evolutionary computation: term to term operation continuity

85
Term to Term Operation Continuity David Clark Evolutionary Computation: Term to Term Operation Continuity David M. Clark Mathematics: SUNY, New Paltz, NY, USA July 16, 2013 International Journal of Algebra and Computation (IJAC), in press.

Upload: khangminh22

Post on 25-Feb-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Term to TermOperationContinuity

David Clark Evolutionary Computation:Term to Term Operation Continuity

David M. Clark

Mathematics: SUNY, New Paltz, NY, USA

July 16, 2013

International Journal of Algebra and Computation(IJAC), in press.

Term to TermOperationContinuity

David Clark

A non-trivial finite algebra is primal if every operation on itsunderlying set is a term operation.

Rousseau’s Theorem (1967) A nontrivial finite groupoid isprimal if and only if it has no proper subalgebras and nonon-trivial automorphisms or congruences.

For example, P is primal:

P := 〈{0, 1, 2, 3, 4}, ∗〉

∗ 0 1 2 3 4

0 1 1 0 2 01 4 2 0 3 32 1 0 3 2 43 0 4 3 4 24 2 0 1 4 0

Term to TermOperationContinuity

David Clark

A non-trivial finite algebra is primal if every operation on itsunderlying set is a term operation.

Rousseau’s Theorem (1967) A nontrivial finite groupoid isprimal if and only if it has no proper subalgebras and nonon-trivial automorphisms or congruences.

For example, P is primal:

P := 〈{0, 1, 2, 3, 4}, ∗〉

∗ 0 1 2 3 4

0 1 1 0 2 01 4 2 0 3 32 1 0 3 2 43 0 4 3 4 24 2 0 1 4 0

Term to TermOperationContinuity

David Clark

A non-trivial finite algebra is primal if every operation on itsunderlying set is a term operation.

Rousseau’s Theorem (1967) A nontrivial finite groupoid isprimal if and only if it has no proper subalgebras and nonon-trivial automorphisms or congruences.

For example, P is primal:

P := 〈{0, 1, 2, 3, 4}, ∗〉

∗ 0 1 2 3 4

0 1 1 0 2 01 4 2 0 3 32 1 0 3 2 43 0 4 3 4 24 2 0 1 4 0

Term to TermOperationContinuity

David Clark

Term Generation Problem: Given a finite groupoid G andan operation f on G that is a term operation of G, find a termthat represents f .

For example, find a term t that represents the ternarydiscriminator operation f on P:

f (a, b, c) :=

{c if a = b

a if a 6= b

This is a finitary problem. But F3(P) will have 553 ≈ 1087

elements. Checking 106 terms per second, the expected time tofind a discriminator term will be ≈ 1073 years(!)

Term to TermOperationContinuity

David Clark

Term Generation Problem: Given a finite groupoid G andan operation f on G that is a term operation of G, find a termthat represents f .

For example, find a term t that represents the ternarydiscriminator operation f on P:

f (a, b, c) :=

{c if a = b

a if a 6= b

This is a finitary problem. But F3(P) will have 553 ≈ 1087

elements. Checking 106 terms per second, the expected time tofind a discriminator term will be ≈ 1073 years(!)

Term to TermOperationContinuity

David Clark

Term Generation Problem: Given a finite groupoid G andan operation f on G that is a term operation of G, find a termthat represents f .

For example, find a term t that represents the ternarydiscriminator operation f on P:

f (a, b, c) :=

{c if a = b

a if a 6= b

This is a finitary problem.

But F3(P) will have 553 ≈ 1087

elements. Checking 106 terms per second, the expected time tofind a discriminator term will be ≈ 1073 years(!)

Term to TermOperationContinuity

David Clark

Term Generation Problem: Given a finite groupoid G andan operation f on G that is a term operation of G, find a termthat represents f .

For example, find a term t that represents the ternarydiscriminator operation f on P:

f (a, b, c) :=

{c if a = b

a if a 6= b

This is a finitary problem. But F3(P) will have 553 ≈ 1087

elements.

Checking 106 terms per second, the expected time tofind a discriminator term will be ≈ 1073 years(!)

Term to TermOperationContinuity

David Clark

Term Generation Problem: Given a finite groupoid G andan operation f on G that is a term operation of G, find a termthat represents f .

For example, find a term t that represents the ternarydiscriminator operation f on P:

f (a, b, c) :=

{c if a = b

a if a 6= b

This is a finitary problem. But F3(P) will have 553 ≈ 1087

elements. Checking 106 terms per second, the expected time tofind a discriminator term will be ≈ 1073 years(!)

Term to TermOperationContinuity

David Clark

Evolutionary computation finds solutions to problems bysimulating biological evolution.

Given a finite groupoid G and a k-ary target operationf : G k → G , we seek a k-ary term t such that tG = f .

The fitness of t is ‖{~d ∈ G k : tG(~d) = f (~d)}‖.

In 2007, Lee Spector and I looked for discriminator terms for3-element primal groupoids.

1 month by exhaustive search at 106 terms per second.

5 minutes be evolutionarily computation. Example

t(x , y , z) = ((((((((x ∗(y ∗x))∗x)∗z)∗(z ∗x))∗((x ∗(z ∗(x ∗(z ∗y))))∗z))∗z)∗z)∗(z∗((((x∗(((z∗z)∗x)∗(z∗x)))∗x)∗y)∗(((y∗(z∗(z∗y)))∗(((y ∗y)∗x)∗z))∗(x∗(((z∗z)∗x)∗(z∗(x∗(z∗y)))))))))

2008 Hummie Award from the ACM.

Term to TermOperationContinuity

David Clark

Evolutionary computation finds solutions to problems bysimulating biological evolution.

Given a finite groupoid G and a k-ary target operationf : G k → G , we seek a k-ary term t such that tG = f .

The fitness of t is ‖{~d ∈ G k : tG(~d) = f (~d)}‖.

In 2007, Lee Spector and I looked for discriminator terms for3-element primal groupoids.

1 month by exhaustive search at 106 terms per second.

5 minutes be evolutionarily computation. Example

t(x , y , z) = ((((((((x ∗(y ∗x))∗x)∗z)∗(z ∗x))∗((x ∗(z ∗(x ∗(z ∗y))))∗z))∗z)∗z)∗(z∗((((x∗(((z∗z)∗x)∗(z∗x)))∗x)∗y)∗(((y∗(z∗(z∗y)))∗(((y ∗y)∗x)∗z))∗(x∗(((z∗z)∗x)∗(z∗(x∗(z∗y)))))))))

2008 Hummie Award from the ACM.

Term to TermOperationContinuity

David Clark

Evolutionary computation finds solutions to problems bysimulating biological evolution.

Given a finite groupoid G and a k-ary target operationf : G k → G , we seek a k-ary term t such that tG = f .

The fitness of t is ‖{~d ∈ G k : tG(~d) = f (~d)}‖.

In 2007, Lee Spector and I looked for discriminator terms for3-element primal groupoids.

1 month by exhaustive search at 106 terms per second.

5 minutes be evolutionarily computation. Example

t(x , y , z) = ((((((((x ∗(y ∗x))∗x)∗z)∗(z ∗x))∗((x ∗(z ∗(x ∗(z ∗y))))∗z))∗z)∗z)∗(z∗((((x∗(((z∗z)∗x)∗(z∗x)))∗x)∗y)∗(((y∗(z∗(z∗y)))∗(((y ∗y)∗x)∗z))∗(x∗(((z∗z)∗x)∗(z∗(x∗(z∗y)))))))))

2008 Hummie Award from the ACM.

Term to TermOperationContinuity

David Clark

Evolutionary computation finds solutions to problems bysimulating biological evolution.

