,

487,

477

4,

293,

584

11

.0%

9,13

0,27

9

Fina

ncia

l Act

ivity

Rep

ort (

cont

inue

d)Fo

r Y

ear

End

ing

June

30,

201

3

135

0rg

No.

Fund

No.

Spon

sor

Proj

ect

Rev

enue

sE

xpen

ditu

res

%B

alan

ce

Cent

er fo

r Pro

duct

Dev

elop

men

t (CP

D) -

- Mik

e M

olle

nhau

er, D

irect

or03

08-1

542

5931

Fede

ral R

ail A

dmin

istra

tion

Fede

ral R

ail

-

(2

,027

)

420

0308

-15

4407

89V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

CPD

Var

ious

-

2,

031

94

7

C

ente

r fo

r P

rodu

ct D

evel

opm

ent T

otal

-

4

0.

0%1,

367

Nat

iona

l Tire

Res

earc

h Ce

nter

(NTR

C) --

Fra

nk D

ella

Pia

, Exe

cutiv

e D

irect

or03

08-1

644

5274

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)V

ario

us 8

Pos

t Tes

ting

6,00

0

1,49

2

-

03

08-1

644

5327

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)R

esid

ual R

even

ue F

rom

457

822

100,

400

100,

400

0

0308

-16

4487

54V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

IALR

-SoV

A M

otio

n Ef

forts

64,4

22

68

,054

0

0308

-16

4576

71M

ajor

Aut

omot

ive

Com

pany

(7)

Tire

Initi

ativ

e66

,289

104,

848

56,9

29

03

08-1

645

7681

Maj

or A

utom

otiv

e C

ompa

ny (7

)R

ide

250,

000

134,

001

0

0308

-16

4577

40H

anko

ok T

ire C

orpo

ratio

nTi

re In

itiat

ive

113,

245

100,

228

61,5

50

03

08-1

6V

TT L

LCTo

tal E

xpen

ditu

res (

oper

atin

g an

d ca

pita

l)8,

427,

543

N

atio

nal T

ire

Res

earc

h C

ente

r To

tal

600,

355

8,93

6,56

7

22.9

%11

8,47

9

Virg

inia

Gre

en H

ighw

ay In

itiat

ive

(VG

HI)

-- A

ndy

Alde

n, D

irect

or03

08-1

741

7076

Tow

n of

Bla

cksb

urg

FTA

BT

Tigg

er4,

745

10

,330

489,

670

03

08-1

744

8504

Virg

inia

Cen

ter f

or T

rans

porta

tion

Inno

vatio

n an

d R

esea

rch

VC

TIR

Veh

icle

Det

ectio

n10

,031

-

88

0308

-17

4512

24Fe

dera

l Hig

hway

Adm

inis

tratio

n (F

HW

A)

FHW

A C

V R

oad

Fric

tion

14,1

89

21

,919

128,

019

V

irgi

nia

Gre

en H

ighw

ay In

itiat

ive

Tota

l28

,966

32,2

49

0.

1%61

7,77

7

I-81

Coa

litio

n --

Kevi

n Co

le, I

nter

im D

irect

or03

08-1

845

7487

App

alac

hian

Reg

iona

l Com

mis

sion

I-81

AR

C7,

500

6,

516

(0

)

0308

-18

5484

27V

ario

us I-

81 C

oalit

ion

Mem

bers

I-81

CC

Shi

ppen

sbur

g W

eb36

,311

46,6

71

0

03

08-1

854

8428

Var

ious

I-81

Coa

litio

n M

embe

rsI-

81C

C P

rogr

am M

anag

emen

t16

3,68

9

16

6,74

3

15

,226

I-81

Coa

litio

n To

tal

207,

500

219,

930

0.6%

15,2

26

Vir

gini

a T

ech

Foun

datio

n A

ctiv

ity:

0rg

No.

Fund

No.

Spon

sor

Proj

ect

Rev

enue

sE

xpen

ditu

res

Bal

ance

0308

-00

8821

76V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

New

port

New

s/Te

nn P

rofe

ssor

ship

- O

ps5,

000

13

5

33

,961

0308

-01

8821

68V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I) A

dmin

istra

tion

Foun

d-

40,9

52

64

,519

0308

-02

8723

76V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Cen

ter f

or A

utom

otiv

e Sa

fety

Res

earc

h Fo

unda

tion

130,

000

139,

347

113,

413

03

08-0

387

2377

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)Sm

art R

oad

Foun

datio

n-

-

5,

047

03

08-0

587

4246

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)C

ente

r for

Sus

tain

able

Mob

ility

Fou

ndat

ion

-

-

749

0308

-10

8738

92M

ajor

Aut

omot

ive

Com

pany

(7)

Surf

ace

Tran

spor

tatio

n Sa

fety

Cen

ter o

f Exc

elle

nce

Foun

datio

n-

-

51

3,10

8

0308

-10

8749

62Tr

avel

ers I

nsur

ance

Surf

ace

Tran

spor

tatio

n Sa

fety

Cen

ter o

f Exc

elle

nce

Foun

datio

n20

0,00

0

40

,514

662,

131

To

tal f

or V

irgin

ia T

ech

Foun

datio

n Ac

tivity

:33

5,00

0

220,

948

0.

6%1,

392,

926

Tota

l Ext

erna

lly S

pons

ored

Pro

ject

Act

ivity

:29

,952

,502

39,0

01,5

13

14

5%46

,482

,368

Fisc

al Y

ear

2012

-201

3

Fina

ncia

l Act

ivity

Rep

ort (

cont

inue

d)Fo

r Y

ear

End

ing

June

30,

201

3

136

0rg

No.

Fund

No.

Spon

sor

Proj

ect

Beg

Bal

ance

Exp

endi

ture

sB

alan

ce

Spon

sore

d Pr

ojec

t Cos

t Sha

ring

Act

ivity

:03

08-0

113

8385

Dep

artm

ent o

f Tra

nspo

rtatio

nTI

ER I

UTC

Cos

t Sha

re F

und

186,

289

141,

222

-

03

08-0

123

6974

Dep

artm

ent o

f Tra

nspo

rtatio

nTI

ER I

UTC

Cos

t Sha

re F

und

200,

000

19,3

44

-

0308

-05

1384

10U

nive

rsity

of I

daho

Tran

LIV

E U

TC C

ost S

hare

Fun

d58

,918

54,1

42

-

0308

-12

2369

79Fe

dera

l Mot

or C

arrie

r Saf

ety

Adm

in. (

FMC

SA)

OB

MS

FOT

Cos

t Sha

re F

und

250,

000

-

-

Tota

l Spo

nsor

ed P

roje

ct C

ost S

harin

g Ac

tivity

:69

5,20

7

214,

708

-

Edu

catio

nal &

Gen

eral

Fun

ding

Act

ivity

:03

08-0

111

8300

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)N

extG

en D

AS

Equi

pmen

t-

-

-

0308

-01

1183

01V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

VTT

I Loa

n R

eim

b-N

extG

en D

AS

(100

,996

)

-

(1

00,9

96)

03

08-0

113

1518

Uni

vers

ity B

udge

t Off

ice

VTT

I Ope

ratin

g Fu

nds -

- E&

G4,

567,

541

4,

593,

847

(2

6,30

5)

0308

-01

1346

39O

ffic

e of

the

Vic

e Pr

esid

ent f

or R

esea

rch

Dire

ctor

's Sa

lary

39,1

76

40

,816

(1,6

41)

0308

-01

2307

80V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

VTT

I Ret

urne

d O

verh

ead

2,15

8,67

8

1,44

8,26

9

710,

408

01

60-0

023

1432

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)V

TTI R

ent

1,02

3,67

2

1,02

3,67

2

-

03

08-0

123

1722

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)O

verh

ead

To-B

e-Tr

ansf

erre

d (2

6,20

0)

4,

553

(3

0,75

2)

0308

-01

2330

48V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Har

dwar

e La

bor

111,

205

50,3

36

60

,869

0308

-01

5512

03V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Surp

lus

115,

176

1,37

3

64,2

08

03

08-0

157

9515

VTT

I/Virg

inia

Tec

h In

telle

ctua

l Pro

perti

es (V

TIP)

VTT

I Lic

ensi

ng R

oyal

ties

823

-

82

3

03

08-0

223

2843

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)C

ente

r for

Aut

omot

ive

Safe

ty R

esea

rch

-- R

etur

ned

Ove

rhea

d17

6,62

0

39

,972

136,

648

03

08-0

223

3210

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)M

. Per

ez O

verh

ead

655

279

376

0308

-02

2338

51M

ajor

Aut

omot

ive

Com

pany

(14)

TY G

ift5,

827

67

9

5,

147

03

08-0

223

3886

Maj

or A

utom

otiv

e C

ompa

ny (1

4)M

AC

(14)

Gift

III 2

009

-

-

-

03

08-0

223

3898

AA

AA

AA

Tee

n D

rivin

g Su

ppor

t5,

580

93

5,

487

03

08-0

223

4139

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)SI

I Pro

ject

201

254

,773

60,3

71

(5

,598

)

03

08-0

311

6133

Uni

vers

ity B

udge

t Off

ice

Smar

t Roa

d M

anag

emen

t Agr

eem

ent M

atch

20,1

21

20

,121

(0)

03

08-0

311

9366

Off

ice

of th

e V

ice

Pres

iden

t for

Res

earc

hTe

chni

cal D

evel

opm

ent (

Smar

t Roa

d M

gmt.

Agr

eem

ent M

atch

)30

4,22

3

30

4,22

3

0

03

08-0

323

0209

Smar

t Roa

d Se

rvic

e C

ente

rSm

art R

oad

Serv

ice

Cen

ter O

pera

tions

-

(8

,979

)

58,6

08

03

08-0

323

0211

Smar

t Roa

d Se

rvic

e C

ente

rSm

art R

oad

Serv

ice

Cen

ter -

- Equ

ipm

ent R

eser

ve-

30,9

93

87

,567

0308

-03

2333

22V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Har

dwar

e La

b --

Ret

urne

d O

verh

ead

4,61

9

(555

)

5,17

4

0308

-03

2335

27V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

B. D

aily

Ret

urne

d O

verh

ead

2,00

0

-

2,

000

03

08-0

323

3888

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)Sm

art R

oad

Man

agem

ent A

gree

men

t Mat

ch II

90,7

21

34

,766

55,9

55

03

08-0

423

3887

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)C

ente

r for

Sm

art I

nfra

stru

ctur

e --

Ret

urne

d O

verh

ead

1,92

2

1,67

3

249

0308

-05

2328

44V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Cen

ter f

or S

usta

inab

le M

obili

ty --

Ret

urne

d O

verh

ead

44,5

38

79

3

43

,745

0308

-05

2335

76V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Cen

ter f

or S

usta

inab

le M

obili

ty --

Kim

Res

earc

h Su

ppor

t4,

822

3,

121

1,

701

03

08-0

523

3650

SAIC

SAIC

Sch

olar

ship

Sup

port

60,2

63

-

60,2

63

03

08-0

623

3260

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)C

ente

r for

Veh

icle

Infr

astru

ctur

e Sa

fety

-- R

etur

ned

Ove

rhea

d29

,952

5,71

0

24,2

41

03

08-0

723

2797

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)C

ente

r for

Sus

tain

able

Tra

nspo

rtatio

n In

fras

truct

ure

-- R

OH

4,76

4

1,91

0

2,85

4

0308

-07

5640

97V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

CST

I Con

fere

nce

Surp

lus

7,36

1

-

3,

491

03

08-1

023

2845

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)Su

rfac

e Tr

ansp

orta

tion

Safe

ty C

ente

r of E

xcel

lenc

e --

RO

H1,

988

99

7

99

1

03

08-1

023

3207

Maj

or A

utom

otiv

e C

ompa

ny (1

4)M

AC

(14)

Gift

-

-

-

03

08-1

023

3262

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)Su

rfac

e Tr

ansp

orta

tion

Safe

ty C

ente

r of E

xcel

lenc

e --

Adm

in77

,819

58,1

70

19

,649

0308

-10

2333

37M

ajor

Aut

omot

ive

Com

pany

(14)

MA

C(1

4) II

Gift

(0)

-

(0)

03

08-1

023

3702

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)Sy

mpo

sium

Res

idua

l17

,008

-

17

,008

0308

-12

2328

46V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Cen

ter f

or T

ruck

and

Bus

Saf

ety

-- R

etur

ned

Ove

rhea

d65

,821

7,02

4

58,7

98

Fina

ncia

l Act

ivity

Rep

ort (

cont

inue

d)Fo

r Y

ear

End

ing

June

30,

201

3

137

0rg

No.

Fund

No.

Spon

sor

Proj

ect

Beg

Bal

ance

Exp

endi

ture

sB

alan

ce

0308

-14

2333

51V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Cen

ter f

or In

jury

Bio

mec

hani

cs --

Dum

a R

etur

ned

Ove

rhea

d5,

924

-

5,92

4

0308

-14

2336

52V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Cen

ter f

or In

jury

Bio

mec

hani

cs --

Gab

ler R

etur

ned

Ove

rhea

d4,

577

-

4,57

7

0308

-14

2336

53V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Cen

ter f

or In

jury

Bio

mec

hani

cs --

Har

dy R

etur

ned

Ove

rhea

d7,

931

4,

500

3,

431

03

08-1

423

4281

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)C

ente

r for

Inju

ry B

iom

echa

nics

-- U

ntar

oiu

Ret

urne

d O

verh

ead

1,91

2

-

1,

912

03

08-1

423

4425

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)C

ente

r for

Inju

ry B

iom

echa

nics

-- V

ande

Vor

d R

etur

ned

Ove

rhea

d17

6

52

5

(3

49)

03

08-1

523

3323

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)C

ente

r for

Pro

duct

Dev

elop

men

t -- R

etur

ned

Ove

rhea

d10

,590

-

10

,590

0308

-16

1190

29V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

SoV

a V

ML

Star

t Up

-

-

-

03

08-1

623

4028

Virg

inia

Tec

h O

ffic

e of

Out

reac

hN

atio

nal T

ire R

esea

rch

Cen

ter S

tart

Up

99,9

29

11

2,45

3

(1

2,52

3)

0308

-16

2341

53V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

SoV

a V

ML

Ret

urne

d O

verh

ead

159,

922

82,2

55

77

,667

0308

-16

2341

75V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

Nat

iona

l Tire

Res

earc

h C

ente

r Loa

n Fu

nd(2

45,1

78)

(2

45,1

78)

0

03

08-1

623

4176

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)N

atio

nal T

ire R

esea

rch

Cen

ter L

oan

Rep

aym

ent

-

-

-

03

08-1

623

4109

VTT

I/CO

E/IC

TAS/

OV

PRV

irgin

ia G

reen

Hig

hway

Initi

ativ

e2,

848

2,

849

(1

)

0308

-18

2340

36V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

I-81

Coa

litio

n31

,449

36,8

37

(5

,388

)

03

08-1

856

4914

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

(VTT

I)I-

81 C

oalit

ion

Surp

lus

2,75

6

-

3,

438

To

tal f

or E

duca

tiona

l & G

ener

al F

undi

ng A

ctiv

ity:

8,95

3,30

9

7,

718,

466

1,35

0,24

8

Gra

nd T

otal

for V

irgin

ia T

ech

Tran

spor

tatio

n In

stitu

te (V

TTI)

FY1

2 Fi

nanc

ial A

ctiv

ity:

39,6

01,0

18

46

,934

,687

47,8

32,6

15

Fina

ncia

l Act

ivity

Rep

ort (

cont

inue

d)Fo

r Y

ear

End

ing

June

30,

201

3

Fisc

al Y

ear

2012

-201

3

3

138

Name Department

Mark McNamee Office of the Provost

Dwight Shelton Office of the Vice President for Finance and Chief Financial Officer

Richard Benson College of Engineering

Rich Sorensen Pamplin College of Business

Robert Schubert College of Architecture and Urban Studies

Bob Walters Office of the Vice President for Research

Rob Parker Mechanical Engineering

Kent Nakamoto Marketing

Luke Lester Electrical and Computer Engineering

William Galloway School of Architecture + Design

Don Taylor Industrial and Systems Engineering

Sam Easterling Civil and Environmental Engineering

Tom Dingus Virginia Tech Transportation Institute

Brian Cook Center for Public Administration and Policy

FY13 Stakeholders

139

photo by Logan Wallace

Virginia Gov. Robert McDonnell, second from left, helps cut the ribbon for the Virginia Connected Test Bed, a public-private partnership spearheaded by VTTI. Taking part, from left, were David Friedman, the deputy administrator of the National Highway Traffic Safety Administration; McDonnell; Virginia Commissioner of Transportation Gregory Whirley; and Thomas Dingus, director of VTTI.