Given a finite groupoid G and a k-ary target operationf : G k → G , we seek a k-ary term t such that tG = f .

The fitness of t is ‖{~d ∈ G k : tG(~d) = f (~d)}‖.

In 2007, Lee Spector and I looked for discriminator terms for3-element primal groupoids.

1 month by exhaustive search at 106 terms per second.

5 minutes be evolutionarily computation. Example

t(x , y , z) = ((((((((x ∗(y ∗x))∗x)∗z)∗(z ∗x))∗((x ∗(z ∗(x ∗(z ∗y))))∗z))∗z)∗z)∗(z∗((((x∗(((z∗z)∗x)∗(z∗x)))∗x)∗y)∗(((y∗(z∗(z∗y)))∗(((y ∗y)∗x)∗z))∗(x∗(((z∗z)∗x)∗(z∗(x∗(z∗y)))))))))

2008 Hummie Award from the ACM.

Term to TermOperationContinuity

David Clark

Evolutionary computation finds solutions to problems bysimulating biological evolution.

Given a finite groupoid G and a k-ary target operationf : G k → G , we seek a k-ary term t such that tG = f .

The fitness of t is ‖{~d ∈ G k : tG(~d) = f (~d)}‖.

In 2007, Lee Spector and I looked for discriminator terms for3-element primal groupoids.

1 month by exhaustive search at 106 terms per second.

5 minutes be evolutionarily computation. Example

t(x , y , z) = ((((((((x ∗(y ∗x))∗x)∗z)∗(z ∗x))∗((x ∗(z ∗(x ∗(z ∗y))))∗z))∗z)∗z)∗(z∗((((x∗(((z∗z)∗x)∗(z∗x)))∗x)∗y)∗(((y∗(z∗(z∗y)))∗(((y ∗y)∗x)∗z))∗(x∗(((z∗z)∗x)∗(z∗(x∗(z∗y)))))))))

2008 Hummie Award from the ACM.

Term to TermOperationContinuity

David Clark

Evolutionary computation finds solutions to problems bysimulating biological evolution.

Given a finite groupoid G and a k-ary target operationf : G k → G , we seek a k-ary term t such that tG = f .

The fitness of t is ‖{~d ∈ G k : tG(~d) = f (~d)}‖.

In 2007, Lee Spector and I looked for discriminator terms for3-element primal groupoids.

1 month by exhaustive search at 106 terms per second.

5 minutes be evolutionarily computation.

Example

t(x , y , z) = ((((((((x ∗(y ∗x))∗x)∗z)∗(z ∗x))∗((x ∗(z ∗(x ∗(z ∗y))))∗z))∗z)∗z)∗(z∗((((x∗(((z∗z)∗x)∗(z∗x)))∗x)∗y)∗(((y∗(z∗(z∗y)))∗(((y ∗y)∗x)∗z))∗(x∗(((z∗z)∗x)∗(z∗(x∗(z∗y)))))))))

2008 Hummie Award from the ACM.

Term to TermOperationContinuity

David Clark

Evolutionary computation finds solutions to problems bysimulating biological evolution.

Given a finite groupoid G and a k-ary target operationf : G k → G , we seek a k-ary term t such that tG = f .

The fitness of t is ‖{~d ∈ G k : tG(~d) = f (~d)}‖.

In 2007, Lee Spector and I looked for discriminator terms for3-element primal groupoids.

1 month by exhaustive search at 106 terms per second.

5 minutes be evolutionarily computation. Example

t(x , y , z) = ((((((((x ∗(y ∗x))∗x)∗z)∗(z ∗x))∗((x ∗(z ∗(x ∗(z ∗y))))∗z))∗z)∗z)∗(z∗((((x∗(((z∗z)∗x)∗(z∗x)))∗x)∗y)∗(((y∗(z∗(z∗y)))∗(((y ∗y)∗x)∗z))∗(x∗(((z∗z)∗x)∗(z∗(x∗(z∗y)))))))))

2008 Hummie Award from the ACM.

Term to TermOperationContinuity

David Clark

Evolutionary computation finds solutions to problems bysimulating biological evolution.

Given a finite groupoid G and a k-ary target operationf : G k → G , we seek a k-ary term t such that tG = f .

The fitness of t is ‖{~d ∈ G k : tG(~d) = f (~d)}‖.

In 2007, Lee Spector and I looked for discriminator terms for3-element primal groupoids.

1 month by exhaustive search at 106 terms per second.

5 minutes be evolutionarily computation. Example

t(x , y , z) = ((((((((x ∗(y ∗x))∗x)∗z)∗(z ∗x))∗((x ∗(z ∗(x ∗(z ∗y))))∗z))∗z)∗z)∗(z∗((((x∗(((z∗z)∗x)∗(z∗x)))∗x)∗y)∗(((y∗(z∗(z∗y)))∗(((y ∗y)∗x)∗z))∗(x∗(((z∗z)∗x)∗(z∗(x∗(z∗y)))))))))

2008 Hummie Award from the ACM.

Term to TermOperationContinuity

David Clark

Evolutionary computation finds solutions to problems bysimulating biological evolution.

Given a finite groupoid G and a k-ary target operationf : G k → G , we seek a k-ary term t such that tG = f .

The fitness of t is ‖{~d ∈ G k : tG(~d) = f (~d)}‖.

In 2007, Lee Spector and I looked for discriminator terms for3-element primal groupoids.

1 month by exhaustive search at 106 terms per second.

5 minutes be evolutionarily computation. Example

t(x , y , z) = ((((((((x ∗(y ∗x))∗x)∗z)∗(z ∗x))∗((x ∗(z ∗(x ∗(z ∗y))))∗z))∗z)∗z)∗(z∗((((x∗(((z∗z)∗x)∗(z∗x)))∗x)∗y)∗(((y∗(z∗(z∗y)))∗(((y ∗y)∗x)∗z))∗(x∗(((z∗z)∗x)∗(z∗(x∗(z∗y)))))))))

2008 Hummie Award from the ACM.

Term to TermOperationContinuity

David Clark

Discriminator term for P

— found by EC in 53 seconds!

t(x , y , z) := zzzzxz ∗∗∗∗x ∗z ∗z ∗∗xxxxxx ∗∗xx ∗∗∗x ∗∗xxxx ∗∗∗x ∗x ∗xxxx ∗∗∗xxx ∗xx ∗zx ∗∗∗x ∗∗xzx ∗∗xx ∗∗x ∗x ∗xxx ∗x ∗x ∗∗xxxxxxx∗∗∗∗∗∗xzxx∗x∗∗∗xxxx∗∗∗xx∗xx∗∗xxx∗xx∗zx∗∗∗x∗∗xx∗xx∗∗xxx∗xx∗∗x∗∗xxxxx∗∗∗∗zxxx∗∗∗xxx∗∗xx∗∗x∗xxxx∗∗∗x ∗x ∗xxxxx ∗x ∗∗x ∗x ∗∗∗xxxzx ∗∗∗xxx ∗∗∗x ∗∗xx ∗x ∗x ∗x ∗xxxzxxx∗∗∗∗∗x∗∗xxxx∗∗∗xx∗∗xx∗xxz∗x∗xz∗∗x∗∗xxx∗∗xxx∗x∗∗xx∗x∗∗xz∗xx∗∗x∗zx∗x∗x∗xzzxx∗∗x∗∗x∗∗zxx∗∗x∗xxxzxzz∗∗∗∗∗x∗∗yyxx∗∗x∗∗xzyz∗∗xx∗∗∗xxxzzxx∗x∗∗∗∗∗y ∗∗xxx∗xx∗∗∗zzx∗∗xx∗xy ∗∗y ∗zy ∗x∗x∗zxx∗∗zxx∗∗x∗∗∗∗xx∗x∗z∗∗∗∗∗yy∗z∗xx∗y∗∗x∗∗xxxxx∗x∗x∗∗x∗∗∗∗∗x∗xxy∗xx∗∗∗x∗∗xyzx∗xx∗∗∗z∗xx∗∗x∗∗∗yyz∗∗zy∗∗∗∗xzzxxx∗∗zy∗∗∗∗x∗∗∗zy∗x∗y∗y∗x∗x∗∗∗∗∗zx∗xxxx∗∗∗x∗∗∗∗∗zzz∗∗∗yyx∗yx∗∗∗∗xx∗x∗∗∗∗∗xyy∗xx∗∗x∗x∗∗∗∗∗∗∗∗xxx∗zx∗∗x∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Term to TermOperationContinuity