Tom

Din

gus,

Dire

ctor

Virg

inia

Tec

h Tr

ansp

orta

tion

Inst

itute

–O

rgan

izat

ion

Cha

rt O

verv

iew

Rod

d H

all

Sen

ior A

ssoc

iate

Dire

ctor

for

Ope

ratio

ns a

nd F

inan

ce(C

hief

Bus

ines

s O

ffice

r)

Cla

rk G

aylo

rd

Chi

ef In

form

atio

n O

ffice

r

Jon

Han

key

Sen

ior A

ssoc

iate

Dire

ctor

for R

esea

rch

And

Dev

elop

men

t

Zac

Doe

rzap

hD

irect

orC

ente

r for

Adv

ance

d A

utom

otiv

e R

esea

rch

Jon

Antin

Dire

ctor

Cen

ter f

or V

ulne

rabl

e R

oad

Use

r Saf

ety

Ron

Gib

bons

Dire

ctor

Cen

ter f

or In

frast

ruct

ure-

Bas

ed

Saf

ety

Sys

tem

s

Hes

ham

Rak

haD

irect

orC

ente

r for

Sus

tain

able

Mob

ility

Ric

h H

anow

ski

Dire

ctor

Cen

ter f

or T

ruck

and

Bus

Saf

ety

Ger

ardo

Flin

tsch

Dire

ctor

Cen

ter f

or S

usta

inab

le

Tran

spor

tatio

n In

frast

ruct

ure

Mig

uel P

erez

Dire

ctor

Cen

ter f

or D

ata

Red

uctio

n an

d A

naly

sis

Sup

port

Zac

Doe

rzap

hIn

terim

Gro

up L

eade

rC

onne

cted

Veh

icle

S

yste

ms

Eddy

Lla

nera

sG

roup

Lea

der

Adv

ance

d P

rodu

ct

Test

and

Eva

luat

ion

Julie

McC

laffe

rty

Gro

up L

eade

rD

ata

Red

uctio

n

Mig

uel P

erez

Inte

rim G

roup

Lea

der

Dat

a A

naly

sis

Sup

port

Jeff

Hic

kman

Gro

up L

eade

rB

ehav

iora

l Ana

lysi

s an

d A

pplic

atio

ns

Dar

rell

Bow

man

Gro

up L

eade

rA

dvan

ced

Sys

tem

s an

d A

pplic

atio

ns

Ric

h H

anow

ski

Inte

rim G

roup

Lea

der

Saf

ety

and

Hum

an

Fact

ors

Cha

rlie

Kla

uer

Gro

up L

eade

rTe

en R

isk

and

Inju

ry

Pre

vent

ion

Jon

Antin

Inte

rim G

roup

Lea

der

Sen

ior M

obili

ty

Aw

aren

ess,

Saf

ety,

and

H

ealth

Andy

Pet

erso

nD

irect

orC

ente

r for

Tec

hnol

ogy

Dev

elop

men

t

Fran

k D

ella

Pia

Dire

ctor

Nat

iona

l Tire

Res

earc

h C

ente

r/S

oVa

Mot

ion

Tom

Din

gus

Dire

ctor

Con

nect

ed V

ehic

le/In

frast

ruct

ure

Uni

vers

ity T

rans

porta

tion

Cen

ter –

Tier

1

War

ren

Har

dyD

irect

orC

ente

r for

Inju

ry B

iom

echa

nics

Kev

in C

ole

Inte

rim D

irect

orI-8

1 C

orrid

or

Coa

litio

n

Myr

a B

lanc

oIn

itiat

ive

Lead

erA

utom

ated

Veh

icle

S

yste

ms

Mic

hael

M

olle

nhau

erLe

ader

Tool

Dev

elop

men

t

Andy

Ald

enG

roup

Lea

der

Virg

inia

Gre

en

Hig

hway

Initi

ativ

e

Ron

Gib

bons

Inte

rim G

roup

Lea

der

Ligh

ting

Infra

stru

ctur

e Te

chno

logy

Shan

e M

cLau

ghlin

Gro

up L

eade

r A

dvan

ced

Dat

a M

inin

g an

d A

lgor

ithm

D

evel

opm

ent/

Mot

orcy

cle

Res

earc

h

Ray

Res

ende

sD

irect

orN

atio

nal C

apita

l R

egio

n O

pera

tion

Gre

en B

oxes

Cen

ters

Yello

w B

oxes

Gro

ups

Rep

ortin

g to

C

ente

rs

Blu

e B

oxes

Initi

ativ

es, G

roup

s,

Coa

litio

ns o

utsi

de

Res

earc

h C

ente

r S

truct

ure

Bro

wn

Box

es

Adm

inis

trativ

eS

uppo

rt

140

Personnel

Tom

Din

gus,

Dire

ctor

, OF3

596

VTTI

Ope

ratio

ns a

nd F

inan

ce

Rod

eric

k H

all,

Sen

ior A

ssoc

iate

Dire

ctor

for O

pera

tions

and

Fi

nanc

e, 1

1625

2

Kat

hy O

liver

,H

uman

Res

ourc

e A

naly

st, 0

0880

3

Min

dy B

ucha

nan-

King

, Tec

h C

omm

unic

ator

, 008

225

Ann

Cra

ig,

Dire

ctor

of

Org

aniz

atio

nal A

dvan

cem

ent,

1122

37

Lisa

Jan

sen,

Sen

ior B

udge

t &

Con

tract

s M

anag

er, 0

0875

0

P14

AP

PO

INTM

EN

T: M

ary

Hod

ge (t

hrou

gh 0

3-09

-13)

Reg

ina

Vie

rs, F

isca

l Tea

m

Man

ager

, 045

71

Deb

orah

Bol

es, S

enio

r Fi

scal

Tec

h, 0

0878

6

Gai

l Rad

ford

, Fi

scal

Tec

h,

0090

68

Terri

Wrig

ht, F

isca

l Tec

h,

0093

42

Mic

helle

Huf

f, Fi

scal

Tec

h,

0094

34

Toni

Car

tee,

Fis

cal T

ech,

00

9433

Den

a P

ucke

tt, F

isca

l Tec

h,

0095

89

Kel

lie R

oss,

Fis

cal T

ech,

00

9590

Jess

amin

e Ka

ne-

Wis

eley

, Web

/Gra

phic

D

esig

ner,

0088

07

Jenn

ifer C

oe, F

ront

O

ffice

Coo

rdin

ator

, 00

7219

Pas

cha

Ger

ni, A

ssoc

iate

Fi

nanc

e D

irect

or, 1

1573

9

VAC

ANT,

Hum

an

Res

ourc

e A

ssis

tant

, 00

9059

Mic

hael

Buc

kley

, Tec

hnic

al

Writ

er/E

dito

r, 00

9786

Barb

ara

Cam

eron

, S

enio

r Adm

inis

trativ

e A

sst./

Ope

ratio

ns

Coo

rdin

ator

, 009

505

Step

hani

e O

verto

n, P

ropo

sal

Team

Lea

der,

0091

52

Cat

herin

e S

trick

land

, Pos

t-Aw

ard

Man

ager

, 116

271

Apr

il G

ray,

W

eb/G

raph

ic

Ass

ista

nt, 0

0976

1

8-10

Fed

eral

Wor

k

Stud

ies

Nat

iona

l Tire

Res

earc

h C

ente

r S

tart-

Up

Ope

ratio

ns T

eam

Leon

ore

Nad

ler,

Sm

art

Roa

d P

roje

ct

Man

ager

, 112

491

Laur

en B

utte

rfiel

d,

Dis

patc

h S

uper

viso

r,

0078

34

And

y A

lden

, Dire

ctor

, S

mar

t R

oad

Ope

ratio

ns, 1

1264

4

Terr

y D

oss,

O

pera

tions

/Saf

ety,

00

9725

Cec

i Elp

i, P

ublic

R

elat

ions

and

M

arke

ting

Spec

ialis

t

12-1

6 D

ispa

tche

rs

Jay

Kai

Pap

pas,

C

ontro

l Roo

m

Sup

ervi

sor A

ssis

tant

VAC

ANT,

Res

earc

h A

ccou

ntin

g M

anag

er,

1166

81

141

Tom

Din

gus,

Dire

ctor

, OF3

596

VTTI

Info

rmat

ion

Tech

nolo

gy

Cla

rk G

aylo

rd, C

hief

Info

rmat

ion

Offi

cer,

1144

63

Zach

ary

“Zeb

” Bow

den,

R

esea

rch

Ass

ocia

te,

1156

70

Dou

g M

cGra

w, S

enio

r D

atab

ase

Adm

inis

trato

r, 11

4575

Ste

ven

Gre

gory

, IT

Spe

cial

ist I

I, S

yste

ms

Adm

inis

trato

r, 00

9037

Cha

dric

k G

raha

m, S

enio

r S

yste

ms

Adm

inis

trato

r, 00

8167

Rob

ert S

chni

tz, I

T S

peci

alis

t II,

Sys

tem

s A

dmin

istra

tor,

0079

78

Phi

l Lam

bert,

IT S

peci

alis

t II,

Sup

port

Spe

cial

ist

Lead

, 009

154

Jeff

Bax

ter,

Sys

tem

s En

gine

erin

g Sp

ecia

list,

0079

98

Step

hen

Tann

er,

Res

earc

h Ap

plic

atio

n Pr

ogra

mm

er,

0089

09

Bria

n D

aily

, Sen

ior

Res

earc

h A

ssoc

iate

, O

G16

01

Sal

ly W

aldo

n, S

enio

r D

atab

ase

Adm

inis

trato

r, 00

9156

Son

dra

Iver

son,

Sen

ior

Res

earc

h As

soci

ate,

1145

14

Dea

n Iv

erso

n, S

enio

r R

esea

rch

Ass

ocia

te,

1145

13

Don

Con

ry, S

yste

ms

Pro

gram

mer

, 115

850

Bria

n M

alon

ey, D

ata

Cen

ter R

A/E

ng II

I, 11

6579

VA

CA

NT,

IT S

yste

m

Per

form

ance

Ana

lyst

, 11

5849

Joel

And

erso

n, P

roje

ct

Ass

ocia

te, 1

1644

3

John

atha

n B

arry

, C

ompu

ter O

pera

tions

Te

ch, 0

0948

7

Kar

en M

iller,

Dat

abas

e Ad

min

istra

tor,

0095

08

Rya

n Jo

hnso

n, C

ompu

ter

Ope

ratio

ns T

ech,

009

720

142

Tom

Din

gus,

Dire

ctor

, OF3

596

VTTI

Nat

iona

l Res

earc

h C

ente

rs

War

ren

Har

dy,

Dire

ctor

Cen

ter f

or In

jury

Bi

omec

hani

cs

Tom

Din

gus,

Dire

ctor

, C

onne

cted

/Veh

icle

In

frast

ruct

ure

Uni

vers

ity

Tran

spor

tatio

n C

ente

r Ti

er I

Myr

a B

lanc

o,

Initi

ativ

e Le

ader

, Au

tom

ated

Veh

icle

S

yste

ms,

112

025

Ray

Res

ende

s,

Dire

ctor

, Nat

iona

l C

apita

l Reg

ion

Ope

ratio

n, 1

1650

0

VA

CA

NT,

Dire

ctor

,

I-8

1 C

orrid

or C

oalit

ion,

11

6302

Fran

k D

ella

Pia

, D

irect

or, N

atio

nal

Tire

Res

earc

h C

ente

r/SoV

a M

otio

n

Gab

rielle

Las

key,

P

roje

ct A

ssoc

iate

, 11

5971

Car

olyn

Bla

nton

, S

enio

r Adm

inis

trativ

e A

ssis

tant

, 009

506

Just

in M

orga

n,

Seni

or R

esea

rch

Ass

ocia

te, 1

1341

2

And

rew

Mar

inik

, P

roje

ct A

ssoc

iate

, 11

4681

Tam

my

Trim

ble,

P

roje

ct A

ssoc

iate

, 11

4612

Vik

ki F

itche

tt, P

roje

ct

Ass

ocia

te, 1

1665

9

Sco

tt Ti

dwel

l, E

lect

roni

cs

Tech

nici

an II

, 00

8650

Josh

Rad

lbec

k,

Se

nior

Res

earc

h S

peci

alis

t , 0

0974

9

Kevi

n G

rove

, R

esea

rch

Ass

ocia

te,

1165

62

143

And

y P

eter

sen,

Dire

ctor

, Cen

ter f

or T

echn

olog

y D

evel

opm

ent,

1115

40

Sta

cy P

ayne

, In

stru

men

tatio

n E

ngin

eer,

0076

32

Josh

ua Q

uese

nber

ry,

Ele

ctro

nic

Har

dwar

e D

evel

oper

, 115

554

Fang

Hua

ng, R

es.

App

licat

ions

Pro

gram

mer

, 11

3513

Dav

id M

ellic

ham

p,

Ele

ctro

nics

Tec

h

Supe

rvis

or, 0

0683

6

Dat

a A

cqui

sitio

n

Jean

Pau

l Tal

ledo

Vile

la,

Appl

icat

ions

Dev

elop

er,

1151

77

Sco

tt A

ust,

Ele

ctro

nics

Te

ch S

uper

viso

r, 00

8844

Mik

e E

llery

, In

stru

men

tatio

n E

ngin

eer,

1149

91

Fran

k Ta

lbot

, Ele

ctro

nic

Har

dwar

e D

evel

oper

, 11

4698

Ale

x B

ier,

Ele

ctro

nics

Te

ch S

uper

viso

r, 00

9325

Julie

Jer

mel

and,

Pro

ject

In

stru

men

tatio

n G

roup

Le

ader

, 112

243

Car

l Cos

pel,

Dat

a A

cqui

sitio

n G

roup

Lea

der,

1137

33

Rya

n M

owry

, Ele

ctric

al

Engi

neer

, 009

463

Step

hen

Tuck

er,

Ele

ctro

nics

Tec

h I,

0089

47

Dav

id L

efev

ers,

Ele

ctro

nic

Har

dwar

e/S

oftw

are

Dev

elop

er, 1

1592

0

Gre

g B

row

n, E

lect

roni

cs

Tech

Sup

ervi

sor,

009

486

Jon

Lille

stol

en, C

ompu

ter

Engi

neer

, 009

534

VA

CA

NT,

Sof

twar

e D

evel

oper

, 115

529

Bill

Free

man

, Ele

ctro

nic

Har

dwar

e/S

oftw

are

Dev

elop

er, 1

1592

1

VTTI

Tec

hnol

ogy

Dev

elop

men

t

Tom

Din

gus,

Dire

ctor

, OF3

596

Dav

id T

aylo

r, E

lect

roni

cs

Tech

I, 0

0978

9

VA

CA

NT,

Ele

ctro

nics

Te

ch I,

009

790

VA

CA

NT,

Sof

twar

e D

evel

oper

, TB

A

VA

CA

NT,

Sof

twar

e D

evel

oper

, TB

A

VA

CA

NT,

Sof

twar

e En

gine

er, 0

0960

3

VA

CA

NT,

Har

dwar

e/FW

D

evel

opm

ent G

roup

Le

ader

, TB

A

VA

CA

NT,

Sof

twar

e D

evel

opm

ent G

roup

Le

ader

, TB

A

Irina

Kal

inio

uk, S

enio

r R

esea

rch

Ass

ocia

te,

1168

97

VAC

ANT,

Sen

ior R

esea

rch

Ass

ocia

te, 1

1692

6

144

And

y P

eter

sen,

Dire

ctor

, Cen

ter f

or T

echn

olog

y D

evel

opm

ent,

1115

40

Bria

n Le

eson

, App

licat

ions

D

evel

oper

, 111

534

Andy

Pet

erse

n, T

echn

olog

y D

evel

opm

ent G

roup

Lea

der,

1115

40

Cra

ig B

uche

r, S

oftw

are

Dev

elop

er, 1

1229

1

(Jar

ed) B

ryso

n, S

R M

echa

nica

l S

yste

ms

Gro

up L

eade

r, 11

1648

Sco

tt S

tone

, Pro

ject

M

anag

er, 1

1129

9

Dev

elop

men

tM

echa

nica

l Sys

tem

s

VAC

ANT,

Mac

hine

Vis

ion

Dev

elop

er, 1

1686

0

Tam

my

Rus

sell,

Pro

ject

A

ssoc

iate

, 114

613

Vas

ily K

alin

iouk

, Sof

twar

e D

evel

oper

, 114

744

Mat

thew

Moe

ller,

Des

ign

Engi

neer

, 009

389

Mar

io J

ones

, Des

ign

Eng

inee

r, 00

9796

Joe

Sojk

a, D

esig

n En

gine

er,

0094

42

Ken

neth

Sm

ith, T

rade

s Te

ch IV

, 00

7655

Trav

is G

raha

m, T

rade

s Su

perv

isor

, 007

841

And

rew

Kar

pa, E

quip

. S

ervi

ce &

R

epai

r Man

ager

, 009

449

Lore

n St

owe,

Res

earc

h A

ssoc

iate

, 114

253

Tim

othy

Dal

rym

ple,

Equ

ip.

Ser

vice

& R

epai

r Tec

h, 0

0952

2

Dav

id T

olle

fson

, Equ

ip.

Ser

vice

&

Rep

air T

ech,

009

521

Car

ri B

ehal

, Pro

ject

A

ssis

tant

, 009

539

Car

olin

e C

onne

ll, D

esig

n En

gine

er, 0

0972

8

Nat

han

Wrig

ht, P

roje

ct

Ass

ista

nt, 0

0974

9

VTTI

Tec

hnol

ogy

Dev

elop

men

t

Tom

Din

gus,

Dire

ctor

, OF3

596

Ste

ve B

ears

, VH

DL

Engi

neer

, 114

484

Trav

is D

oerz

aph,

Des

ign

Engi

neer

, 009

808

145

Jon

Han

key,

Sen

ior A

ssoc

iate

Dire

ctor

for R

esea

rch

and

Dev

elop

men

t

VTTI

Res

earc

h an

d D

evel

opm

ent

Ger

ardo

Flin

tsch

, Dire

ctor

, Cen

ter f

or

Sust

aina

ble

Tran

spor

tatio

n In

frast

ruct

ure,

111

009

(CE

E)

Hes

ham

Rak

ha, D

irect

or,

Cen

ter f

or S

usta

inab

le M

obilit

y, 1

1101

1 (C

EE

)

Ihab

El-S

haw

arby

, Res

earc

h S

cien

tist,

1127

10

Kyo

ungh

o A

hn, R

esea

rch

Sci

entis

t, 11

2663

(NO

VA

Offi

ce)

Jian

he D

u, R

esea

rch

Ass

ocia

te,

1143

50

Edga

r D. d

e Le

on Iz

eppi

, Sen

ior

Res

earc

h As

soci

ate,

114

047

Sam

er K

atic

ha, S

enio

r Res

earc

h A

ssoc

iate

, 114

702

Cen

ter f

or S

mar

t Inf

rast

ruct

ure

and

Sens

ing

Tech

nolo

gy G

roup

, 113

276

Cris

tian

Dru

ta, S

enio

r R

esea

rch

Asso

ciat

e, 1

1463

4

Willi

am (B

illy) H

obbs

, Adv

ance

M

ater

ial C

hara

cter

izat

ion

Lab

Man

ager

, 007

750

146

VTTI

Res

earc

h an

d D

evel

opm

ent

LaTa

nya

Hol

mes

, R

esea

rch

Ass

ocia

te,

1157

87

Zac

Doe

rzap

h,

Inte

rim G

roup

Le

ader

, Con

nect

ed

Veh

icle

Sys

tem

s

Reg

inal

d Vi

ray,

R

esea

rch

Ass

ocia

te,

1156

22

Mia

o So

ng, R

esea

rch

Ass

ocia

te, 1

1586

6

Eliz

abet

h W

hite

, R

esea

rch

Ass

ocia

te,

1158

78

Eddy

Lla

nera

s, G

roup

Le

ader

, Adv

ance

d P

rodu

ct T

est a

nd

Eval

uatio

n

Jon

Han

key,

Sen

ior A

ssoc

iate

Dire

ctor

for R

esea

rch

and

D

evel

opm

ent

Rya

n S

mith

, R

esea

rch

Ass

ocia

te,

1165

61

Thom

as G

orm

an,

Res

earc

h A

ssoc

iate

, 11

6660

Mat

s H

edlu

nd, S

enio

r R

esea

rch

Ass

ocia

te,

1167

00

Zac

Doe

rzap

h, D

irect

or, C

ente

r for

Adv

ance

d A

utom

otiv

e R

esea

rch

M. L

uke

Neu

raut

er,

Seni

or R

esea

rch

Ass

ocia

te, 1

1323

2

John

Del

ong,

Sen

ior

Res

earc

h S

peci

alis

t, 00

8873

Chr

istin

e Li

nk-O

wen

s,

Seni

or R

esea

rch

Spec

ialis

t, 00

8874

Brad

Can

non,

R

esea

rch

Ass

ocia

te,

1144

01

Bria

n W

otrin

g,

Res

earc

h A

ssoc

iate

, 11

3705

Bra

nden

Eva

ns,

Sen

ior

Res

earc

h Sp

ecia

list,

0097

65

Lind

a H

arris

, Pro

ject

A

ssis

tant

, 009

766

Lesl

ie H

arw

ood,

P

roje

ct A

ssoc

iate

, 11

6822

Mel

issa

Hul

se, P

roje

ct

Ass

ocia

te, 1

1682

6

Nic

k B

ritte

n, S

enio

r R

esea

rch

Spe

cial

ist,

0097

72

147

VTTI

Res

earc

h an

d D

evel

opm

ent

Mig

uel P

erez

, Int

erim

G

roup

Lea

der,

Dat

a An

alys

is

Julie

McC

laffe

rty,

Gro

up L

eade

r, D

ata

Red

uctio

n, 1

1403

5 Jon

Han

key,

Sen

ior A

ssoc

iate

Dire

ctor

for R

esea

rch

and

D

evel

opm

ent

Mig

uel P

erez

, Dire

ctor

, Cen

ter f

or D

ata

Red

uctio

n an

d A

naly

sis

Sup

port

Brun

ilda

Swan

nell,

D

ata

Inte

grity

C

oord

inat

or,

0093

10

Meg

an M

oore

, Dat

a R

educ

tion

C

oord

inat

or,

0094

95

Vic

toria

Dea

l, D

ata

Red

uctio

n

Coo

rdin

ator

, 00

9747

Feng

Guo

,S

tatis

ticia

n,

Join

t App

oint

men

t w

ith S

tats

D

epar

tmen

t

Suz

anne

(Suz

ie) L

ee,

P

roje

ct D

irect

or,

Res

earc

h C

ompl

ianc

e &

Dat

a A

cces

s, 1

1172

0

Laur

a To

llin, D

ata

Inte

grity

Spe

cial

ist,

0088

84

Julie

Coo

k, P

roje

ct

Ass

ocia

te, 1

1637

5

Lei L

i, P

roje

ct

Ass

ocia

te (D

ata

Ana

lyst

), 11

6297

Kim

She

lton,

Pro

ject

A

ssoc

iate

, 114

401

Jere

my

Sud

wee

ks,

Res

earc

h As

soci

ate

(Sta

tistic

ian)

, 113

005

Dev

i Mis

hra,

Pro

ject

A

ssoc

iate

(Dat

a A

naly

st),

1159

23

Joel

Kad

y, P

roje

ct

Ass

ocia

te (D

ata

Ana

lyst

), 11

6717

148

VTT

I Res

earc

h an

d D

evel

opm

ent

She

ila (C

harli

e) K

laue

r, G

roup

Lea

der,

Teen

Ris

k an

d In

jury

Pre

vent

ion,

11

2083

Jenn

ifer M

ulle

n, S

enio

r R

esea

rch

Spe

cial

ist,

0082

71

Kel

ly M

cGow

an, R

esea

rch

Spe

cial

ist S

enio

r, 00

9387

Jess

ica

Rar

din,

Pro

ject

A

ssis

tant

, 009

549

Jon

Ant

in, I

nter

im G

roup

Lea

der,

Sen

ior M

obili

ty A

war

enes

s, S

afet

y,

and

Hea

lth, 1

1371

1

Lisa

Eic

helb

erge

r, P

roje

ct

Ass

ocia

te, 1

1446

2

Lind

a A

ngel

l, S

pora

dic

Hire

Kel

ly S

tulc

e, P

roje

ct A

ssis

tant

, 00

9423

Tyle

r Lew

is, P

roje

ct A

ssis

tant

, 00

9424

Nel

son

Gun

ter,

Pro

ject

Ass

ista

nt,

0094

51

Just

in O

wen

s, S

enio

r Res

earc

h A

ssoc

iate

, 114

325

Jon

Han

key,

Sen

ior A

ssoc

iate

Dir

ecto

r for

Res

earc

h an

d

Dev

elop

men

t

Eric

a S

mith

, Pro

ject

Ass

ista

nt,

0097

05

Jon

Ant

in, D

irect

or, C

ente

r for

Vul

nera

ble

Roa

d U

ser S

afet

y

Pet

er B

ayne

s, P

roje

ct

Ass

ocia

te, 1

1653

1

Whi

tney

Atk

ins,

Sen

ior

Res

earc

h S

peci

alis

t ,

0097

73

Reb

ekah

Duk

e, S

enio

r R

esea

rch

Spe

cial

ist ,

00

9791

149

VTTI

Res

earc

h an

d D

evel

opm

ent

Jon

Han

key,

Sen

ior A

ssoc

iate

Dire

ctor

for R

esea

rch

and

D

evel

opm

ent

Vic

ki W

illiam

s

Kat

hryn

Boo

ne,

Pro

ject

A

ssoc

iate

, 115

699

Sco

tt Fr

itz, P

roje

ct A

ssis

tant

, 00

9465

Che

lsea

Phi

pps,

Res

earc

h S

uppo

rt &

Con

tract

s A

ssis

tant

, 00

9558

Shan

e M

cLau

ghlin

,G

roup

Lea

der,

Adva

nce

Dat

a M

inin

g an

d Al

gorit

hm D

evel

opm

ent/

Mot

orcy

cle

Res

earc

h

Mic

hael

Mol

lenh

auer

,Le

ader

,To

ol D

evel

opm

ent

Willi

am S

chau

dt, S

enio

r R

esea

rch

Asso

ciat

e, 1

1284

2

Rob

ert M

cCal

l, R

esea

rch

Asso

ciat

e,11

6560

Cam

eron

Rai

ney,

Res

earc

h A

ssoc

iate

, 116

485

VA

CA

NT,

Res

earc

h A

ssoc

iate

, 11

6563

150

VTTI

Res

earc

h an

d D

evel

opm

ent

Andy

Ald

en, G

roup

Lea

der,

Virg

inia

Gre

en H

ighw

ayR

on G

ibbo

ns, I

nter

im ,

Gro

up

Lead

er, L

ight

ing

Infra

stru

ctur

e Te

chno

logy

, 112

254

Jon

Han

key,

Sen

ior A

ssoc

iate

Dire

ctor

for R

esea

rch

and

D

evel

opm

ent

Ron

Gib

bons

, Dire

ctor

, Cen

ter f

or In

frast

ruct

ure-

Bas

ed S

afet

y S

yste

ms

Jaso

n M

eyer

, Res

earc

h A

ssoc

iate

, 113

704

Mat

thew

Pal

mer

, Sen

ior

Res

earc

h As

soci

ate,

116

788

Bria

n W

illiam

s, R

esea

rch

Ass

ocia

te, 1

1674

6

Cha

rlotte

Low

derm

ilk,

Res

earc

h C

oord

inat

or,

0077

87

Trav

is T

erry

, Res

earc

h A

ssoc

iate

, 115

625

Phi

lip R

oss,

Sen

ior R

esea

rch

Spec

ialis

t, 00

9601

Raj

aram

Bha

gava

thul

a,

Res

earc

h As

soci

ate,

116

702

Adel

a (A

leja

ndra

) Med

ina-

Flin

tsch

, Sen

ior R

esea

rch

Ass

ocia

te, 1

1189

5

VAC

ANT,

Res

earc

h A

ssoc

iate

, 116

820

VAC

ANT,

Res

earc

h A

ssoc

iate

, 116

821

Jeffe

ry P

otte

r, S

mar

t Roa

d M

aint

enan

ce C

rew

, 009

779

Dua

ne C

amer

on, S

mar

t Roa

d M

aint

enan

ce,

0095

20

151

VTTI

Res

earc

h an

d D

evel

opm

ent

Ric

h H

anow

ski,

Dire

ctor

, Cen

ter f

or T

ruck

and

Bus

Saf

ety,

111

245

Jeff

Hic

kman

, Gro

up L

eade

r, Be

havi

oral

Ana

lysi

s an

d Ap

plic

atio

ns, 1

1422

6

Gre

gory

Fitc

h, S

enio

r R

esea

rch

Asso

ciat

e, 1

1370

1

Dar

rell

Bow

man

, Gro

up

Lead

er, A

dvan

ced

Sys

tem

s an

d Ap

plic

atio

ns, 1

1371

4

Ste

phan

ie B

aker

, Pro

ject

A

ssoc

iate

, 112

026

Mat

thew

Cam

den,

Res

earc

h A

ssoc

iate

, 114

690

Erin

Mab

ry, R

esea

rch

Ass

ocia

te, 1

1491

9

Sus

an F

urst

, Pro

ject

A

ssoc

iate

-Sta

tistic

ian,

115

325

Laur

el M

arbu

rg, R

esea

rch

Ass

ocia

te, 1

1557

6S

penc

er J

oslin

, Pro

ject

A

ssoc

iate

, 115

837

Reb

ecca

Ham

mon

d,

Res

earc

h As

soci

ate,

114

377

Nao

mi D

unn,

Res

earc

h A

ssoc

iate

, 115

867

Dev

on M

oelle

r, P

roje

ct

Ass

ocia

te, 1

1658

0

Cha

rles

Nel

son,

Res

earc

h Sp

ecia

list,

0097

37

Jon

Han

key,

Sen

ior A

ssoc

iate

Dire

ctor

for R

esea

rch

and

Dev

elop

men

t

And

rew

Kru

m, S

enio

r R

esea

rch

Asso

ciat

e, 1

1675

0

Ric

h H

anow

ski,

Inte

rim G

roup

Le

ader

, Saf

ety

and

Hum

an

Fact

ors,

111

245

152

New Faculty at the Institute (17)

New Staff at the Institute (21)

NAME DEPARTMENT RESEARCH AREA

Freeman, William John 30808 Research Associate CYStrickland, Catherine Anne 30801 Post-Award ManagerLi, Lei 30821 Project Associate CYRainey, Cameron Scott 30802 Research Associate CYResendes, Raymond J. 30801 Project Director CYBaynes, Peter Allen 30822 Project Associate CYMcCall, Robert M. 30802 Research Associate CYSmith, Ryan Christopher 30820 Research Associate CYGrove, Kevin Lewis 30819 Research Associate CYMaloney, Brian P. 30801 Research Associate CYMoeller, Devon D. 30812 Project Associate CYFitchett, Vikki Lynn 30819 Project Associate CYHedlund, Mats O. 30820 Senior Research Associate CYKady, Joel M. 30821 Project Associate CYWilliams, Brian Michael 30806 Research Associate CYKrum, Andrew J 30812 Senior Research Associate CYPalmer, Matthew Earle 30806 Senior Research Associate CY

Name Department TitleCoe, Jennifer B 30801 Front Office CoordinatorTanner, Stephen Lee 30801 Research Application ProgrammerGunter, Nelson Darrell 30822 Project Assistant Puckett, Dena L 30801 Fiscal TechRoss, Kellie Marie 30801 Fiscal Tech Smith, Erica Elaine 30822 Project AsstJohnson, Ryan Morgan 30801 IT Help DeskDoss, Terry L 30801 Ops/Safety AssistantConnell, Caroline Amie 30808 Design Engineer Owen, John Nathaniel 30814 Research EngineerNelson, Charles L 30808 Research Specialist SeniorRadlbeck, Joshua Thomas 30819 Research Specialist SeniorDeal, Victoria Lynn 30821 Data Reduction CoordinatorWright, Nathan W 30808 Project Assistant Gray, April L 30801 Web AssistantEvans, Branden Chas 30820 Senior Research SpecialistHarris, Linda F 30802 Project AssistantBritten, Nicholas Norris 30820 Senior Research SpecialistAtkins, Whitney M 30822 Senior Research SpecialistJones, Mario Randell 30808 Design Engineer Doerzaph, Travis William 30808 Design Engineer

153

Faculty Who Have Left the Institute (9)

Staff Who Have Left the Institute (4)

Faculty Affiliations of Current Institute Members

Number of Current Minority and Female Employees at the Institute

Name DepartmentDerek Viita VTTIBrad Tilley VTTIZachary Boor VTTIDong Wang VTTINaeem Thompson VTTIKelly Stanley VTTIRachel Cogburn VTTIAndrew Schaudt VTTIShih-Ching Wu VTTI

Name DepartmentMatthew Perez VTTIMelinda Berkley-Coats VTTIReggie Bryson VTTISharon Box VTTI

Name Department CollegeHesham Rakha Civil and Environmental Engineering EngineeringGerardo Flintsch Civil and Environmental Engineering EngineeringTom Dingus Civil and Environmental Engineering EngineeringStefan Duma Mechanical Engineering EngineeringFeng Guo Department of Statistics StatisticsMontasir Abbas Civil and Environmental Engineering EngineeringWarren Hardy Mechanical Engineering EngineeringLinbing Wang Civil and Environmental Engineering EngineeringClay Gabler Biomedical Engineering Engineering

Minority Female

Faculty 8 30Staff 2 35Students 10 31

This area reflects current employees.