David Clark

Discriminator term for P

— found by EC in 53 seconds!

t(x , y , z) := zzzzxz ∗∗∗∗x ∗z ∗z ∗∗xxxxxx ∗∗xx ∗∗∗x ∗∗xxxx ∗∗∗x ∗x ∗xxxx ∗∗∗xxx ∗xx ∗zx ∗∗∗x ∗∗xzx ∗∗xx ∗∗x ∗x ∗xxx ∗x ∗x ∗∗xxxxxxx∗∗∗∗∗∗xzxx∗x∗∗∗xxxx∗∗∗xx∗xx∗∗xxx∗xx∗zx∗∗∗x∗∗xx∗xx∗∗xxx∗xx∗∗x∗∗xxxxx∗∗∗∗zxxx∗∗∗xxx∗∗xx∗∗x∗xxxx∗∗∗x ∗x ∗xxxxx ∗x ∗∗x ∗x ∗∗∗xxxzx ∗∗∗xxx ∗∗∗x ∗∗xx ∗x ∗x ∗x ∗xxxzxxx∗∗∗∗∗x∗∗xxxx∗∗∗xx∗∗xx∗xxz∗x∗xz∗∗x∗∗xxx∗∗xxx∗x∗∗xx∗x∗∗xz∗xx∗∗x∗zx∗x∗x∗xzzxx∗∗x∗∗x∗∗zxx∗∗x∗xxxzxzz∗∗∗∗∗x∗∗yyxx∗∗x∗∗xzyz∗∗xx∗∗∗xxxzzxx∗x∗∗∗∗∗y ∗∗xxx∗xx∗∗∗zzx∗∗xx∗xy ∗∗y ∗zy ∗x∗x∗zxx∗∗zxx∗∗x∗∗∗∗xx∗x∗z∗∗∗∗∗yy∗z∗xx∗y∗∗x∗∗xxxxx∗x∗x∗∗x∗∗∗∗∗x∗xxy∗xx∗∗∗x∗∗xyzx∗xx∗∗∗z∗xx∗∗x∗∗∗yyz∗∗zy∗∗∗∗xzzxxx∗∗zy∗∗∗∗x∗∗∗zy∗x∗y∗y∗x∗x∗∗∗∗∗zx∗xxxx∗∗∗x∗∗∗∗∗zzz∗∗∗yyx∗yx∗∗∗∗xx∗x∗∗∗∗∗xyy∗xx∗∗x∗x∗∗∗∗∗∗∗∗xxx∗zx∗∗x∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Term to TermOperationContinuity

David Clark

Discriminator term for P — found by EC in 53 seconds!

t(x , y , z) := zzzzxz ∗∗∗∗x ∗z ∗z ∗∗xxxxxx ∗∗xx ∗∗∗x ∗∗xxxx ∗∗∗x ∗x ∗xxxx ∗∗∗xxx ∗xx ∗zx ∗∗∗x ∗∗xzx ∗∗xx ∗∗x ∗x ∗xxx ∗x ∗x ∗∗xxxxxxx∗∗∗∗∗∗xzxx∗x∗∗∗xxxx∗∗∗xx∗xx∗∗xxx∗xx∗zx∗∗∗x∗∗xx∗xx∗∗xxx∗xx∗∗x∗∗xxxxx∗∗∗∗zxxx∗∗∗xxx∗∗xx∗∗x∗xxxx∗∗∗x ∗x ∗xxxxx ∗x ∗∗x ∗x ∗∗∗xxxzx ∗∗∗xxx ∗∗∗x ∗∗xx ∗x ∗x ∗x ∗xxxzxxx∗∗∗∗∗x∗∗xxxx∗∗∗xx∗∗xx∗xxz∗x∗xz∗∗x∗∗xxx∗∗xxx∗x∗∗xx∗x∗∗xz∗xx∗∗x∗zx∗x∗x∗xzzxx∗∗x∗∗x∗∗zxx∗∗x∗xxxzxzz∗∗∗∗∗x∗∗yyxx∗∗x∗∗xzyz∗∗xx∗∗∗xxxzzxx∗x∗∗∗∗∗y ∗∗xxx∗xx∗∗∗zzx∗∗xx∗xy ∗∗y ∗zy ∗x∗x∗zxx∗∗zxx∗∗x∗∗∗∗xx∗x∗z∗∗∗∗∗yy∗z∗xx∗y∗∗x∗∗xxxxx∗x∗x∗∗x∗∗∗∗∗x∗xxy∗xx∗∗∗x∗∗xyzx∗xx∗∗∗z∗xx∗∗x∗∗∗yyz∗∗zy∗∗∗∗xzzxxx∗∗zy∗∗∗∗x∗∗∗zy∗x∗y∗y∗x∗x∗∗∗∗∗zx∗xxxx∗∗∗x∗∗∗∗∗zzz∗∗∗yyx∗yx∗∗∗∗xx∗x∗∗∗∗∗xyy∗xx∗∗x∗x∗∗∗∗∗∗∗∗xxx∗zx∗∗x∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Term to TermOperationContinuity

David Clark For which groupoids will EC solve the Term GenerationProblem?

Preliminary Definition. A finite groupoid is term continuousif, on average, small changes in a term result in small changesin its term operation.

That is, the k-ary term to k-ary term operation function

G : T → GG kt 7→ tG

is in some sense continuous.

Term to TermOperationContinuity

David Clark For which groupoids will EC solve the Term GenerationProblem?

Preliminary Definition. A finite groupoid is term continuousif, on average, small changes in a term result in small changesin its term operation.

That is, the k-ary term to k-ary term operation function

G : T → GG kt 7→ tG

is in some sense continuous.

Term to TermOperationContinuity

David Clark For which groupoids will EC solve the Term GenerationProblem?

Preliminary Definition. A finite groupoid is term continuousif, on average, small changes in a term result in small changesin its term operation.

That is, the k-ary term to k-ary term operation function

G : T → GG kt 7→ tG

is in some sense continuous.

Term to TermOperationContinuity

David Clark For which groupoids will EC solve the Term GenerationProblem?

Preliminary Definition. A finite groupoid is term continuousif, on average, small changes in a term result in small changesin its term operation.

That is, the k-ary term to k-ary term operation function

G : T → GG kt 7→ tG

is in some sense continuous.

Term to TermOperationContinuity

David Clark For which groupoids will EC solve the Term GenerationProblem?

Preliminary Definition. A finite groupoid is term continuousif, on average, small changes in a term result in small changesin its term operation.

That is, the k-ary term to k-ary term operation function

G : T → GG kt 7→ tG

is in some sense continuous.

Term to TermOperationContinuity

David Clark For which groupoids will EC solve the Term GenerationProblem?

Preliminary Definition. A finite groupoid is term continuousif, on average, small changes in a term result in small changesin its term operation.

That is, the k-ary term to k-ary term operation function

G : T → GG kt 7→ tG

is in some sense continuous.

Term to TermOperationContinuity

David Clark

GG k:

For f , g ∈ GG k, the Hamming Distance is

HD(f , g) := ‖{~d ∈ G k | f (~d) 6= g(~d)}‖.

Under HD, the space GG kis a metric space.

Term to TermOperationContinuity

David Clark

GG k:

For f , g ∈ GG k, the Hamming Distance is

HD(f , g) := ‖{~d ∈ G k | f (~d) 6= g(~d)}‖.

Under HD, the space GG kis a metric space.

Term to TermOperationContinuity

David Clark

GG k:

For f , g ∈ GG k, the Hamming Distance is

HD(f , g) := ‖{~d ∈ G k | f (~d) 6= g(~d)}‖.

Under HD, the space GG kis a metric space.

Term to TermOperationContinuity

David Clark

T:

����

@@@

���@

@@

@@��@@@@

@@��@@

��

��@@ q qqq qq q q

qqq q

q

q qx3 x2x1

x0

x2

x0x1

x0

qqqqqqDepth

1

2

3456

����

@@

@@

���@

@@

@@��@@

@@

@@��

�� q qqq qqq q

qqq q

qx3 x2x3

x3x3

x0x1

t(~x) = (x1x0)(((x3x3)x3)(x3x2)) t ′(~x) = (x1x0)((x1((x2x0)x0))(x3x2))

Figure: Distance measure on the term space T.

Term to TermOperationContinuity

David Clark

T:

����

@@@

���@

@@

@@��@@@@

@@��@@

��

��@@ q qqq qq q q

qqq q

q

q qx3 x2x1

x0

x2

x0x1

x0

qqqqqqDepth

1

2

3456

����

@@

@@

���@

@@

@@��@@

@@

@@��

�� q qqq qqq q

qqq q

qx3 x2x3

x3x3

x0x1

t(~x) = (x1x0)(((x3x3)x3)(x3x2)) t ′(~x) = (x1x0)((x1((x2x0)x0))(x3x2))

Figure: Distance measure on the term space T.

Term to TermOperationContinuity

David Clark

T:

����

@@@

���@

@@

@@��@@@@

@@��@@

��

��@@ qq q

qq q qx3x1

x0

x2

x0

x0

q qq

qqq q

qx3 x2

x0x1

qqqqqqDepth

1

2

3456

����

@@

@@

���@

@@

@@��@@

@@

@@��

��qq qqq

x3

x3x3

q qq

qqq q

qx3 x2

x0x1

— D = 3 —

[t(~x), t ′(~x)] = 1D = 1

3

t(~x) = (x1x0)(((x3x3)x3)(x3x2)) t ′(~x) = (x1x0)((x1((x2x0)x0))(x3x2))

u(~x) v(~x)

Figure: Distance measure on the term space T.

Term to TermOperationContinuity

David Clark

T:

����

@@@

���@

@@

@@��@@@@

@@��@@

��

��@@ qq q

qq q qx3x1

x0

x2

x0

x0

q qq

qqq q

qx3 x2

x0x1

qqqqqqDepth

1

2

3456

����

@@

@@

���@

@@

@@��@@

@@

@@��

��qq qqq

x3

x3x3

q qq

qqq q

qx3 x2

x0x1— D = 3 —

[t(~x), t ′(~x)] = 1D = 1

3

t(~x) = (x1x0)(((x3x3)x3)(x3x2)) t ′(~x) = (x1x0)((x1((x2x0)x0))(x3x2))

u(~x) v(~x)

Figure: Distance measure on the term space T.

Term to TermOperationContinuity

David Clark

T:

����

@@@

���@

@@

@@��@@@@

@@��@@

��

��@@ qq q

qq q qx3x1

x0

x2

x0

x0

q qq

qqq q

qx3 x2

x0x1

qqqqqqDepth

1

2

3456

����

@@

@@

���@

@@

@@��@@

@@

@@��

��qq qqq

x3

x3x3

q qq

qqq q

qx3 x2

x0x1— D = 3 —

[t(~x), t ′(~x)] = 1D = 1

3

t(~x) = (x1x0)(((x3x3)x3)(x3x2)) t ′(~x) = (x1x0)((x1((x2x0)x0))(x3x2))

u(~x) v(~x)

Figure: Distance measure on the term space T.

Term to TermOperationContinuity

David Clark

k ,H – positive integers

~x = (x0, x1, . . . , xk−1) – standard variables, ♦ – a new variableTH – all terms in ~x of height at most HT – all terms in ~xT1 ⊆ V ⊆ T – a fixed finite set of mutation terms in ~x

A ♦-term is a term t(~x ,♦) with a single occurrence of ♦.

A mutation is a triple M = (t(~x ,♦), u(~x), v(~x)) where t(~x ,♦)is a ♦-term, u(~x) and v(~x) are terms, and v(~x) ∈ V.

t(~x , u(~x))M−→ t(~x , v(~x))

MH := {M | t(~x , u(~x)) ∈ TH}, a finite set

Term to TermOperationContinuity

David Clark

k ,H – positive integers~x = (x0, x1, . . . , xk−1) – standard variables, ♦ – a new variable

TH – all terms in ~x of height at most HT – all terms in ~xT1 ⊆ V ⊆ T – a fixed finite set of mutation terms in ~x

A ♦-term is a term t(~x ,♦) with a single occurrence of ♦.

A mutation is a triple M = (t(~x ,♦), u(~x), v(~x)) where t(~x ,♦)is a ♦-term, u(~x) and v(~x) are terms, and v(~x) ∈ V.

t(~x , u(~x))M−→ t(~x , v(~x))

MH := {M | t(~x , u(~x)) ∈ TH}, a finite set

Term to TermOperationContinuity

David Clark

k ,H – positive integers~x = (x0, x1, . . . , xk−1) – standard variables, ♦ – a new variableTH – all terms in ~x of height at most H

T – all terms in ~xT1 ⊆ V ⊆ T – a fixed finite set of mutation terms in ~x

A ♦-term is a term t(~x ,♦) with a single occurrence of ♦.

A mutation is a triple M = (t(~x ,♦), u(~x), v(~x)) where t(~x ,♦)is a ♦-term, u(~x) and v(~x) are terms, and v(~x) ∈ V.

t(~x , u(~x))M−→ t(~x , v(~x))

MH := {M | t(~x , u(~x)) ∈ TH}, a finite set

Term to TermOperationContinuity

David Clark

k ,H – positive integers~x = (x0, x1, . . . , xk−1) – standard variables, ♦ – a new variableTH – all terms in ~x of height at most HT – all terms in ~x

T1 ⊆ V ⊆ T – a fixed finite set of mutation terms in ~x

A ♦-term is a term t(~x ,♦) with a single occurrence of ♦.

A mutation is a triple M = (t(~x ,♦), u(~x), v(~x)) where t(~x ,♦)is a ♦-term, u(~x) and v(~x) are terms, and v(~x) ∈ V.

t(~x , u(~x))M−→ t(~x , v(~x))

MH := {M | t(~x , u(~x)) ∈ TH}, a finite set

Term to TermOperationContinuity

David Clark

k ,H – positive integers~x = (x0, x1, . . . , xk−1) – standard variables, ♦ – a new variableTH – all terms in ~x of height at most HT – all terms in ~xT1 ⊆ V ⊆ T – a fixed finite set of mutation terms in ~x

A ♦-term is a term t(~x ,♦) with a single occurrence of ♦.