154

Number of FTE Staff and Administrative Positions at the Institute: Classified StaffJob Title Name FTE Funding Source Department

Administrative Staff Fiscal Team Manager Viers, Regina W. 1.00 Overhead 30801Front Office Coordinator Coe, Jennifer B. 1.00 Overhead 30801Systems Administrator Schnitz, Robert V. 1.00 Overhead 30801Research App. Programmer Baxter, Jeffrey T. 1.00 Overhead 30801Computer Systems Engineer Graham, Chadrick I. 1.00 Overhead 30801Tech Editor/Writer Buchanan-King, Mindy L. 1.00 Contracts, Overhead 30801Grants/Contracts Manager Jansen, Lisa S. 1.00 Contracts, Overhead 30801Senior Fiscal Technician Boles, Deborah L. 1.00 Overhead 30801Human Resources Coordinator Oliver, Kathy W. 1.00 Overhead 30801Web/Graphic Designer Kane-Wiseley, Jessamine 1.00 Overhead 30801Research App. Programmer Tanner, Stephen Lee 1.00 Overhead 30801Systems Administrator Gregory, Steven Michael 1.00 Overhead 30801Fiscal Technician Radford, Gail A. 1.00 Overhead 30801Proposal Team Leader Overton, Stephanie D. 1.00 Contracts, Overhead 30801Information Tech Spec. II Lambert, Phillip B. 1.00 Overhead 30801Senior Database Administrator Waldon, Sally A. 1.00 Overhead 30801Fiscal Technician Wright, Teresa M. 1.00 Overhead 30801Fiscal Technician Cartee, Toni Hammock 1.00 Overhead 30801Fiscal Technician Huff, Michelle Diane 1.00 Overhead 30801IT Help Desk Tech Barry, Johnathan L. 1.00 Overhead 30801Operations Coordinator Cameron, Barbara Moore 1.00 Overhead 30801Database Administrator Miller, Karen Ann 1.00 Overhead 30801Fiscal Technician Puckett, Dena L. 1.00 Overhead 30801Fiscal Technician Ross, Kellie Marie 1.00 Overhead 30801IT Help Desk Johnson, Ryan Morgan 1.00 Overhead 30801Operations/Safety Assistant Doss, Terry L. 1.00 Overhead 30801Web Assistant Gray, April L. 1.00 Overhead 30801 Research and Development Project Assistant Lewis, Tyler W. 1.00 Contracts 30802Project Assistant Fritz, Scott R. 1.00 Contracts 30802Research Support Phipps, Chelsea Sheppard 1.00 Contracts 30802Project Assistant Harris, Linda F. 1.00 Contracts 30802 Smart Road Operations 511/Smart Rd. Control Rm. Mgr. Butterfield, Lauren A. 1.00 Contracts 30803Electronic Tech I Brown, Gregory J. 1.00 Contracts 30803Smart Rd. Maintenance Super Cameron, Duane E. 1.00 Contracts 30803

Center for Infrastructure-Based Safety Systems Research Coordinator Lowdermilk, Charlotte M. 1.00 Contracts 30806Senior Research Specialist Ross, Philip W. 1.00 Contracts 30806

Center for Sustainable Transportation Infrastructure Adv. Mat. Char. Lab Manager Hobbs, William V. 1.00 Contracts 30807

Center for Injury Biomechanics Research Engineer Owen, John Nathaniel 1.00 Contracts 30814

155

Job Title Name FTE Funding Source Department

I-81 Corridor Coalition Senior Admin. Assistant Blanton, Carolyn Gayle 1.00 Contracts, Overhead 30818 Center for Truck and Bus Safety Field Research Technician Senior Tidwell, Scott A. 1.00 Contracts 30819Research Specialist Senior Radlbeck, Joshua Thomas 1.00 Contracts 30819

Center for Technology Development El. Tech. Suprv./Safety Officer Mellichamp, David Elliott 1.00 Contracts, Overhead 30808Instrumentation Engineer Payne, Stacy Lee 1.00 Contracts, Overhead 30808Senior Fabricator Smith, Kenneth Dale 1.00 Contracts, Overhead 30808Senior Fabricator Graham, Denson T. 1.00 Contracts, Overhead 30808El. Tech. Supervisor Aust, Scott D. 1.00 Contracts, Overhead 30808El. Tech. I Tucker, Stephen A. 1.00 Contracts, Overhead 30808El. Tech. Super Bier, Alexander Jacob 1.00 Contracts, Overhead 30808Design Engineer Moeller, Matthew Barnard 1.00 Contracts, Overhead 30808Design Engineer Sojka, Joseph Paul 1.00 Contracts, Overhead 30808Repair Tech Senior Karpa, Andrew Neal 1.00 Contracts, Overhead 30808Electrical Engineer Mowry, Ryan N. 1.00 Contracts, Overhead 30808Repair Tech Senior Tollefson, David A. 1.00 Contracts, Overhead 30808Repair Tech Senior Dalrymple, Timothy Douglas 1.00 Contracts, Overhead 30808Computer Engineer Lillestolen, Jon Per 1.00 Contracts, Overhead 30808Project Assistant Behal, Carri L. 1.00 Contracts, Overhead 30808Design Engineer Connell, Caroline Amie 1.00 Contracts, Overhead 30808Research Specialist Senior Nelson, Charles L. 1.00 Contracts, Overhead 30808Project Assistant Wright, Nathan W. 1.00 Contracts, Overhead 30808Design Engineer Jones, Mario Randell 1.00 Contracts, Overhead 30808Design Engineer Doerzaph, Travis William 1.00 Contracts, Overhead 30808 Center for Advanced Automotive Research Senior Research Specialist Link-Owens, Christine M. 1.00 Contracts 30820Research Specialist Senior Harwood, Leslie Christine 1.00 Contracts 30820Senior Research Specialist Evans, Branden C. 1.00 Contracts 30820Senior Research Specialist Britten, Nicholas Norris 1.00 Contracts 30820

Center for Data Reduction and Analysis Support Computer Operations Tech Tollin, Laura Rhyne 1.00 Contracts 30821Data Integrity Coordinator Swannell, Brunilda 1.00 Contracts 30821Data Reduction Specialist Moore, Megan Elaine 1.00 Contracts 30821Data Reduction Coordinator Deal, Victoria Lynn 1.00 Contracts 30821

Center for Vulnerable Road User Safety Senior Research Specialist Mullen, Jennifer Marie 1.00 Contracts 30822Research Specialist Senior McGowan, Kelly Ann 1.00 Contracts 30822Project Assistant Stulce, Kelly Elizabeth 1.00 Contracts 30822Project Assistant Gunter, Nelson Darrell 1.00 Contracts 30822Project Assistant Rardin, Jessica Renee 1.00 Contracts 30822Project Assistant Smith, Erica Elaine 1.00 Contracts 30822Senior Research Specialist Atkins, Whitney M. 1.00 Contracts 30822

Total Classified Staff 76.00

156

Number of FTE Staff and Administrative Positions at the Institute: Faculty

Job Title Name FTE Department

Administration Professor ES CY Dingus, Thomas A. 1.00 30801Senior Research Associate CY Daily, Brian J. 1.00 30801Director for Org. Advancement Craig, Ann K. 1.00 30801Lecturer Prof CY Gaylord, Clark K. 1.00 30801Sr Research Associate CY Iverson, Dean 1.00 30801Sr Research Associate CY Iverson, Sondra 1.00 30801Sr Research Associate CY McGraw, Thomas Douglas 1.00 30801Research Associate CY Bowden, Zachary E. 1.00 30801Associate Finance Director Gerni, Pascha Tiffany 1.00 30801Project Associate CY Laskey, Gabrielle A. 1.00 30801Sr. Director Operations/Finance Hall, Roderick A. 1.00 30801Post Award Manager Strickland, Catherine Anne 1.00 30801Project Associate CY Anderson, Joel Mark 1.00 30801Project Director CY Resendes, Raymond J. 1.00 30801Research Associate CY Maloney, Brian P. 1.00 30801

Research and Development Senior Research Scientist CY Hankey, Jonathan M. 1.00 30802Research Scientist CY McLaughlin, Shane B. 1.00 30802Project Associate CY Boone, Kathryn Mae 1.00 30802Research Associate CY Rainey, Cameron Scott 1.00 30802Research Associate CY McCall, Robert M. 1.00 30802Research Scientist CY Mollenhauer, Michael 1.00 30815

Smart Road Operations Senior Project Associate CY Nadler, Leonore C. 1.00 30803Senior Research Associate CY Alden, Andrew S. 1.00 30803

Smart Infrastructure and Sensing Technology

Senior Research Associate CY Druta, Cristian 1.00 30804

Center for Sustainable Mobility Research Scientist Ahn, Kyoungho 1.00 30805Research Scientist El-Shawarby, Ihab E. 1.00 30805Research Associate CY Du, Jianhe 1.00 30805

Center for Infrastructure-Based Safety Systems Research Scientist CY Gibbons, Ronald Bruce 1.00 30806Research Associate CY Meyer, Jason 1.00 30806Research Associate CY Terry, Travis Neal 1.00 30806Research Associate CY Williams, Brian Michael 1.00 30806Sr Research Associate CY Palmer, Matthew Earle 1.00 30806

Center for Sustainable Transportation Infrastructure Senior Research Associate CY de Leon Izeppi, Edgar D. 1.00 30807Senior Research Associate CY Katicha, Samer Wehbe 1.00 30807

157

Job Title Name FTE Department

Center for Technology Development Senior Research Associate Petersen, Andrew D. 1.00 30808Research Associate CY Bryson, Michael Jared 1.00 30808Research Associate CY Jermeland, Julie M. 1.00 30808Research Associate CY Bucher, Craig M. 1.00 30808Project Associate CY Huang, Fang 1.00 30808Research Associate CY Cospel, Carl J. 1.00 30808Senior Research Associate CY Stowe, Loren Jay 1.00 30808Senior Research Associate CY Bears, Stephen G. 1.00 30808Project Associate CY Russell, Tammy I. 1.00 30808Research Associate CY Talbot, Frank Ryan 1.00 30808Senior Research Associate CY Kaliniouk, Vasily 1.00 30808Research Associate CY Ellery, Michael Richard 1.00 30808Research Associate CY Quesenberry, Joshua Daniel 1.00 30808Research Associate CY Lefevers, David G. 1.00 30808Research Associate CY Freeman, William John 1.00 30808Research Associate CY Talledo Vilela, Jean Paul 1.00 30808Research Associate CY Stone, Scott R. 1.00 30808Research Associate CY Leeson, Brian P. 1.00 30808

Center for Truck and Bus Safety Senior Research Scientist CY Hanowski, Richard J. 1.00 30812Senior Research Associate CY Medina-Flintsch, Alejandra L. 0.63 30812Project Associate CY Baker, Stephanie Ann 0.50 30812Senior Research Associate CY Fitch, Gregory Malcolm John 1.00 30812Senior Research Associate CY Bowman, Darrell S. 1.00 30812Senior Research Associate CY Hickman, Jeffrey Scott 1.00 30812Research Associate CY Hammond, Rebecca Lynn 1.00 30812Research Associate CY Camden, Matthew Clayton 1.00 30812Research Associate CY Mabry, Jessica Erin 1.00 30812Project Associate CY Furst, Susan Amanda 1.00 30812Research Associate CY Marburg, Trijntje Laurel 1.00 30812Project Associate CY Joslin, Spencer L. 1.00 30812Research Associate CY Dunn, Naomi Jane 1.00 30812Project Associate CY Moeller, Devon D. 1.00 30812Senior Research Associate CY Krum, Andrew J. 1.00 30812 Center for Injury Biomechanics

Research Assoc. Prof. CY Untaroiu, Costin D. 1.00 30814 Automated Vehicle Systems Research Scientist Blanco, Myra 1.00 30819Senior Research Associate CY Morgan, Justin F. 1.00 30819Project Associate CY Trimble, Tammy E. 1.00 30819Project Associate CY Marinik, Andrew Richard 1.00 30819Research Associate CY Grove, Kevin Lewis 1.00 30819Project Associate CY Fitchett, Vikki Lynn 1.00 30819

158

Number of Part-time Professional Faculty at the Institute

Job Title Name FTE Department

Center for Advanced Automotive Research Research Scientist CY Llaneras, Robert E. 1.00 30820Senior Research Associate CY Neurauter, Michael Lucas 1.00 30820Research Associate CY Wotring, Brian 1.00 30820Research Associate CY Holmes, LaTanya Martin 1.00 30820Research Associate CY Song, Miao 1.00 30820Research Associate CY White, Elizabeth Erin 1.00 30820Research Associate CY Viray, Reginald Luna 1.00 30820Research Associate CY Smith, Ryan Christopher 1.00 30820Senior Research Associate CY Hedlund, Mats O. 1.00 30820 Center for Data Reduction and Analysis Support Project Director CY Lee, Suzanne E. 1.00 30821Research Scientist CY Perez, Miguel A. 1.00 30821Research Associate CY Sudweeks, Jeremy Don 1.00 30821Project Associate CY McClafferty, Julie A. 1.00 30821Project Associate CY Shelton, Kimberly C. 1.00 30821Project Associate CY Mishra, Devi P. 1.00 30821Project Associate CY Li, Lei 1.00 30821Project Associate CY Cook, Julie 0.80 30821Project Associate CY Kady, Joel M. 1.00 30821 Center for Vulnerable Road User Safety Research Scientist CY Antin, Jonathan Frank 1.00 30802Project Associate CY Eichelberger, Elizabeth G. 1.00 30802 Research Scientist CY Klauer, Sheila G. 1.00 30822Senior Research Associate CY Owens, Justin M. 1.00 30822Project Associate CY Baynes, Peter Allen 1.00 30822

Total Faculty 95.93

Total Faculty and Classified Staff 171.93

Position Name FTE Funding SourceProposal Manager Hodge, Mary 0.73 OverheadReseach Associate Sadek, Shereef Aly 0.50 ContractsWebmaster Sebek, Robert 0.00 OverheadResearch Scientist Angell, Linda 0.75 ContractsStatistician Guo, Feng 0.50 ContractsResearch Scholar Qiiao, Yaning 0.10 ContractsProject Associate Wade, Melissa 0.10 Overhead

Total Professional Part-time Faculty 7

159

Number of Part-time Wage Staff at the Institute

Name Position FTE Funding Source DepartmentSmith, Carol Parker Documentation Specialist 0.75 Contracts 30801Smith, James Bruce Web Graphics Assistant 0.75 Contracts 30801Thistle, Karen Jo Hutcheson IT Help Desk Technician 0.75 Contracts 30801Patton, Michael L . Electronics Technician I 0.75 Contracts 30808Smith, William Todd Electronics Technician I 0.75 Contracts 30808Amos, Kimberly Michelle Smart Road Dispatcher 0.75 Contracts 30803Bennett, Daniel Seth Smart Road Dispatcher 0.75 Contracts 30803Carrico, Abbi K. Smart Road Dispatcher 0.75 Contracts 30803Croy, Nathan Andrew Smart Road Dispatcher 0.75 Contracts 30803McCloud, Christopher R. Smart Road Dispatcher 0.75 Contracts 30803Merrill, Pauline Elizabeth Marie Smart Road Dispatcher 0.75 Contracts 30803Moore, Alexander Scott Smart Road Dispatcher 0.75 Contracts 30803Pappas, Jay Kai Bowden Smart Road Dispatcher 0.75 Contracts 30803Poor, Jennifer R Smart Road Dispatcher 0.75 Contracts 30803Tavernaris, Sarah Nicole Smart Road Dispatcher 0.75 Contracts 30803Witt, Cristi M. Smart Road Dispatcher 0.75 Contracts 30803Williams, Vicki Higginbotham Human Factors Engineer 0.75 Contracts 30802McGowin, Gregory S. Lab & Research Spec. I 0.75 Contracts 30802Brown, Justin D Lab & Research Spec. II 0.75 Contracts 30812Curtin, Michael S . Lab & Research Spec. II 0.75 Contracts 30812Jackson, Byron M. Lab & Research Spec. II 0.75 Contracts 30812Wilson, Clourth L. Lab & Research Spec. II 0.75 Contracts 30812Boucher, Benjamin Joseph Data Reductionist 0.75 Contracts 30821Boucher, Carrie Elaine Data Reductionist 0.75 Contracts 30821Canonico, Danielle Maria Data Reductionist 0.75 Contracts 30821Dougherty, Danielle Ashley Data Reductionist 0.75 Contracts 30821Druta, Nicoleta Florentina Data Reductionist 0.75 Contracts 30821Howard, Lora A. Data Reductionist 0.75 Contracts 30821Johnson, Caitlin M. Data Reductionist 0.75 Contracts 30821Johnson, William B. Data Reductionist 0.75 Contracts 30821Lineberry, Connie Hayes Data Reductionist 0.75 Contracts 30821Memisyazici, Erem Jeremiah Data Reductionist 0.75 Contracts 30821Shabazz-Manns, Dominique Dante Research Specialist 0.75 Contracts 30806Sunshine, Evan Donn Data Reductionist 0.75 Contracts 30821Trump, Diana Josephine Data Reductionist 0.75 Contracts 30821Walker, Timothy S. Data Reductionist 0.75 Contracts 30821Hill, Julia Ann Technical Editor 0.30 Contracts 30820Ruggiero, Paul G. Technical Editor 0.30 Contracts 30801Trulove, Susan E. Pub. Rel. & Mktg. Spec. IV 0.50 Contracts 30801Landry, Elizabeth Ellyson Smart Road Dispatcher 0.75 Contracts 30803Gorman, Thomas Ian Research Assistant 0.75 Contracts 30814

Total Professional Wage 41

160

Visiting Scholars

Name Country Host DatesMuquin Du China Hesham Rakha 09/15/11-09/15/12Rui He China Linbing Wang 10/15/11-10/14/12Hu Liqun China Linbing Wang 06/01/12-09/15/12Wei Xu China Linbing Wang 08/01/11-08/01/12Zhang Lanfang China Feng Guo 08/15/11-08/14/12Yang Shunxin China Feng Guo 08/25/11-08/25/12Liping Cao China Linbing Wang 01/13/12-01/29/13YiXiang Yue China Hesham Rakha 03/26/12-03/25/13He Zhang China Hesham Rakha 09/30/12-09/30/13Roeland Ottens Netherlands Hesham Rakha 04/01/13-09/30/13Anning Ni China Hesham Rakha 03/15/13-02/14/14Haipeng Shao China Hesham Rakha 08/15/13-08/14/14Jinxuan Lai China Hesham Rakha 10/15/12-10/14/13He Zhana China Hesham Rakha 09/30/12-09/30/13

VTTI Volunteer Efforts

Organization Hours VolunteeredNatural Resources and Environmental Control 12Southwest Virginia Wildlife Center 40Public Schools 134Lyric Theatre 160Animal Rescue/4-H 1,000Clean up Claytor Lake Trails 60Mediation Services 30Fire Department 300Southwest Virginia Mountain Rescue Group 745Animal Control/Shelters/Humane Society 664Junior Academy of Science 23Food Banks 35Habitat for Humanity 200Blooming and Brooming 20League Coaching 140Churches 225Virginia Bluebird Society 20Civic Clubs 30Farmers Markets 5

Total Hours Volunteered 3,843Virginia Blood Donation 25 faculty and staff members

161

Name VTTI Department College Degree Sought

Support or Degree Awarded

during FY13

Abdelmegeed, Mohamed A.E. 100 Mechanical Engineering COE B.S. CandidateAllen, William Andrew 100 Communications CLAHS B.A. SoughtArroyo, Eric Calderon 100 Psychology COS B.S. CandidateBaird, Michael 100 Civil and Environmental Engineering COE M.S. Candidate, May 2013Bartku, Elaine Cleare 100 Civil and Environmental Engineering COE M.S. SoughtBell, Stuart Lee 100 Natural Resources Conservation CNRE B.A. SoughtBhagavathula, Rajaram 100 Civil and Environmental Engineering COE Ph.D. Sought, Dec. 2013Brassard, Arielle Marie 100 Psychology COS B.S. CandidateBritten, Nicholas Norris 100 Psychology COS B.S. CandidateBryce, James Matthew 100 Civil and Environmental Engineering COE M.S. SoughtBuehler, Steven Lloyd 100 Psychology/Statistics COS B.S. SoughtCandia-Gallegos, Mario Alejandro 100 Civil and Environmental Engineering COE Ph.D. SoughtCarambot, Alexis Nicole 100 Civil and Environmental Engineering COE B.S. CandidateChen, Hao 100 Civil and Environmental Engineering COE Ph.D. Candidate, Dec. 2013Clinton, Cailin 100 Psychology COS B.S. CandidateCole, Brandon Michael 100 Music CLAHS B.S. SoughtCox, Christopher Andrew 100 Computer Engineering COE B.S. AwardedCrowe, William Neil 100 Engineering Science and Mechanics COE Ph.D. CandidateDemaio, Michael Robert 100 General Engineering COE Grad. Certificate ProgramDeweerd, Nicholas John 100 Chemistry COS B.S. PendingDhillon, Gurjot Singh 100 Industrial and Systems Engineering COE M.S. Awarded; Ph.D., Dec. 2016Diggs, Seth Parker 100 Agriculture CALS B.S. SoughtEdgell, Daniel Wilfred 100 Geography CAUS B.A. SoughtElhenawy, Mohammed Mamdouh 100 Civil and Environmental Engineering COE M.S. SoughtFadhloun, Karim 100 Civil and Environmental Engineering COE M.S. SoughtFang, Youjia 100 Statistics COS Ph.D. Sought Farook, Mohamad Raseem 100 Industrial and Systems Engineering COE M.S. Sought, Dec. 2014Ferreira, Adam John 100 Marketing Management Pamplin COB B.S. CandidateFerri, Nicholas Michael 100 Mechanical Engineering COE B.S. CandidateFlintsch, Maria Lourdes 100 Mathematics COS B.S. CandidateFrederick, Adam Johann 100 Lighting/Industrial Design CAUS B.S., Dec. 2014Gaylord, Carter Judson 100 Theatre Arts CLAHS B.A. SoughtGoodrick, David Matson 100 Wood Science and Forest Products CNRE B.S. PendingHarris, William Jacob 100 Animal and Poultry Sciences CALS B.S. SoughtHarrison, Jon Albert 100 Communications CLAHS B.A. SoughtHe, Huan 100 Civil and Environmental Engineering COE M.S. Candidate

Students Active at the Institute

162

Name VTTI Department College Degree Sought

Support or Degree Awarded

during FY13 Hou, Yue 100 Computer Engineering COE B.S. SoughtJahangiri, Arash 100 Civil and Environmental Engineering COE Ph.D. SoughtKamalanathsharma, Raj Kishore 100 Civil and Environmental Engineering COE Ph.D. CandidateKaralus, Daniel Lee 100 Civil and Environmental Engineering COE B.S. SoughtKaralus, Matthew Scott 100 Civil and Environmental Engineering COE B.S. SoughtKing, Aric Mason 100 Industrial and Systems Engineering COE B.S. SoughtKoertge, Ellen Lynn 100 Biological Sciences COS B.S. SoughtKozusko, Matthew Thomas 100 Accounting and Information Systems Pamplin COB B.A. SoughtKrothapalli, Ujwal K. 100 Computer Engineering COE B.S. SoughtLeybold, Allison Brooke 100 Communications CLAHS B.A. SoughtLi, Ying 100 Political Science CLAHS B.S. SoughtLopez-Flores, Christian 100 Electrical Engineering COE B.S. CandidateLowery, Megan Rhea 100 Psychology COS B.S. SoughtManzanares, Carlos 100 Electrical Engineering COE B.S. CandidateMarchese, Matthew Robert 100 Industrial and Systems Engineering COE M.S. CandidateMarston, Michael Lee 100 General Engineering COE Grad. Certificate ProgramMcLaughlin, Laura Shay 100 Sociology CLAHS M.S. Sought, Spring 2014Moorefield, Sebastian 100 Mechanical Engineering COE B.S. CandidateNajafi, Shahriar 100 Civil Engineering COE Ph.D. Sought, Dec. 2015Nibert, Morgan Alex 100 Mathematics COS B.S. CandidateNoble, Alexandria Marie 100 Civil and Environmental Engineering COE M.S. SoughtRidenour, Daniel Keith 100 Electrical Engineering COE B.S. CandidateSarkar, Abhijit 100 Civil and Environmental Engineering COE M.S. CandidateSchrader, Taryn Connor 100 Psychology COS B.S. CandidateSmucker, Gregory Rolland 100 Psychology COS B.S. CandidateTang, Lijie 100 Civil Engineering COE Ph.D. CandidateTatarka, Evan Mitchell 100 Computer Science COE B.S. CandidateThompson, Adam Craig 100 Electrical Engineering COE B.S. CandidateThompson, Ross Anthony 100 Mathematics COS B.S. CandidateVasquez, Holland Marie 100 Psychology COS B.S. CandidateView, John Thomas 100 Electrical Engineering COE B.S. AwardedWang, Zhao 100 Computer Science and Application COS B.S. CandidateWilliams, Rebecca Jean 100 History CLAHS B.S. SoughtXiong, Haocheng 100 Civil and Environmental Engineering COE Ph.D. SoughtXue, Wenjing 100 Civil and Environmental Engineering COE Ph.D. SoughtYasko, Natalie Anne 100 Communications CLAHS B.A. SoughtZhang, Hong Bo 100 Industrial and Systems Engineering COE B.S. CandidateZohdy, Ismail Hisham 100 Civil Engineering COE M.S. Candidate

Total Students Active at VTTI: 74

163

164

Ahn K., Rakha H., and Park S. (In press). “ECO-Drive Application: Algorithmic Development and Preliminary Testing,” Transportation Research Record: Journal of the Transportation Research Board.

Amer, A., Rakha H., and El-Shawarby I. (2012). “A Novel Stochastic Procedure for Designing Yellow Intervals at Signalized Intersections,” Journal of Transportation Engineering, Vol. 138(6), June 2012, ISSN 0733-947X, pp. 751-759.

Baker, S., Schaudt, W.A., Freed, J.C., and Toole, L. (2012). A survey of light-vehicle driver education programs on sharing the road with heavy vehicles. Journal of Safety Research, 43(3), 187-194. http://dx.doi.org/10.1016/j.jsr.2012.07.001

Bish D., Chamberlayne E., and Rakha H. (2012), “Optimizing Network Flows with Congestion-based Flow Reductions,” Networks and Spatial Economics, 1566-113X, DOI: 10.1007/s11067-012-9181-3, pp. 1-24.

Blanco, M., Hickman, J.S. Olson, R.L., Bocanegra, J.L., Hanowski, R.J., Nakata, A., Greening, M., Madison, P., Holbrook, G.T., and Bowman, D. (In press). Investigating Critical Incidents, Driver Restart Period, Sleep Quantity, and Crash Countermeasures in Commercial Operations Using Naturalistic Data Collection: Final Report. Washington, DC: Federal Motor Carrier Safety Administration.

Bowman, D.S., Schaudt, W.A., & Hanowski, R.J. (2012). Advances in Drowsy Driver Assistance Systems through Data Fusion. In A. Eskandarian (Ed.), Handbook of Intelligent Vehicles, pp. 896-912. Springer-Verlag London Ltd. http://www.springer.com/engineering/mechanical+engineering/book/978-0-85729-084-7

Bowman, D., Baker, S., Stone, S., Doerzaph, Z., & Hanowski, R. (2013, May). Development of performance requirements for commercial vehicle safety applications. (Report No. DOT HS 811 772). Washington, DC: National Highway Traffic Safety Administration. http://www.nhtsa.gov/DOT/NHTSA/NVS/Crash%20Avoidance/Technical%20Publications/2013/811772.pdf

Bryce, J., Flintsch, G.W., Katicha, S.W., Diefenderfer, B., “Developing a network-level structural capacity index for asphalt pavements,” ASCE Journal of Transportation Engineering, 2013, Vol. 139(2), pp. 123-129.

Bryce, J., Flintsch, G.W., Katicha, S.W., Diefenderfer, B.K., “Enhancing Network-level Decision Making Through the Use of a Structural Capacity Index,” Journal of the Transportation Research Board, 2013 (paper 13-2808, accepted for publication).

Chamberlayne E., Rakha H., and Bish D. (2012), “Modeling the Capacity Drop Phenomenon at Freeway Bottlenecks using the INTEGRATION Software,” Transportation Letters: The International Journal of Transportation Research, Vol. 4, Issue 4, pp. 227-242, ISSN: 1942-7867.

Chen R and Gabler HC (May 2013). “Incidence and Risk of Direct Steering Wheel Impact in Vehicles Equipped with Advanced Air Bags,” Proceedings of the Twenty-Third International Conference on Enhanced Safety of Vehicles, Paper Number 13-0463, Seoul, Korea.

Daniello A, Cristino D, and Gabler HC (Accepted). “Relationship Between Rider Trajectory and Injury Outcome in Motorcycle-Barrier Crashes,” Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies.

Daniello AL, Kusano KD and Gabler HC (April 2013). “Validation of a Driver Recovery Model Using Real-World Road Departure Cases,” SAE Paper 2013-01-0723.

Daniello A, Cristino D, and Gabler HC (January 2013). “Relationship Between Rider Trajectory and Injury Outcome in Motorcycle-Barrier Crashes”, Proceedings of the 92nd Annual Meeting of the Transportation Research Board, Paper No. 13-2184, Washington, DC.

Daniello A and Gabler HC (2012). “The Characteristics of Injuries in Motorcycle to Barrier Collisions in Maryland,” Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies, pp. 92-98, doi 10.3141/2281-12.

Publications

165

Dehghanisanij, M., Flintsch, G.W., McNeil, S., “Vulnerability Analysis of Degrading Roadway Networks,” paper 13-4553, 92nd Annual Meeting of the Transportation Research Board, Jan 13-17, 2013, Washington, DC.

Dehghanisanij, M., Giustozzi, F., Flintsch, G.W., Crispino, M., “Cross-asset Resource Allocation Framework for Achieving Performance Sustainability,” Journal of the Transportation Research Board, 2013 (paper 13-4056, accepted for publication).

Dehghanisanij, M., Flintsch, G.W., Verhoeven, J.G., “A Framework for Aggregating Corridor-level Performance Measures,” Journal of the Transportation Research Board, 2012 vol. 2271, pp. 37-44.

de León Izeppi, E., Flintsch, G.W., and McGhee, K.K. “Effect of Water, Speed, and Grade on Continuous Friction Measurement Equipment (CFMEs),” ASTM STP 1555 Pavement Performance: Current Trends, Advances, and Challenges (Choubane, B., Editor).

De León, E., Flintsch, G.W., McGhee, K.K., “Limits of Agreement Method for Comparing Pavement Friction Measurements,” Journal of the Transportation Research Board, 2012, vol. 2306, pp. 188-195.

Donoughe K, Whitestone J, and Gabler HC (2012). “Analysis of Firetruck Crashes and Associated Firefighter Injuries in the United States,” Annals of Advances in Automotive Medicine, v. 56, pp. 69-76.

Du, M., Cheng, L., and Rakha H. (2012), “Sensitivity Analysis of Combined Distribution-Assignment Model with Applications,” Transportation Research Record: Journal of the Transportation Research Board, No. 2284, pp. 10-20.