A mutation is a triple M = (t(~x ,♦), u(~x), v(~x)) where t(~x ,♦)is a ♦-term, u(~x) and v(~x) are terms, and v(~x) ∈ V.

t(~x , u(~x))M−→ t(~x , v(~x))

MH := {M | t(~x , u(~x)) ∈ TH}, a finite set

Term to TermOperationContinuity

David Clark

k ,H – positive integers~x = (x0, x1, . . . , xk−1) – standard variables, ♦ – a new variableTH – all terms in ~x of height at most HT – all terms in ~xT1 ⊆ V ⊆ T – a fixed finite set of mutation terms in ~x

A ♦-term is a term t(~x ,♦) with a single occurrence of ♦.

A mutation is a triple M = (t(~x ,♦), u(~x), v(~x)) where t(~x ,♦)is a ♦-term, u(~x) and v(~x) are terms, and v(~x) ∈ V.

t(~x , u(~x))M−→ t(~x , v(~x))

MH := {M | t(~x , u(~x)) ∈ TH}, a finite set

Term to TermOperationContinuity

David Clark

k ,H – positive integers~x = (x0, x1, . . . , xk−1) – standard variables, ♦ – a new variableTH – all terms in ~x of height at most HT – all terms in ~xT1 ⊆ V ⊆ T – a fixed finite set of mutation terms in ~x

A ♦-term is a term t(~x ,♦) with a single occurrence of ♦.

A mutation is a triple M = (t(~x ,♦), u(~x), v(~x)) where t(~x ,♦)is a ♦-term, u(~x) and v(~x) are terms, and v(~x) ∈ V.

t(~x , u(~x))M−→ t(~x , v(~x))

MH := {M | t(~x , u(~x)) ∈ TH}, a finite set

Term to TermOperationContinuity

David Clark

k ,H – positive integers~x = (x0, x1, . . . , xk−1) – standard variables, ♦ – a new variableTH – all terms in ~x of height at most HT – all terms in ~xT1 ⊆ V ⊆ T – a fixed finite set of mutation terms in ~x

A ♦-term is a term t(~x ,♦) with a single occurrence of ♦.

A mutation is a triple M = (t(~x ,♦), u(~x), v(~x)) where t(~x ,♦)is a ♦-term, u(~x) and v(~x) are terms, and v(~x) ∈ V.

t(~x , u(~x))M−→ t(~x , v(~x))

MH := {M | t(~x , u(~x)) ∈ TH}, a finite set

Term to TermOperationContinuity

David Clark

k ,H – positive integers~x = (x0, x1, . . . , xk−1) – standard variables, ♦ – a new variableTH – all terms in ~x of height at most HT – all terms in ~xT1 ⊆ V ⊆ T – a fixed finite set of mutation terms in ~x

A ♦-term is a term t(~x ,♦) with a single occurrence of ♦.

A mutation is a triple M = (t(~x ,♦), u(~x), v(~x)) where t(~x ,♦)is a ♦-term, u(~x) and v(~x) are terms, and v(~x) ∈ V.

t(~x , u(~x))M−→ t(~x , v(~x))

MH := {M | t(~x , u(~x)) ∈ TH}, a finite set

Term to TermOperationContinuity

David Clark

If D is the depth of ♦ in t(~x ,♦), then the change in the termt(~x , u(~x)) resulting from applying M = 〈t(~x ,♦), u(~x), v(~x)〉 is

‖M‖ := [t(~x , u(~x)), t(~x , v(~x))]

≤ 1

D.

The resulting change in the term operation on G is

HD(M) := HD(t(~x , u(~x))G, t(~x , v(~x))G).

The average change in term operations of mutations in MH is

µHD(H) :=1

‖MH‖∑{HD(M) | M ∈MH}.

Term to TermOperationContinuity

David Clark

If D is the depth of ♦ in t(~x ,♦), then the change in the termt(~x , u(~x)) resulting from applying M = 〈t(~x ,♦), u(~x), v(~x)〉 is

‖M‖ := [t(~x , u(~x)), t(~x , v(~x))] ≤ 1

D.

The resulting change in the term operation on G is

HD(M) := HD(t(~x , u(~x))G, t(~x , v(~x))G).

The average change in term operations of mutations in MH is

µHD(H) :=1

‖MH‖∑{HD(M) | M ∈MH}.

Term to TermOperationContinuity

David Clark

If D is the depth of ♦ in t(~x ,♦), then the change in the termt(~x , u(~x)) resulting from applying M = 〈t(~x ,♦), u(~x), v(~x)〉 is

‖M‖ := [t(~x , u(~x)), t(~x , v(~x))] ≤ 1

D.

The resulting change in the term operation on G is

HD(M) := HD(t(~x , u(~x))G, t(~x , v(~x))G).

The average change in term operations of mutations in MH is

µHD(H) :=1

‖MH‖∑{HD(M) | M ∈MH}.

Term to TermOperationContinuity

David Clark

If D is the depth of ♦ in t(~x ,♦), then the change in the termt(~x , u(~x)) resulting from applying M = 〈t(~x ,♦), u(~x), v(~x)〉 is

‖M‖ := [t(~x , u(~x)), t(~x , v(~x))] ≤ 1

D.

The resulting change in the term operation on G is

HD(M) := HD(t(~x , u(~x))G, t(~x , v(~x))G).

The average change in term operations of mutations in MH is

µHD(H) :=1

‖MH‖∑{HD(M) | M ∈MH}.

Term to TermOperationContinuity

David Clark

If D is the depth of ♦ in t(~x ,♦), then the change in the termt(~x , u(~x)) resulting from applying M = 〈t(~x ,♦), u(~x), v(~x)〉 is

‖M‖ := [t(~x , u(~x)), t(~x , v(~x))] ≤ 1

D.

The resulting change in the term operation on G is

HD(M) := HD(t(~x , u(~x))G, t(~x , v(~x))G).

The average change in term operations of mutations in MH is

µHD(H) :=1

‖MH‖∑{HD(M) | M ∈MH}.

Term to TermOperationContinuity

David Clark

Definition. A finite groupoid G is term continuous if

limH→∞

µHD(H) = 0.

Theorem. A non-trivial quasigroup is not term continuous.

Theorem. A finite left semigroup is term continuous.

What about random groupoids?

Continuity Theorem. A finite groupoid is term continuous ifit has no subgroupoid with a separating relation and it isasymptotically complete.

Term to TermOperationContinuity

David Clark

Definition. A finite groupoid G is term continuous if

limH→∞

µHD(H) = 0.

Theorem. A non-trivial quasigroup is not term continuous.

Theorem. A finite left semigroup is term continuous.

What about random groupoids?

Continuity Theorem. A finite groupoid is term continuous ifit has no subgroupoid with a separating relation and it isasymptotically complete.

Term to TermOperationContinuity

David Clark

Definition. A finite groupoid G is term continuous if

limH→∞

µHD(H) = 0.

Theorem. A non-trivial quasigroup is not term continuous.

Theorem. A finite left semigroup is term continuous.

What about random groupoids?

Continuity Theorem. A finite groupoid is term continuous ifit has no subgroupoid with a separating relation and it isasymptotically complete.