Du J., Rakha H., and Sangster J. (In press). “Can Electricity Powered Vehicles Serve Traveler Needs?” International Journal of Transportation Science and Technology.

Dunn, N. & Williamson, A. (2012). Driving monotonous routes in a train simulator: The effect of task demand on driving performance and subjective experience. Ergonomics, Vol. 55, No. 9, pp. 997-1008.

El-Shawarby I., Abdel-Salam A., and Rakha H. (In press). “Evaluation of Driver Perception-Reaction Times for Rainy/Wet Roadway Conditions at the Onset of a Yellow Indication at Signalized Intersections,” Transportation Research Record: Journal of the Transportation Research Board.

Engstrom, J., Monk, C.A., Hanowski, R.J., Horrey, W.J., Lee, J.D., McGehee, D.V., Regan, M., Stevens, A., Traube, E., Tuukkanen, M., Victor, T., and Yang, D. (In press). A conceptual framework and taxonomy for understanding and categorizing driver inattention. EU-US ITS Cooperation, Final Report.

Faris W., Rakha H., Kafafy R., Idres M., and Elmoselhy S. (2012), “Analytical Modelling of Supercharging Diesel Radial Centrifugal Compressors with Vanes-Based Diffuser,” International Journal of Advances in Engineering and Technology (IJAET), Vol. 5, Issue 1, pp. 84-106, ISSN: 2231-1963.

Faris W., Rakha H.A., Kafafy R., Idres M., and Elmoselhy S. (In press). “Diesel Powertrain Intake Manifold Analytical Model,” International Journal of Vehicle Systems Modelling and Testing.

Faris W., Rakha H.A., Kafafy R., Idres M., and Elmoselhy S. (In press). “Analytical Modelling of Diesel Powertrain Fuel Consumption Rate, Efficiency, Power, Torque, and Mean Effective Pressure,” International Review on Modelling and Simulations (IREMOS).

Faris W., Rakha H.A., Kafafy R., Idres M., and Elmoselhy S. (In press). “Supercharged Diesel Powertrain Intake Manifold Analytical Model,” International Review on Modelling and Simulations (IREMOS).

Fitch, G. M. & Hankey, J. M. (2012). Investigating Improper Lane Changes: Driver Performance Contributing to Lane Change Near-Crashes. Proceedings of the 56th Annual Meeting of the Human Factors and Ergonomics Society.

166

Fitch, G. M. & Hanowski, R. J. (2012). Using Naturalistic Driving Research to Design, Test, and Evaluate Driver Assistance Systems. In A. Eskandarian (Ed.), Handbook of Intelligent Vehicles. London: Springer. pp. 559-580.

Fitch, G. M. & Hanowski, R. J. (2012). Exploring drivers’ compensatory behavior when conversing on a mobile device. Proceedings of the 4th International Conference on Applied Human Factors and Ergonomics.

Fitch, G.M., Monk, C., Sherony, R., LeBlanc, D., & Ward, N. (2012). Evaluation of Driver Assistance Systems. Proceedings of the ITS America 22nd Annual Meeting and Exposition.

Fitch, G. M., Rice, J. C., Stanley, K., Olson, R., Harwood, L., Marburg, L., Morgan, J. F., Bowman, D., & Llaneras, E. (In press). Connected Vehicles Interface Metrics - Multiple Warning Events: Virginia Tech Transportation Institute, Blacksburg, Virginia.

Fitch, G.M., Soccolich, S.A., Guo, F., McClafferty, J., Fang, Y., Olson, R.L, Perez, M.A., Hanowski, R.J., Hankey, J.M., & Dingus, T.A. (2013). The impact of hand-held and hands-free cell phone use on driving performance and safety-critical event risk. Report No. DOT HS 811 757. Washington, D.C.: National Highway Traffic Safety Administration. http://www.nhtsa.gov/DOT/NHTSA/NVS/Crash%20Avoidance/Technical%20Publications/2013/811757.pdf

Flintsch, G.W., Ferne, B., Diefenderfer, B., Katicha, S.W., Bryce, J., Nell, S., “Evaluation of Traffic Speed Continuous Deflection Devices,” Journal of the Transportation Research Board, 2012, vol. 2304, pp. 37-46.

Flintsch, G.W., Valeri, S., Katicha, S.W., de Leon, E.D., Medina-Flintsch, A., “Pilot Demonstration of the Use Probe Vehicle Dynamic Signatures to Measure Road Smoothness,” Journal of the Transportation Research Board, 2012, vol. 2304, pp. 158-165.

Flintsch G.W., Williams, B., Gibbons, R., Viner, H., “Assessment of the Impact of Splash and Spray on Road Users - Controlled Experiment Results,” Journal of the Transportation Research Board, 2012, Vol 2306, pp. 151-160.

Fuentes, L., Flintsch, G.W., and de Leon, E., “Implementation of the International Friction Index using Devices with Ribbed Tires” (Implementación del Índice de Fricción Internacional Utilizando Dispositivos con Llantas Labradas), Proceedings of the Jornadas Internacionales del Asfalto, CORASFALTOS, ISBN: 978-958-99958-1-5, Oct 8-12, Bogotá, Colombia.

Fuentes, L.G., de León, E., Flintsch, G.W., Martinez, G., “Determination of Pavement Macrotexture Limit For Use in The International Friction Index (IFI) Mode,” Journal of the Transportation Research Board, 2012, vol. 2306, pp. 138-143.

Fuentes, L., Goenaga, B., and Flintsch, G.W., (2012). “Probabilistic Pavement Deterioration Models for the Integral Maintenance Corridors” (Modelos Probabilísticos de Deterioro del Pavimento para los Corredores de Mantenimiento Integral), Proceedings of the Jornadas Internacionales del Asfalto, CORASFALTOS, ISBN: 978-958-99958-1-5, Oct 8-12, Bogotá, Colombia.

Fuentes, L.G., Macea, L.F., Vergara, A., Flintsch, G.W., Alvarez, A.E., Reyes, O.J., “Evaluation of Truck Factors for Pavement Design in Developing Countries Original Research Article,” Procedia - Social and Behavioral Sciences, SIIV-5th International Congress - Sustainability of Road Infrastructures 2012, Volume 53, 2012, pp. 1140-1149.

Gabler HC (April 2013). “Building a Remote Collaborative Learning Course in Computational Modeling of Car Crash Injury Prevention,” Proceedings of the Eighth International Conference on Computer Science & Education, Colombo, Sri Lanka.

Gaoqiang, Z., Flintsch, G.W., “Comparative Analysis on Promising Algorithms for Pavement Homogeneous Segmentation,” paper 13-4650, 92nd Annual Meeting of the Transportation Research Board, Jan 13-17, 2013, Washington, D.C.

Gibbons R., Medina-Flintsch A., Williams B., Du J., and Rakha H. (In press). “Sag Vertical Curve Design Criteria for Headlight Sight Distance,” Transportation Research Record: Journal of the Transportation Research Board.

167

Giustozzi, F., Flintsch, G.W., and Crispino, M., “Impact Analysis of Low Carbon Road Foundation,” International Journal of Sustainable Transportation,” UIST-2012-0022.R2, 2012 (electronic version), 2012, Taylor & Francis.

*Giustozzi, F., Crispino, M., and Flintsch, G.W., “Multi-Approach Life Cycle Analysis Optimization for Integrating Environmental Impacts into Pavement Management Systems, submitted for the 4th European Pavement and Asset Management Conference (EPAM 2012), Sep 5–7 2012, Malmö, Sweden.

*Giustozzi, F., Crispino, M., and Flintsch, G.W., “Recycling for Achieving Environmental Sustainability in Airport Pavements,” 5th International Congress of the Società Italiana Infrastrutture Viarie (SIIV 2012) – Sustainability of Road Infrastructures, Oct 29-31, 2012, Rome, Italy.

*Giustozzi, F., Crispino, M., and Flintsch, G.W., “Preventive Maintenance on Road Pavements: Performance and Environmental Assessment of Strategies,” 5th International Congress of the Società Italiana Infrastrutture Viarie (SIIV 2012) – Sustainability of Road Infrastructures, Oct 29-31, 2012, Rome, Italy.

*Giustozzi, F., Crispino, M., and Flintsch, G.W., “Effectiveness of Preventive Maintenance Treatments on Road Pavements,” 7th International Conference on Maintenance and Rehabilitation of pavements and Technological Control (MAIRPAV7), Aug 28-30, 2012, Auckland, New Zealand.

Giustozzi, F., Crispino, M., and Flintsch, G.W., “Sustainability Analysis Based on Emissions Saving for Competitive Maintenance and Rehabilitation Practices,” Procedia - Social and Behavioral Sciences, Transport Research Arena 2012, Volume 48, 2012, pp. 2827–2838.

Guo F., Li Q., and Rakha H. (2012), “Multi-state Travel Time Reliability Models with Skewed Component Distributions,” Transportation Research Record: Journal of the Transportation Research Board, No. 2315, pp. 47-53.

Hampton CE and Gabler HC (2013). “Development of a Missing Post Guideline for Longitudinal Barrier Crash Safety”, Journal of Transportation Engineering, v. 139, no.6, pp. 549-555.

Hanowski, R.J., Bergoffen, G., Hickman, J.S., Guo, F., Murray, D., Bishop, R., Johnson, S., & Camden, M. (2012). Research on the Safety Impacts of Speed Limiter Device Installations on Commercial Motor Vehicles. Washington, DC: Federal Motor Carrier Safety Administration.

Hanowski, R.J., Olson, R.L., Hickman, J.S., & Bocanegra, J. (2013). Driver distraction in commercial vehicle operations. In Driver Distraction and Inattention: Advances in Research and Countermeasures by M. Reagan, T. Victor, and J.D. Lee (Eds.). Ashgate Publishing Groups: United Kingdom.

Hickman, J.S., & Hanowski, R.J. (2012). An assessment of commercial motor vehicle driver distraction using naturalistic driving data. Traffic Injury Prevention, 13(6), 566-574.

Hickman, J.S., Guo, F., Hanowski, R.J., Bishop, R., Bergoffen, G., & D. Murray. (2012). Safety benefits of speed limiters in commercial motor vehicles using carrier-collected crash data. Journal of Intelligent Transportation Systems, 16(4), 177-183.

Hosten, A.M., Bryce, J., Priddy, L.P., Flintsch, G.W., de León Izeppi, E.D., Nelson, W.O., “Improving Network Condition with Preventive Maintenance: A Pavement Management System Case Study in Christiansburg, Virginia,” paper 13-3150, 92nd Annual Meeting of the Transportation Research Board, Jan 13-17, 2013, Washington, DC.

Johnson NS and Gabler HC (Accepted). “Injury Risk due to Side Impact of Non-Tracking Vehicles into Guardrail,” Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies.

168

Johnson NS, Gabler HC, and Sharma D (May 2013). “Preliminary Evaluation of NASS-CDS Side Crash Delta-V Estimates using Event Data Recorders,” Proceedings of the Twenty-Third International Conference on Enhanced Safety of Vehicles, Paper Number 13-0240, Seoul, Korea.

Johnson NS and Gabler HC (January 2013). “Injury Risk due to Side Impact of Non-Tracking Vehicles into Guardrail,” Proceedings of the 92nd Annual Meeting of the Transportation Research Board, Paper No. 13-4694, Washington, DC.

Katicha, S.W., Flintsch, G.W., Ferne, B., and Bryce, J., “Limits of agreement (LOA) method for comparing TSD and FWD measurements,” International Journal of Pavement Engineering, 2013 (in print, manuscript ID: 782403), Taylor & Francis.

Katicha, S.W., Flintsch, G.W., Loulizi, A., “Identifying non-linear HMA behavior from uniaxial creep and dynamic modulus test results,” International Journal of Microstructure and Materials Properties, 2012, Iderscience, 2012 Vol. 7, No. 5, pp. 380 – 389.

Katicha, S.W., Flintsch, G.W., and Ferne, B. “Optimal averaging and localized weak spots identification for TSD deflection slope measurements,” Journal of the Transportation Research Board, 2013 (paper No. 13-4114, accepted for publication).

Kusano KD, Sherony R, and Gabler HC (In press, Available Online, June 2013). “Advanced Event Data Recorders to Reconstruct Vehicle Trajectories for use in Safety Impact Methodologies (SIM),” Traffic Injury Prevention, DOI: 10.1080/15389588.2013.796374.

Kusano KD and Gabler HC (Accepted). “Characterization of Opposite-Direction Lane Departure Crashes in the United States,” Transportation Research Record: Journal of the Transportation Research Board, Transportation Research Board of the National Academies.

Kusano KD and Gabler HC (May 2013). “Pre-crash Scenarios for Determining Target Populations of Active Safety Systems,” Proceedings of the Twenty-Third International Conference on Enhanced Safety of Vehicles, Paper Number 13-0078, Seoul, Korea.

Kusano KD and Gabler HC (April 2013). “Characterization of Lane Departure Crashes using Event Data Recorders Extracted from Real-world Collisions,” SAE Paper 2013-01-0730.

Kusano KD and Gabler HC (January 2013). “Characterization of Opposite-Direction Lane Departure Crashes in the United States,” Proceedings of the 92nd Annual Meeting of the Transportation Research Board, Paper No. 13-3805, Washington, DC.

Kusano KD, Kusano SM, and Gabler HC (2013). “Automated Crash Notification Algorithms: Evaluation of In-Vehicle Principal Direction of Force (PDOF) Estimations,” Transportation Research Part C, DOI 10.1016/j.trc.2012.09.005 Volume 32, July 2013, Pages 116–128.

Kusano, K. and Gabler, H. (2013). “Characterization of Lane Departure Crashes Using Event Data Recorders Extracted from Real-World Collisions,” SAE International Journal Passenger. Cars - Mechanical Systems 6(2):2013, doi: 10.4271/2013-01-0730.

Kusano KD and Gabler HC (September 2012). “Model of Collision Avoidance with Lane Departure Warning in Real-world Departure Collisions with Fixed Roadside Objects,” Proceedings of the 2012 IEEE Intelligent Transportation Systems Conference, Anchorage, Alaska.

Kusano KD and Gabler HC (2012). “Safety Benefits of Forward Collision Warning, Brake Assist, and Autonomous Braking Systems in Rear-end Collisions,” IEEE Transactions – Intelligent Transportation Systems, 13(4), pp. 1546 – 1555, doi 10.1109/TITS.2012.2191542.

Lam, J.C., James M. Bryce, J.M., Lucy P. Priddy, L.P., Flintsch G.W., “Development of Infrastructure Management Strategies for Small and Mid-Size Airfields,” ASCE T&DI 2013 Airfield and Highway Pavements Conference, Jun 9-12, 2013, Los Angeles, CA.

169

Li H., Rakha H., and El-Shawarby I. (2012), “Designing Yellow Intervals for Rainy and Wet Roadway Conditions,” International Journal of Transportation Science and Technology, Vol. 1, no. 2, ISSN 1475 472 X, pp. 171-189.

Lijie, T., and Flintsch, G.W., “Use of Precipitation Records in Drainage Design of Porous Asphalt Surface Layer,” presentation 13-2720, 92nd Annual Meeting of the Transportation Research Board, Jan 13-17, 2013, Washington, DC.

Litsas S. and Rakha H. (In press). “Evaluation of Continuous Green T-Intersections on Isolated Under-Saturated Four-Lane Highways,” Transportation Research Record: Journal of the Transportation Research Board.

Mabry, J. Erin, Baker, S., Hickman, J., Hanowski, R. Case Study on the Impact of Treating Sleep Apnea in Commercial Motor Vehicle Drivers. http://scholar.lib.vt.edu/VTTI/. September, 28, 2012. National Surface Transportation Safety Center for Excellence (NSTSCE) Report No. 12-UI-017, http://scholar.lib.vt.edu/VTTI/reports/TreatingSleepApneaFinalReport08022012.pdf. Blacksburg, VA: NSTSCE.

Mabry, E., Baker, S., Hickman, J., & Hanowski, R. (August 2012). Case study on the impact of treating sleep apnea in commercial motor vehicle (CMV) drivers. Poster session presented at the Third International Symposium on Naturalistic Driving Research, Blacksburg, VA.

Mabry, J. E., S. Baker, J. Hickman and R. Hanowski. (2012). Case Study on the Impact of Treating Sleep Apnea in Commercial Motor Vehicle Drivers—Sleep Apnea Programs from Two Leading U.S. Carriers and Focus Group Findings. National Surface Transportation Safety Center for Excellence. Blacksburg, VA, Virginia Tech Transportation Institute. 12-UI-017: 1-74.

Maddox, M. E., Fitch, G. M., Kiefer, A., Mortimer, R., & Muttart, J. (2012). Implications for Forensic Practice of Human Factors Research Findings and Case Data Related to Rear-End Collisions. Proceedings of the 56th Annual Meeting of the Human Factors and Ergonomics Society.

Martinez Arguelles, G., Crispino, M., Giustozzi, F., Flintsch, G.W., “Environmental Analysis on asphalt pavement maintenance using modified binders in Developing Countries: Bogota Case Study” paper 13-3475, 92nd Annual Meeting of the Transportation Research Board Jan 13-17, 2013, Washington, DC.

McGhee, K., de León Izeppi, E.D.; Flintsch, G.W., Mogrovejo, D., “Virginia Quiet Pavement Demonstration Projects: Initial Functional Assessment,” Journal of the Transportation Research Board, 2013 (paper 13-3150, accepted for publication).

Mogrovejo, D.E., Flintsch, G.W., de León Izeppi, E.D., and McGhee, K.K. “Effect of Air Temperature and Vehicle Speed on Tire/Pavement Noise Measured with On-Board Sound Intensity Methodology,” paper 13-3765, 92nd Annual Meeting of the Transportation Research Board, Jan 13-17, 2013, Washington, DC.

Morgan, J.F., Blanco, M., & Hanowski, R.J. (In press). Driver opinions of simulator-based commercial vehicle training. Paper accepted for publication in the Washington Academy of Science Journal.

Park S., Donoughe K., and Rakha H. (2012), “Safety Benefits of Stability Control Systems for Tractor-Semitrailers Using Hardware-in-the-Loop Simulation,” Transportation Research Record: Journal of the Transportation Research Board, No. 2281, pp. 99-108. DOI: 10.3141/2281-13.

Park S., Rakha H., Ahn K., Moran K., Saerens B., and Van den Bulck E., (2012), “Predictive Eco-cruise Control System: Model Logic and Preliminary Testing,” Transportation Research Record: Journal of the Transportation Research Board, No. 2270, pp. 113-123, DOI: 10.3141/2270-14.

Priddy, L.P., Bly, P.G., Flintsch, G.W., “Review Of Precast Portland Cement Concrete Panel Technologies For Use In Expedient Portland Cement Concrete Airfield Pavement Repairs,” paper 13-2956, 92nd Annual Meeting of the Transportation Research Board, Jan 13-17, 2013, Washington, DC.

170

Qiao, Y., Flintsch, G.W., Dawson, A., and Parry, T., “Examining the Effects of Climate Change on Pavement Deterioration and Service Life,” Journal of the Transportation Research Board, 2013 (paper 13-4859, accepted for publication).

Rakha H., Arafeh M. and Park S. (2012), “Modeling Inclement Weather Impacts on Traffic Stream Behavior,” International Journal of Transportation Science and Technology, Vol. 1, no. 1, pp. 25-48.

Rakha H., Ahn K., Faris W., Moran, K. (2012), “Simple Vehicle Powertrain Model for Modeling Intelligent Vehicle Applications,” IEEE Transactions on Intelligent Transportation Systems, Vol 13(2), June 2012, ISSN 1524-9050, pp. 770-780.

Rakha H., Ahn K., and Moran K., (2012), INTEGRATION Framework for Modeling Eco-routing Strategies: Logic and Preliminary Results, International Journal of Transportation Science and Technology, Vol. 1, no. 3, pp. 259-274.

Rakha H., Ahn K. and Park S. (2013), “Predictive Eco-Cruise Control (ECC) System: Model Development, Modeling and Potential Benefits,” U.S. Department of Transportation’s University Transportation Centers Program, 92p.

Rakha H., Sangster J. and Du J. (2013), “Naturalistic Driving Data for the Analysis of Car-following Models,” U.S. Department of Transportation’s University Transportation Centers Program, 48p.

Rakha H., Zohdy I. and Kamalanathsharma R. (2013), “Agent-Based Game Theory Modeling for Driverless Vehicles at Intersections,” U.S. Department of Transportation’s University Transportation Centers Program, 43p.

Rakha H., Chen H., Haghani A., and “Assessment of Data Quality Needs for use in Transportation Applications,” U.S. Department of Transportation’s University Transportation Centers Program, 123p.

Reagan, Ian J., McClafferty, Julie A., Berlin, Sharon P., Hankey, Jonathan M. (2013). Using naturalistic driving data to identify variables associated with infrequent, occasional, and consistent seat belt use, Accident Analysis & Prevention, Volume 50, January 2013, Pages 600-607, ISSN 0001-4575, http://dx.doi.org/10.1016/j.aap.2012.06.008.

Saerens, B., Rakha, H., Ahn, K., and Van den Bulck, E. (2013), “Assessment of Alternative Polynomial Fuel Consumption Models for use in ITS Applications,” Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, DOI:10.1080/15472450.2013.764801.

Saerens B., Rakha H., Diehl M., Van den Bulck E. (2013), “Eco-Cruise Control for Passenger Vehicles: Methodology,” Transportation Research Part D: Transport and Environment, Vol. 19, pp. 20-27.

Sangster J., Rakha H., and Du J. (In press). “Application of Naturalistic Driving Data to the Modeling of Driver Car-following Behavior,” Transportation Research Record: Journal of the Transportation Research Board.

Schaudt, W.A., Bowman, D., Baker, S., Hanowski, R. J., and Flanigan, C. (2013). Field evaluation of an enhanced rear signalling system for heavy trucks. IET Intell. Transp. Syst., pp. 1-6, doi: 10.1049/iet-its.2012.0025.

Schaudt, W.A., Bowman, D., Trimble, T.E., Medina, A.F., Bocanegra, J., Baker, S., Marinik, A., Wierwille, W.W., and Hanowski, R.J. (In press). Enhanced rear signaling (ERS) for heavy trucks: Phase III – development of field operational test; final report. Contract No. DTMC75-07-D-00006, Task Order 2. Washington DC: U.S. Department of Transportation, Federal Motor Carrier Safety Administration.

Tang, L., Flintsch, G.W., and Viner, H., “Exposure Model For Predicting Splash and Spray,” Proceedings of the 7th Symposium on Pavement Surface Characteristics (SURF 2012), Sep. 18-21, 2013, Norfolk, VA.

Tawfik A. and Rakha H. (In press). “A Latent Class Choice Model of Heterogeneous Drivers Route Choice Behavior Based on a Real-World Experiment,” Transportation Research Record: Journal of the Transportation Research Board.

171

Tawfik A. and Rakha H. (2012), “Network Route-Choice Evolution in a Real-Life Experiment: A Necessary Shift from Network to Driver Oriented Modeling,” Transportation Research Record: Journal of the Transportation Research Board, No. 2322, pp. 70-81.

Tawfik A. and Rakha H. (2012), “Human Aspects of Route Choice Behavior: Incorporating Perceptions, Learning Trends, Latent Classes, and Personality Traits in the Modeling of Driver Heterogeneity in Route Choice Behavior,” U.S. Department of Transportation’s University Transportation Centers Program, 203p.

Trimble, T. E., & Bowman, D. S. (2012). Market Guide to Fleet Telematics Services: Creating a Consumer’s Guide to Currently Available Aftermarket Solutions (NSTSCE Report No. 12-UT-018). Blacksburg, VA: Virginia Tech Transportation Institute.

Tsoi A, Hinch J, Ruth R, and Gabler HC (April 2013). “Validation of Event Data Recorders in High Severity Full-Frontal Crash Tests,” SAE Paper 2013-01-1265.

Tsoi, A., Hinch, J., Ruth, R. and Gabler, H. (2013). “Validation of Event Data Recorders in High Severity Full Frontal Crash Tests,” SAE International Journal of Transportation Safety 1(1):2013, doi: 10.4271/2013-01-1265.

Uslu, B., de la Garza, J.M., and Flintsch G.W. “Discrete Event Simulation Model for Project Selection Level Pavement Maintenance Policy Analysis.” Proceedings of the 14th International Conference on Computing in Civil and Building Engineering (ICCCBE), June 27-29, Moscow, Russia.

Viner, H., Hargreaves, D., Dunford, A., Nesnas, K., Parry T., and Flintsch, G.W., “Development of a Prediction Model for Splash and Spray,” proceedings of the 7th Symposium on Pavement Surface Characteristics (SURF 2012), Sep. 18-21, 2013, Norfolk, VA.

Wu, Z., Flintsch, G.W., Ferreira, A., and Picado-Santos, L., “Framework for Multi-Objective Optimization of Physical Highway Assets Investments,” Journal of Transportation Engineering, 2012, Vol. 138(12), pp. 1411-1421.

Yin W., Murray-Tuite P., and Rakha H. (2012), “Imputing Erroneous Data of Single-Station Loop Detectors for Non-incident Conditions: Comparison between Temporal and Spatial Methods,” Journal of Intelligent Transportation Systems: Technology, Planning and Operations, Volume 16, Issue 3, pp. 159-176.

Zohdy I. and Rakha H. (2012), “Framework for Intersection Decision Support in Adverse Weather Conditions: Use of Case-Based Reasoning Algorithm,” Transportation Research Record: Journal of the Transportation Research Board, No. 2324, pp. 20-28.

Zohdy I. and Rakha H. (2012), “Agent-Based Framework for Modeling Driver Left-Turn Gap Acceptance Behavior at Signalized Intersections,” Transportation Research Record: Journal of the Transportation Research Board, No. 2316, pp. 1-10.

Zohdy I. and Rakha H. (In press). “Enhancing Roundabout Operations via Vehicle Connectivity,” Transportation Research Record: Journal of the Transportation Research Board.

*Works published since the 2012 Annual Report or works published in a new format.

172

Kyoungho AhnAhn K., Rakha H., and Park S. (2013), “ECO-Drive Application: Algorithmic Development and Preliminary Testing,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-0401].

Jon AntinAntin, J. F. (2013). Life Beyond Driving – Extending Safe Driving for Seniors. Panel discussion presentation given at 2013 Lifesavers Conference, April 16, Denver, CO.

Antin, J. F. (2013). Neuroplasticity in Senior Drivers: Can Brain Training Lead to Safer Driving? Poster presented at The Labile Brain: Neuroplasticity Across the Lifespan 25th Annual Symposium of the Central Virginia Chapter of the Society for Neuroscience, Virginia Tech Carilion Research Institute, Roanoke, VA.

Antin, J.F. (2013). Update on SHRP 2 NDS Progress, Sample Descriptive Statistics, and Data Dissemination, Presentation given at TRB Annual meeting, Washington, D.C.

Antin, J.F. (2012). Discussant at Closing Panel Discussion, Senior Mobility Awareness Symposium, Blacksburg, VA.

Antin, J. F. (2012). Training Approaches to Enhance Senior Mobility. Presentation given at the Senior Mobility Awareness Symposium, Dec 6, Blacksburg, VA.

Antin, J. F. (2012). Senior Mobility Awareness Symposium: Integrating Science, Policy, and Practice. Opening presentation given at the Senior Mobility Awareness Symposium, Dec 6, Blacksburg, VA.

Antin, J. F. (2012). Comparing the Driving Safety Benefits of Brain Fitness Training Programs for Older Drivers. Presentation and Demonstration given at the Toyota Safety Symposium, Sep 12th, Washington, D.C.

Antin, J. F. (2012). Older Drivers, Intersection and Distraction: Background and Naturalistic Investigation. Presentation given at the 3rd International Symposium on Naturalistic Driving Research, Aug, 30, Blacksburg, VA.

Antin, J. F. (2012). SHRP2 Naturalistic Driving Study S06 Update. Presentation given at the 7th Annual SHRP 2 Summer Safety Symposium, Transportation Research Board of the National Academies, July 12, Washington, D.C.

Myra BlancoSeptember 2012: Virginia Tech Scholar, given by VT Office of the Vice President for Research

April 2013: J. Cordell Breed Award for Women Leaders, given by Society of Automotive Engineers (SAE) at the 2013 World Congress & Exhibition (Detroit, MI)

April 2013: ORGANIZER AND MODERATOR for the Safety Through Automation session at the Intelligent Transportation Society of America 2013 Annual Meeting (Nashville, TN)

April 2013: SPEAKER for the Transformative Innovations: Connected Vehicles and Beyond session at the Intelligent Transportation Society of America 2013 Annual Meeting (Nashville, TN)

April 2013: PANELIST for the Human Factors Issues of Automated Driving session at the Society of Automotive Engineers 2013 World Congress & Exhibition (Detroit, MI)

October 2012: TECHNICAL PROGRAM Session CHAIR for the Driver Attitudes Toward Monitoring and Perspectives on Automation session at the Annual Meeting of the Human Factors and Ergonomics Society – Surface Transportation Technical Group (Boston, MA)

Presentations/Honors

173

James Bryce*Recipient of a Dwight David Eisenhower Transportation Program Grant for Research Fellowships

Recipient of one of the five “best paper awards” at the Ninth Annual Inter-University Infrastructure Management Symposium, Atlanta, GA (2012)

Matt CamdenCamden, M., Hickman, J.S., Joslin, S., & Hanowski, R.J. (2012). Methods to examine the relationship between drug use and involvement in a safety-critical event. Poster presented at the Third International Symposium on Naturalistic Driving Research, Blacksburg, VA.

Hao Chen*Recipient of ITSVA scholarship (May 2013)

Chen H. and Rakha H., (2012), “Prediction of Dynamic Freeway Travel Times based on Vehicle Trajectory Construction,” 15th IEEE Intelligent Transportation Systems Conference, Alaska, USA; September 16-19, 2012.

Chen H. and Rakha H. (2013), “A Data-driven Particle Filter for Travel Time Prediction,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-4392].

Chen H. and Rakha H. (2013), “Forecasting Freeway Dynamic Travel Times by Constructing Trip Trajectories,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-2128].

Tom DingusNamed White House Champion of Change in Transportation, United States of America White House, May 2013.

Invited Speaker: Association for the Advancement of Automotive Medicine, Distracted Driver Expert Panel; Chicago, IL, April 2013.

Invited Speaker: Commonwealth of Virginia Governor’s Transportation Conference, New Developments in Transportation Research; Vienna, VA December 2012.

Invited Speaker: ITS America 22nd Annual Meeting and Exposition, Driver DistractionPolicy: Recommendations, Promulgations, and Supporting Science; National Harbor, MD May 2012.

Invited Speaker: ITS America 22nd Annual Meeting and Exposition, SHRP 2 Huge Steps Forward in Systems Operations Strategies; National Harbor, MD 2012.

Vehicle Test and Evaluation Consultant, Google, Inc., CA (July 2012), Consultation on test planning for autonomous vehicles.

Zac DoerzaphNamed Scholar of the Week by the Virginia Tech Office of the Vice President for Research

Muqing Du*Du M., Rakha H., and Chen L. (2012), “Sensitivity Analysis for Network Traffic Equilibria: A Reduction Method,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-0557].

174

Du, M., Cheng, L., and Rakha H. (2012), “Sensitivity Analysis of Combined Distribution-Assignment Model with Applications,” Transportation Research Board 91st Annual Meeting, Washington DC, January 22-26, CD-ROM [Paper # 12-1978].

Naomi DunnNominated for the 2013 IEHF Liberty Mutual Award for the best paper published in Ergonomics in 2012

Ihab El-ShawarbyEl-Shawarby I., Abdel-Salam A., and Rakha H. (2013), “Evaluation of Driver Perception-Reaction Times for Rainy/Wet Roadway Conditions at the Onset of a Yellow Indication at Signalized Intersections,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-1683].

Greg FitchWDBJ7 (2013). Experts: Texting is the most dangerous thing you can do on your phone behind the wheel. http://www.wdbj7.com/news/wdbj7-experts-texting-is-the-most-dangerous-thing-you-can-do-on-your-phone-behind-the-wheel-20130621,0,539045.story

CBC News (2013). CBC News Interview with Greg Fitch on Driver Distraction. http://www.cbc.ca/player/News/Canada/NB/ID/2383169992/

WWL FM 105.3 (2013). “4-2 6:45AM Tommy Talks To Greg Fitch About Texting & Driving” http://audio.wwl.com/a/72678611/4-2-6-45am-tommy-talks-to-greg-fitch-about-texting-driving.htm?q=fitch

Fitch, G.M. (2012). Driver Distraction and Using Technology to Improve Transportation Safety. Lecture given to the Lexington Insurance Company’s Transportation Client Advisory Board Meeting on August 6, 2012 in Boston, Massachusetts.