Term to TermOperationContinuity

David Clark

Definition. A finite groupoid G is term continuous if

limH→∞

µHD(H) = 0.

Theorem. A non-trivial quasigroup is not term continuous.

Theorem. A finite left semigroup is term continuous.

What about random groupoids?

Continuity Theorem. A finite groupoid is term continuous ifit has no subgroupoid with a separating relation and it isasymptotically complete.

Term to TermOperationContinuity

David Clark

Definition. A finite groupoid G is term continuous if

limH→∞

µHD(H) = 0.

Theorem. A non-trivial quasigroup is not term continuous.

Theorem. A finite left semigroup is term continuous.

What about random groupoids?

Continuity Theorem. A finite groupoid is term continuous ifit has no subgroupoid with a separating relation and it isasymptotically complete.

Term to TermOperationContinuity

David Clark

Definition. A finite groupoid G is term continuous if

limH→∞

µHD(H) = 0.

Theorem. A non-trivial quasigroup is not term continuous.

Theorem. A finite left semigroup is term continuous.

What about random groupoids?

Continuity Theorem. A finite groupoid is term continuous ifit has no subgroupoid with a separating relation and it isasymptotically complete.

Term to TermOperationContinuity

David Clark

Definition. A finite groupoid G is term continuous if

limH→∞

µHD(H) = 0.

Theorem. A non-trivial quasigroup is not term continuous.

Theorem. A finite left semigroup is term continuous.

What about random groupoids?

Continuity Theorem. A finite groupoid is term continuous ifit has no subgroupoid with a separating relation and it isasymptotically complete.

Term to TermOperationContinuity

David Clark Definition. A binary relation σ on G is a separating relationif, for all a, b, c ∈ G ,

1 σ 6= ∅,

2 (a, b) ∈ σ implies (b, a) ∈ σ,

3 (a, a) /∈ σ,

4 (a, b) ∈ σ implies (ac, bc) ∈ σ and (ca, cb) ∈ σ.

Note: 6= is a separating relation on a non-trivial quasigroup.

Test for Separating Relations: Either shows there are noseparating relations or produces one. E.g., P has none.

Term to TermOperationContinuity

David Clark Definition. A binary relation σ on G is a separating relationif, for all a, b, c ∈ G ,

1 σ 6= ∅,

2 (a, b) ∈ σ implies (b, a) ∈ σ,

3 (a, a) /∈ σ,

4 (a, b) ∈ σ implies (ac, bc) ∈ σ and (ca, cb) ∈ σ.

Note: 6= is a separating relation on a non-trivial quasigroup.

Test for Separating Relations: Either shows there are noseparating relations or produces one. E.g., P has none.

Term to TermOperationContinuity

David Clark Definition. A binary relation σ on G is a separating relationif, for all a, b, c ∈ G ,

1 σ 6= ∅,

2 (a, b) ∈ σ implies (b, a) ∈ σ,

3 (a, a) /∈ σ,

4 (a, b) ∈ σ implies (ac, bc) ∈ σ and (ca, cb) ∈ σ.

Note: 6= is a separating relation on a non-trivial quasigroup.

Test for Separating Relations: Either shows there are noseparating relations or produces one.

E.g., P has none.

Term to TermOperationContinuity

David Clark Definition. A binary relation σ on G is a separating relationif, for all a, b, c ∈ G ,

1 σ 6= ∅,

2 (a, b) ∈ σ implies (b, a) ∈ σ,

3 (a, a) /∈ σ,

4 (a, b) ∈ σ implies (ac, bc) ∈ σ and (ca, cb) ∈ σ.

Note: 6= is a separating relation on a non-trivial quasigroup.

Test for Separating Relations: Either shows there are noseparating relations or produces one. E.g., P has none.

Term to TermOperationContinuity

David Clark

Let ~d ∈ G k and let a ∈ G . For H ∈ N define

β~d ,a(H) := Prob〈t(~d) = a | t ∈ TH〉.

Note: If a /∈ sg{d0, d1, . . . , dk−1}, then β~d ,a(H) = 0.

Definition. The groupoid G is asymptotically complete if,for each k ∈ N, each ~d ∈ G k and eacha ∈ sg{d0, d1, . . . , dk−1}, the sequence β~d ,a

is eventuallybounded away from 0.

Term to TermOperationContinuity

David Clark

Let ~d ∈ G k and let a ∈ G . For H ∈ N define

β~d ,a(H) := Prob〈t(~d) = a | t ∈ TH〉.

Note: If a /∈ sg{d0, d1, . . . , dk−1}, then β~d ,a(H) = 0.

Definition. The groupoid G is asymptotically complete if,for each k ∈ N, each ~d ∈ G k and eacha ∈ sg{d0, d1, . . . , dk−1}, the sequence β~d ,a

is eventuallybounded away from 0.

Term to TermOperationContinuity

David Clark

Let ~d ∈ G k and let a ∈ G . For H ∈ N define

β~d ,a(H) := Prob〈t(~d) = a | t ∈ TH〉.

Note: If a /∈ sg{d0, d1, . . . , dk−1}, then β~d ,a(H) = 0.

Definition. The groupoid G is asymptotically complete if,for each k ∈ N, each ~d ∈ G k and eacha ∈ sg{d0, d1, . . . , dk−1}, the sequence β~d ,a

is eventuallybounded away from 0.

Term to TermOperationContinuity

David Clark

Test for Asymptotic Completeness.

P distributions with k = 10 and ~d = (4, 3, 0, 3, 1, 3, 3, 0, 2, 3).

H β~d ,0(H) β~d ,1

(H) β~d ,2(H) β~d ,3

(H) β~d ,4(H)

1 0.2 0.1 0.1 0.5 0.1

2 0.172727 0.100000 0.118182 0.318182 0.290909

4 0.374467 0.191126 0.193836 0.088773 0.151799

8 0.288474 0.238744 0.171516 0.120603 0.180662

12 0.292753 0.235886 0.173491 0.121582 0.176288

16 0.292574 0.236026 0.173482 0.121482 0.176436

20 0.292581 0.236024 0.173479 0.121485 0.176431

700 0.292581 0.236024 0.173479 0.121485 0.176431

Experimental evidence that P is asymptotically complete.

Term to TermOperationContinuity

David Clark

Test for Asymptotic Completeness.

P distributions with k = 10 and ~d = (4, 3, 0, 3, 1, 3, 3, 0, 2, 3).

H β~d ,0(H) β~d ,1

(H) β~d ,2(H) β~d ,3

(H) β~d ,4(H)

1 0.2 0.1 0.1 0.5 0.1

2 0.172727 0.100000 0.118182 0.318182 0.290909

4 0.374467 0.191126 0.193836 0.088773 0.151799

8 0.288474 0.238744 0.171516 0.120603 0.180662

12 0.292753 0.235886 0.173491 0.121582 0.176288

16 0.292574 0.236026 0.173482 0.121482 0.176436

20 0.292581 0.236024 0.173479 0.121485 0.176431

700 0.292581 0.236024 0.173479 0.121485 0.176431

Experimental evidence that P is asymptotically complete.

Term to TermOperationContinuity

David Clark

Test for Asymptotic Completeness.

P distributions with k = 10 and ~d = (4, 3, 0, 3, 1, 3, 3, 0, 2, 3).

H β~d ,0(H) β~d ,1

(H) β~d ,2(H) β~d ,3

(H) β~d ,4(H)

1 0.2 0.1 0.1 0.5 0.1

2 0.172727 0.100000 0.118182 0.318182 0.290909

4 0.374467 0.191126 0.193836 0.088773 0.151799

8 0.288474 0.238744 0.171516 0.120603 0.180662

12 0.292753 0.235886 0.173491 0.121582 0.176288

16 0.292574 0.236026 0.173482 0.121482 0.176436

20 0.292581 0.236024 0.173479 0.121485 0.176431

700 0.292581 0.236024 0.173479 0.121485 0.176431

Experimental evidence that P is asymptotically complete.

Term to TermOperationContinuity

David Clark

Test for Asymptotic Completeness.

P distributions with k = 10 and ~d = (4, 3, 0, 3, 1, 3, 3, 0, 2, 3).

H β~d ,0(H) β~d ,1

(H) β~d ,2(H) β~d ,3

(H) β~d ,4(H)

1 0.2 0.1 0.1 0.5 0.1

2 0.172727 0.100000 0.118182 0.318182 0.290909

4 0.374467 0.191126 0.193836 0.088773 0.151799

8 0.288474 0.238744 0.171516 0.120603 0.180662

12 0.292753 0.235886 0.173491 0.121582 0.176288

16 0.292574 0.236026 0.173482 0.121482 0.176436

20 0.292581 0.236024 0.173479 0.121485 0.176431

700 0.292581 0.236024 0.173479 0.121485 0.176431

Experimental evidence that P is asymptotically complete.

Term to TermOperationContinuity

David Clark

Test for Asymptotic Completeness.

P distributions with k = 10 and ~d = (4, 3, 0, 3, 1, 3, 3, 0, 2, 3).

H β~d ,0(H) β~d ,1

(H) β~d ,2(H) β~d ,3

(H) β~d ,4(H)

1 0.2 0.1 0.1 0.5 0.1

2 0.172727 0.100000 0.118182 0.318182 0.290909

4 0.374467 0.191126 0.193836 0.088773 0.151799

8 0.288474 0.238744 0.171516 0.120603 0.180662

12 0.292753 0.235886 0.173491 0.121582 0.176288

16 0.292574 0.236026 0.173482 0.121482 0.176436

20 0.292581 0.236024 0.173479 0.121485 0.176431

700 0.292581 0.236024 0.173479 0.121485 0.176431

Experimental evidence that P is asymptotically complete.

Term to TermOperationContinuity

David Clark

Test for Asymptotic Completeness.

P distributions with k = 10 and ~d = (4, 3, 0, 3, 1, 3, 3, 0, 2, 3).

H β~d ,0(H) β~d ,1

(H) β~d ,2(H) β~d ,3

(H) β~d ,4(H)

1 0.2 0.1 0.1 0.5 0.1

2 0.172727 0.100000 0.118182 0.318182 0.290909

4 0.374467 0.191126 0.193836 0.088773 0.151799

8 0.288474 0.238744 0.171516 0.120603 0.180662

12 0.292753 0.235886 0.173491 0.121582 0.176288

16 0.292574 0.236026 0.173482 0.121482 0.176436

20 0.292581 0.236024 0.173479 0.121485 0.176431

700 0.292581 0.236024 0.173479 0.121485 0.176431

Experimental evidence that P is asymptotically complete.

Term to TermOperationContinuity

David Clark

Test for Asymptotic Completeness.

P distributions with k = 10 and ~d = (4, 3, 0, 3, 1, 3, 3, 0, 2, 3).

H β~d ,0(H) β~d ,1

(H) β~d ,2(H) β~d ,3

(H) β~d ,4(H)

1 0.2 0.1 0.1 0.5 0.1

2 0.172727 0.100000 0.118182 0.318182 0.290909

4 0.374467 0.191126 0.193836 0.088773 0.151799

8 0.288474 0.238744 0.171516 0.120603 0.180662

12 0.292753 0.235886 0.173491 0.121582 0.176288

16 0.292574 0.236026 0.173482 0.121482 0.176436

20 0.292581 0.236024 0.173479 0.121485 0.176431

700 0.292581 0.236024 0.173479 0.121485 0.176431

Experimental evidence that P is asymptotically complete.

Term to TermOperationContinuity

David Clark

Test for Asymptotic Completeness.

P distributions with k = 10 and ~d = (4, 3, 0, 3, 1, 3, 3, 0, 2, 3).

H β~d ,0(H) β~d ,1

(H) β~d ,2(H) β~d ,3

(H) β~d ,4(H)

1 0.2 0.1 0.1 0.5 0.1

2 0.172727 0.100000 0.118182 0.318182 0.290909

4 0.374467 0.191126 0.193836 0.088773 0.151799

8 0.288474 0.238744 0.171516 0.120603 0.180662

12 0.292753 0.235886 0.173491 0.121582 0.176288

16 0.292574 0.236026 0.173482 0.121482 0.176436

20 0.292581 0.236024 0.173479 0.121485 0.176431

700 0.292581 0.236024 0.173479 0.121485 0.176431

Experimental evidence that P is asymptotically complete.

Term to TermOperationContinuity

David Clark

Test for Asymptotic Completeness.

P distributions with k = 10 and ~d = (4, 3, 0, 3, 1, 3, 3, 0, 2, 3).

H β~d ,0(H) β~d ,1

(H) β~d ,2(H) β~d ,3

(H) β~d ,4(H)

1 0.2 0.1 0.1 0.5 0.1

2 0.172727 0.100000 0.118182 0.318182 0.290909

4 0.374467 0.191126 0.193836 0.088773 0.151799

8 0.288474 0.238744 0.171516 0.120603 0.180662

12 0.292753 0.235886 0.173491 0.121582 0.176288

16 0.292574 0.236026 0.173482 0.121482 0.176436

20 0.292581 0.236024 0.173479 0.121485 0.176431

700 0.292581 0.236024 0.173479 0.121485 0.176431

Experimental evidence that P is asymptotically complete.

Term to TermOperationContinuity

David Clark

Test for Asymptotic Completeness.

P distributions with k = 10 and ~d = (4, 3, 0, 3, 1, 3, 3, 0, 2, 3).

H β~d ,0(H) β~d ,1

(H) β~d ,2(H) β~d ,3

(H) β~d ,4(H)

1 0.2 0.1 0.1 0.5 0.1

2 0.172727 0.100000 0.118182 0.318182 0.290909

4 0.374467 0.191126 0.193836 0.088773 0.151799

8 0.288474 0.238744 0.171516 0.120603 0.180662

12 0.292753 0.235886 0.173491 0.121582 0.176288

16 0.292574 0.236026 0.173482 0.121482 0.176436

20 0.292581 0.236024 0.173479 0.121485 0.176431

700 0.292581 0.236024 0.173479 0.121485 0.176431

Experimental evidence that P is asymptotically complete.

Term to TermOperationContinuity

David Clark

Proof of the Continuity Theorem.G: a finite asymptotically complete groupoid with subgroupoidshaving no separating relations. Let n := ‖G‖.

Let ~d ∈ G k , K := sg{d0, d1, . . . , dk−1}, a1 6= b1 in K .

• (a1, b1), (b1, a1) ∈ σ• If (a, b) ∈ σ and c ∈ K , then (ca, cb), (ac, bc) ∈ σ.qq q a1

QQQ

c1 qq q a2

QQQ

c2 q qq a3

���

c3qq q a4QQQ

c4

pp

q an2

qq q b1

QQQ

c1 qq q b2

QQQ

c2 q qq b3

���

c3qq q b4QQQ

c4

pp

q bn2=

No separating relationsimplies there is m ∈ Nsuch that am = bm

with m ≤ n2. Thus

an2 = bn2 .