Fitch, G.M. (2012). Driver Distraction and Using Technology to Improve Transportation Safety. Lecture given to the Explore Information Services Customer Advisory Board on March 9, 2012 in St-Petersburg, Florida.

Fitch, G.M. and Tijerina, L. (2012). Gedankenexperiment on Driver Distraction: Exploring Potential Outcomes of Technology to Mitigate Driver Distraction. Workshop given at the 91st Transportation Research Board Annual Meeting on Sunday, January 22, 2012 in Washington, D.C.

Fitch, G. M., Schaudt, W. A., Soccolich, S. A., and Hanowski, R. J. (2012). Introduction to the Reduction and Analysis of Naturalistic Driving Data. Workshop given at the 3rd International Symposium on Naturalistic Driving Research on Monday August 27, 2012 in Blacksburg, Virginia.

Fitch, G.M. and Hanowski, R.J. (In press). Exploring drivers’ compensatory behavior when conversing on a mobile device. Proceedings of the 4th International Conference on Applied Human Factors and Ergonomics 2012.

Fitch, G. M., Hanowski, R., Burnett, G., & Crundall, D. (In press). Development of a Protocol to Classify Drivers’ Emotional Conversation. Proceedings of the 3rd International Conference on Driver Distraction and Inattention.

Fitch, G. M. & Hankey, J. M. (2012). Investigating Improper Lane Changes: Driver Performance Contributing to Lane Change Near-Crashes. Proceedings of the 56th Annual Meeting of the Human Factors and Ergonomics Society.

Fitch, G.M., Monk, C., Sherony, R., LeBlanc, D., & Ward, N. (2012). Evaluation of Driver Assistance Systems. Proceedings of the ITS America 22nd Annual Meeting and Exposition.

175

Fitch, G.M. and Gabbard, J.L. (2013). Augmented Reality: Opportunities and Challenges for Transportation. Webinar presented on May 3rd, 2013 for ITS America Human Interaction with ITS committee. http://safety.itsa.wikispaces.net/file/detail/AR%20Opportunities%20and%20Challenges%20for%20Surface%20Transportation%20V3-compressed.pdf

Maddox, M. E., Fitch, G. M., Kiefer, A., Mortimer, R., & Muttart, J. (2012). Implications for Forensic Practice of Human Factors Research Findings and Case Data Related to Rear-End Collisions. Proceedings of the 56th Annual Meeting of the Human Factors and Ergonomics Society.

Gerardo FlintschFlintsch, G.W. “Interaction between the Road Infrastructure and the Vehicles, Smart Highways and their Impact on Transportation Sustainability” (Interacción de la Infraestructura Vial con los Vehículos, Carreteras Inteligentes y su Impacto en la Sostenibilidad del Transporte), invited presentation, Jornadas Internacionales del Asfalto, Bogotá, Colombia, Oct 8-12, 2012.

Flintsch, G.W. “Tire-pavement Friction Management Programs for Improving Road Safety” (Programas de gestión de la fricción entre el neumático y el pavimento para mejorar la seguridad vial,” invited presentation, Jornadas Internacionales del Asfalto, Bogotá, Colombia, Oct 8-12, 2012.

Participated (supported the planning and organization and taught one module) in organization of the 2nd Advanced Infrastructure Management course organized by University of Delaware, Virginia Tech, University of Texas, Austin, University of Waterloo, and University of Iowa in Atlanta, Georgia, Jun, 2012.

Delivered a workshop (with other Instructors) about Transportation Asset Management for the International Road Federation in Abu Dhabi, United Arab Emirates, Feb 18-20, 2012.

Clay GablerElected as Fellow, Association for the Advancement of Automotive Medicine (October 2012)Governor’s UTC Event

Ron GibbonsGibbons R., Medina-Flintsch A., Williams B., Du J., and Rakha H. (2013), “Sag Vertical Curve Design Criteria for Headlight Sight Distance,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-3815].

Feng GuoGuo F., Li Q., and Rakha H. (2012), “Multi-state Travel Time Reliability Models with Skewed Component Distributions,” Transportation Research Board 91st Annual Meeting, Washington DC, January 22-26, CD-ROM [Paper # 12-1910].

Rich Hanowski2012 (December 3) Virginia Tech “Scholar of the Week” award: http://www.research.vt.edu/scholar-of-the-week/rich-hanowski

2012 Paul S. Richards Endowed Distinguished Visiting Lecture in Occupational Health (Awarded at NORA Symposium, University of Utah, Salt Lake City) Scientific committee member for SomnoAlert 2014, Brussels, Belgium (February, 2014).

Scientific committee member for Third International Conference on Driver Distraction and Inattention. Gothenburg, Sweden (September, 2013).

Driver Distraction: The Eyes Have It!. Sprint, Enforcing the Code (fleet event). Concord, NC. (October, 2012).

176

Perception vs. Reality: How Expectations (and Other Factors) Influence Our Beliefs. American Trucking Association’s Litigation Center’s Forum for Motor Carrier General Counsel. San Francisco, CA (July, 2012) Jeff HickmanChairperson, TRB Truck and Bus Operator Health and Wellness Subcommittee (ANB70-3)

Hickman, J.S., Hanowski, R.J. Guo, F., Medina, A., & Kwan, Q. (2012). Efficacy of roll stability control, lane departure warning, and forward collision warning using carrier-collected crash data. Presented at the annual Society of Automotive Engineers Commercial Vehicle Engineering Congress in Chicago, IL.

Hickman, J.S., Guo, F., Camden, M.C., Hanowski, R.J., Medina, A., Mabry, J.E., & Kwan, Q. (2012). Efficacy of roll stability control, forward collision warning, and lane departure warning using carrier-collected crash data. Paper presented at the annual Transportation Research Board Conference in Washington, D.C.

Hickman, J.S. (2012). Overview of the North American Fatigue Management Program. Department of Transportation Safety Council Technical Team Meeting, December 14, 2012.

Hickman, J.S. (2012). The Naturalistic Study of Distracted Driving. Executive Briefing on Fleet Driving Performance to be held in Houston, TX.

Hickman, J.S. (2012). Overview of Truck Safety Research at the Virginia Tech Transportation Institute. Network of Employers for Traffic Safety Fleet Safety Benchmark Conference in Charlottesville, NC.

Raj Kishore Kamalanathsharma*Recipient of ITSVA scholarship (May 2013)

Kamalanathsharma R., and Rakha H., (2012), “Agent-based Modeling of Eco-Cooperative Adaptive Cruise Control Systems in the Vicinity of Intersections,” 15th IEEE Intelligent Transportation Systems Conference, Alaska, USA; September 16-19, 2012.

Robert Kluger*“Student of the year award” at the TRB Annual Banquet (January 2013)

Erin MabryMabry, J.E., Hickman, J.S., Camden, M.C., Marburg, T.L., Hanowski, R.J. (2012). Safety Manager and Commercial Driver Opinions and Acceptance of Onboard Safety Systems. Paper presented at the annual Transportation Research Board Conference in Washington, DC.

Mabry, J.E., Baker, S., Hickman, J., & Hanowski, R.J. (2012, August). Case study on the impact of treating sleep apnea in commercial motor vehicle drivers. Poster presented at the Third International Symposium on Naturalistic Driving Research, Blacksburg, VA.

Case Study on the Impact of Treating Sleep Apnea in Commercial Motor Vehicle Drivers. Presented at the TRB Annual Meeting, January 14, 2013 in Washington, D.C.

Appointed Secretary of the Committee on Truck and Bus Safety, ANB70. June 17, 2013

Daniel Mogrovejo* Recipient of the 2012 IRF Student Essay Competition best paper award in the Pavement Technology, Maintenance and Management

177

Justin MorganOctober 2012: SESSION Co-CHAIR for the Driver Distraction and Drowsy Driving session at the Annual Meeting of the Human Factors and Ergonomics Society – Surface Transportation Technical Group (Boston, MA)

Alejandra Medina-FlintschMedina, A., Hickman, J.S., Hanowski, R.J., Guo, F., & Kwan, Q. (2012). A formal economic analysis of roll stability control and lane departure warning using carrier-collected crash data. Presented at the annual Society of Automotive Engineers Commercial Vehicle Engineering Congress in Chicago, IL.

Medina-Flintsch, A., Hickman, J.S., Guo, F., Camden, M.C., Hanowski, R.J. (2012). Cost benefit analysis - onboard safety systems effectiveness evaluation. Paper presented at the annual Transportation Research Board Conference in Washington, DC.

January 2013: POSTER Medina-Flintsch, A., Clarke, R. M., Hughes, R., Trimble, T., & Scott, J. Linking Carrier Descriptive Attributes to Fatal Crash Patterns: An Untapped Tool in State Motor Carrier Safety Improvement Programs. Poster presented at the Transportation Research Board 92nd Annual Meeting, Washington, DC.

Miguel PerezWorkshop Moderator, Introduction to the SHRP 2 NDS Dataset (Third International Symposium on Naturalistic Driving Research), The Inn at Virginia Tech: August 30, 2012, Blacksburg, VA.

Identifying cognitive load from naturalistic data (presented as part of the Third International Symposium on Naturalistic Driving Research), The Inn at Virginia Tech: August 29, 2012, Blacksburg, VA.

Perez, M. A., McLaughlin, S. B., Wu, S., McClafferty, J. A., Lee, S. E., and Soccolich, S. A. (2012). Introduction to the SHRP 2 NDS Dataset. Workshop given at the 3rd International Symposium on Naturalistic Driving Research on Monday August 27, 2012 in Blacksburg, Virginia.

Hesham RakhaBadillo B., Rakha H., Rioux T., and Abrams M., (2012), “Queue Length Estimation using Conventional Vehicle Detector and Probe Vehicle Data,” 15th IEEE Intelligent Transportation Systems Conference, Alaska, USA; September 16-19, 2012. Park S., Rakha H., and Ahn K. (2013). “Fuel Economy Impacts of Manual, Conventional Cruise Control, and Predictive Eco-Cruise Control Driving,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-0407].

Li H., Rakha H., and El-Shawarby I. (2012), “Designing Yellow Intervals for Rainy and Wet Roadway Conditions,” Transportation Research Board 91st Annual Meeting, Washington DC, January 22-26, CD-ROM [Paper # 12-0834].

Litsas S. and Rakha H. (2013), “Evaluation of Continuous Green T-Intersections on Isolated Under-Saturated Four-Lane Highways,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-0591].

Park S., Rakha H., and Ahn K. (2013). “Virginia Tech Comprehensive Power-based Fuel Consumption Model (VT-CPFM): Model Validation and Calibration Considerations,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-0461].

Rakha H. (2012). “Transportation Sustainability: What can ITS Offer?” ITS World Congress, Vienna, Austria, Oct. 22-26. (Session SIS06 Emerging ITS Strategies and Sustainability - Tuesday 11:00 - 12:30).

Rakha H. (2012). “Case Study Evaluation of the Environmental Impacts of Adaptive Traffic Signal Control and Transit Signal Priority,” ITS World Congress, Vienna, Austria, Oct. 22-26. (Session SIS35 - Demonstrating the environmental contributions from demand responsive traffic control - Wednesday 16:00 - 17:30).

178

Rakha H. (2012). “Energy Impacts of Cooperative Vehicle Systems,” ITS World Congress, Vienna, Austria, Oct. 22-26. (Session TSIS78 - Global perspectives - Cooperative energy efficiency applications - Friday 9:00 - 10:30).

Tawfik A. and Rakha H. (2013), “A Latent Class Choice Model of Heterogeneous Drivers Route Choice Behavior Based on a Real-World Experiment,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-1367].

Tawfik A. and Rakha H. (2012), “Network Route-Choice Evolution in a Real-Life Experiment: A Necessary Shift from Network to Driver Oriented Modeling,” Transportation Research Board 91st Annual Meeting, Washington DC, January 22-26, CD-ROM [Paper # 12-1640].

Tawfik A. and Rakha H. (2012), “Modeling Driver Heterogeneity in Route Choice Behavior based on a Real-life Naturalistic Driving Experiment,” ITS World Congress, Vienna, Austria, Oct. 22-26. (Session TS064 - Navigation system and digital maps (1) - Thursday 11:00 - 12:30).

Zhao W., Boon T.O., and Rakha H. (2013), “Roundabout versus Traffic Signal Control: Comparative Analysis,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-4422].

Associate Editor, IEEE Transactions on ITS

Volume Editor, Comprehensive Transport

Editorial Board, IET Intelligent Transport Systems

Editorial Board, Transportation Letters: The International Journal of Transportation Research

Editorial Board, Journal of Intelligent Transportation Systems: Technology, Planning, and Operations

Member, Transportation Research Board Committee on Traffic Flow Theory

Member, Transportation Research Board Highway Capacity and Quality of Service Committee

Member, Transportation Research Board Sub-Committee on Traffic Modeling

Member, Transportation Research Board Committee on Air Quality

Member, ITS America Benefits, Evaluation and Cost Committee

Member, Advising Committee for The Hajj and Umrah Center for Excellence in Research

John Sangster*Sangster J. and Rakha H. (2013), “Enhancing and Calibrating the Rakha-Pasumarthy-Adjerid Car-Following Model using Naturalistic Driving Data,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-1518].

Sangster J., Rakha H., and Du J. (2013), “Application of Naturalistic Driving Data to the Modeling of Driver Car-following Behavior,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-0594].

179

Tammy TrimbleSchaudt, W. A., Baker, S., & Trimble, T. E. (2013, April). Evaluation of light-vehicle education programs on sharing the road with heavy vehicles. Poster presented at Lifesavers 2013 Conference, Denver, CO.

Vicki WilliamsWilliams, V., McLaughlin, S., and Williams, S. (2013). An Analysis of Motorcycle Clothing in a Naturalistic Study. Paper presented at The International Motorcycle Safety Conference, Orange County Convention Center, Orlando, FL, 16-17 October. Motorcycle Safety Foundation/ifz.

Ismail Zohdy*“Student of the year award” at the TRB Annual Banquet (January 2013)

Zohdy I. and Rakha H. (2012), “Moving Horizon Optimization Algorithm for Cooperative Adaptive Cruise Control Systems at Intersections,” First European Symposium on Quantitative Methods in Transportation Systems, Lausanne, Switzerland, September 4-7, 2012.

Zohdy I., Kamalanathsharma R., and Rakha H., (2012), “Intersection Management for Autonomous Vehicles using iCACC,” 15th IEEE Intelligent Transportation Systems Conference, Alaska, USA; September 16-19, 2012.

Zohdy I. and Rakha H., (2012), “Game Theory Algorithm for Intersection-based Cooperative Adaptive Cruise Control (CACC) Systems,” 15th IEEE Intelligent Transportation Systems Conference, Alaska, USA; September 16-19, 2012.

Zohdy I. and Rakha H. (2012), “Optimizing Driverless Vehicles at Intersections,” ITS World Congress, Vienna, Austria, Oct. 22-26. (Session TS108 - Autonomous vehicle concepts - Friday 11:00 - 12:30). Recipient of the Best Scientific Paper Award from North America.

Zohdy I., Kishore R., and Rakha H. (2013), “Intersection Management for Autonomous Vehicles using Cooperative Adaptive Cruise Control Systems,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-0772].

Zohdy I. and Rakha H. (2013), “Enhancing Roundabout Operations via Vehicle Connectivity,” Presented at the 92nd Transportation Research Board Annual Meeting, Washington DC, January 14-17, CD-ROM [Paper # 13-2809].

Zohdy I. and Rakha H. (2012), “Intersection Decision Support Framework in Adverse Weather Conditions (IDS-W) using a Case-Based Reasoning Algorithm,” Transportation Research Board 91st Annual Meeting, Washington DC, January 22-26, CD-ROM [Paper # 12-0862].

Zohdy I. and Rakha H. (2012), “An Agent-based Framework for Modeling Driver Left-Turn Gap Acceptance Behavior at Signalized Intersections,” Transportation Research Board 91st Annual Meeting, Washington DC, January 22-26, CD-ROM [Paper # 12-0793].

*Denotes student honors/presentations

180

VTTI staff on the Smart Road • photo by Logan Wallace

Advancing Transportation through InnovationWWW.VTTI .VT.EDU