Term to TermOperationContinuity

David Clark

Proof of the Continuity Theorem.G: a finite asymptotically complete groupoid with subgroupoidshaving no separating relations. Let n := ‖G‖.

Let ~d ∈ G k , K := sg{d0, d1, . . . , dk−1}, a1 6= b1 in K .

• (a1, b1), (b1, a1) ∈ σ• If (a, b) ∈ σ and c ∈ K , then (ca, cb), (ac, bc) ∈ σ.qq q a1

QQQ

c1 qq q a2

QQQ

c2 q qq a3

���

c3qq q a4QQQ

c4

pp

q an2

qq q b1

QQQ

c1 qq q b2

QQQ

c2 q qq b3

���

c3qq q b4QQQ

c4

pp

q bn2=

No separating relationsimplies there is m ∈ Nsuch that am = bm

with m ≤ n2. Thus

an2 = bn2 .

Term to TermOperationContinuity

David Clark

Proof of the Continuity Theorem.G: a finite asymptotically complete groupoid with subgroupoidshaving no separating relations. Let n := ‖G‖.

Let ~d ∈ G k , K := sg{d0, d1, . . . , dk−1}, a1 6= b1 in K .

• (a1, b1), (b1, a1) ∈ σ• If (a, b) ∈ σ and c ∈ K , then (ca, cb), (ac, bc) ∈ σ.

qq q a1

QQQ

c1 qq q a2

QQQ

c2 q qq a3

���

c3qq q a4QQQ

c4

pp

q an2

qq q b1

QQQ

c1 qq q b2

QQQ

c2 q qq b3

���

c3qq q b4QQQ

c4

pp

q bn2=

No separating relationsimplies there is m ∈ Nsuch that am = bm

with m ≤ n2. Thus

an2 = bn2 .

Term to TermOperationContinuity

David Clark

Proof of the Continuity Theorem.G: a finite asymptotically complete groupoid with subgroupoidshaving no separating relations. Let n := ‖G‖.

Let ~d ∈ G k , K := sg{d0, d1, . . . , dk−1}, a1 6= b1 in K .

• (a1, b1), (b1, a1) ∈ σ• If (a, b) ∈ σ and c ∈ K , then (ca, cb), (ac, bc) ∈ σ.qq q a1

QQQ

c1 qq q a2

QQQ

c2 q qq a3

���

c3qq q a4QQQ

c4

pp

q an2

qq q b1

QQQ

c1 qq q b2

QQQ

c2 q qq b3

���

c3qq q b4QQQ

c4

pp

q bn2=

No separating relationsimplies there is m ∈ Nsuch that am = bm

with m ≤ n2. Thus

an2 = bn2 .

Term to TermOperationContinuity

David Clark

Proof of the Continuity Theorem.G: a finite asymptotically complete groupoid with subgroupoidshaving no separating relations. Let n := ‖G‖.

Let ~d ∈ G k , K := sg{d0, d1, . . . , dk−1}, a1 6= b1 in K .

• (a1, b1), (b1, a1) ∈ σ• If (a, b) ∈ σ and c ∈ K , then (ca, cb), (ac, bc) ∈ σ.qq q a1

QQQ

c1 qq q a2

QQQ

c2 q qq a3

���

c3qq q a4QQQ

c4

pp

q an2

qq q b1

QQQ

c1 qq q b2

QQQ

c2 q qq b3

���

c3qq q b4QQQ

c4

pp

q bn2=

No separating relationsimplies there is m ∈ Nsuch that am = bm

with m ≤ n2. Thus

an2 = bn2 .

Term to TermOperationContinuity

David Clark

Proof of the Continuity Theorem.G: a finite asymptotically complete groupoid with subgroupoidshaving no separating relations. Let n := ‖G‖.

Let ~d ∈ G k , K := sg{d0, d1, . . . , dk−1}, a1 6= b1 in K .

• (a1, b1), (b1, a1) ∈ σ• If (a, b) ∈ σ and c ∈ K , then (ca, cb), (ac, bc) ∈ σ.qq q a1

QQQ

c1 qq q a2

QQQ

c2 q qq a3

���

c3qq q a4QQQ

c4

pp

q an2

qq q b1

QQQ

c1 qq q b2

QQQ

c2 q qq b3

���

c3qq q b4QQQ

c4

pp

q bn2=

No separating relationsimplies there is m ∈ Nsuch that am = bm

with m ≤ n2. Thus

an2 = bn2 .

Term to TermOperationContinuity

David Clark

Proof of the Continuity Theorem.G: a finite asymptotically complete groupoid with subgroupoidshaving no separating relations. Let n := ‖G‖.

Let ~d ∈ G k , K := sg{d0, d1, . . . , dk−1}, a1 6= b1 in K .

• (a1, b1), (b1, a1) ∈ σ• If (a, b) ∈ σ and c ∈ K , then (ca, cb), (ac, bc) ∈ σ.qq q a1

QQQ

c1 qq q a2

QQQ

c2 q qq a3

���

c3qq q a4QQQ

c4

ppq an2

qq q b1

QQQ

c1 qq q b2

QQQ

c2 q qq b3

���

c3qq q b4QQQ

c4

ppq bn2=

No separating relationsimplies there is m ∈ Nsuch that am = bm

with m ≤ n2. Thus

an2 = bn2 .

Term to TermOperationContinuity

David Clark

M = (t(~x ,♦), u(~x), v(~x))

qu(~x)

qq qQQQr1(~x) qq qQQQr2(~x) q qq��� r3(~x)qq qQQQr4(~x)

qt(~x , u(~x))

qv(~x)

qq qQQQr1(~x) qq qQQQr2(~x) q qq��� r3(~x)qq qQQQr4(~x)

qt(~x , v(~x))

Term to TermOperationContinuity

David Clark

M = (t(~x ,♦), u(~x), v(~x))

qu(~x)

qq qQQQr1(~x) qq qQQQr2(~x) q qq��� r3(~x)qq qQQQr4(~x)

qt(~x , u(~x))

qv(~x)

qq qQQQr1(~x) qq qQQQr2(~x) q qq��� r3(~x)qq qQQQr4(~x)

qt(~x , v(~x))

Term to TermOperationContinuity

David Clark

M = (t(~x ,♦), u(~x), v(~x))

All values in K.

pp

qv(~d)

qq q a1

QQQ

c1 qq q a2

QQQ

c2 q qq a3

���

c3qqq a4

c4

an2

qt(~d , u(~d))

pp

qv(~d)

qq q b1

QQQ

c1 qq q b2

QQQ

c2 q qq b3

���

c3qqq b4

c4

bn2

qt(~d , v(~d))

Term to TermOperationContinuity

David Clark

Thanks for listening!

— DC

Term to TermOperationContinuity

David Clark

References

1 D. Clark, Evolution of algebraic terms 1: term to termoperation continuity, International Journal of Algebra andComputation, to appear, 31pp.

2 D. Clark, B. Davey, J.Pitkethly, D.Rifqui, Flat unars: theprimal, the semi-primal and the dualisable , AlgebraUniversalis Vol 63, No. 4 (2010), 303-329.

3 D. Clark, M. Keijzer and L. Spector, Evolution of algebraicterms 2: evolutionary algorithms, in preparation.

4 L. Spector, D. Clark, B. Barr, J. Klein and I. Lindsay,Genetic programming for finite algebras, Genetic andEvolutionary Computation Conference (GECCO) 2008Proceedings, Atlanta GA (July 2008), Editor-in-ChiefMaarten Keijzer, Association for Computing Machinery(ACM), ISBN: 978-1-60558-130-9, 1291-1298.