digital communication in multi-disciplinary teams: preparing students for a future building project...

13
1 Digital communication in multi disciplinary teams Preparing students for a future building project context Authors Stefan Boeykens (1), Pauline De Somer (2), Ralf Klein (2,3), Dirk Saelens (2) (1) KU Leuven, Department of Architecture, Urbanism and Planning (2) KU Leuven, Department of Civil Engineering (3) KaHo SintLieven Campus Gent Keywords Education; architecture; engineering; construction; multidisciplinary; multicampus; Building Information Modeling; Communication Abstract The construction industry is currently in a quite important phase of change and evolution towards better productivity and efficiency. The way project partners collaborate is being redefined. This is to a large extent due to an everincreasing building project complexity. Projects need to be delivered faster, at the lowest possible cost and adhering to a rising set of performance criteria, such as energy consumption, structural stability, cost, accessibility, safety and many others. To be able to answer these demands, the different stakeholders in construction projects will work together in Building Teams from the very first stages of the project, at a moment where many design decisions still need to be made and thus can positively influence the project outcome. New evolutions such as “Integrated Project Delivery” (IPD) and the “Building Information Modeling” (BIM) methodology are being applied to manage these new processes, in addition to a wide variety of digital communication techniques, such as cloud computing, model servers and online audio and videoconferencing technologies. The COM.BI project is a twoyear educational innovation project at the KU Leuven Association in Belgium (Reference OOF 2011/24), where different constructionrelated schools are working together to better prepare students for this future building practice. The partners in this project introduce students to these technologies and methods, by organizing information and learning events and by organizing collaborative exercises, over the traditional school borders. This is done by organizing multidisciplinary building teams that use digital communication techniques to work together and by including a reflection phase to force students to question the used processes and methods. This paper describes how the collaboration between architects, engineers and other disciplines is being organized in this project and how it fits within the didactical framework of the project. Within the first year, collaboration scenarios were executed and

Upload: independent

Post on 11-Nov-2023

2 views

Category:

Documents


0 download

TRANSCRIPT

1  

Digital  communication  in  multi-­‐disciplinary  teams  Preparing  students  for  a  future  building  project  context  

Authors  Stefan  Boeykens  (1),  Pauline  De  Somer  (2),  Ralf  Klein  (2,3),  Dirk  Saelens  (2)  

(1) KU  Leuven,  Department  of  Architecture,  Urbanism  and  Planning  (2) KU  Leuven,  Department  of  Civil  Engineering  (3) KaHo  Sint-­‐Lieven  Campus  Gent  

Keywords  Education;  architecture;  engineering;  construction;  multi-­‐disciplinary;  multi-­‐campus;  Building  Information  Modeling;  Communication  

Abstract  The  construction  industry  is  currently  in  a  quite  important  phase  of  change  and  evolution  towards  better  productivity  and  efficiency.  The  way  project  partners  collaborate   is  being  redefined.  This  is  to  a  large  extent  due  to  an  ever-­‐increasing  building  project  complexity.  Projects  need  to  be  delivered  faster,  at  the  lowest  possible  cost  and  adhering  to  a  rising  set  of   performance   criteria,   such   as   energy   consumption,   structural   stability,   cost,  accessibility,  safety  and  many  others.  To  be  able  to  answer  these  demands,   the  different  stakeholders  in  construction  projects  will  work  together  in  Building  Teams  from  the  very  first  stages  of  the  project,  at  a  moment  where  many  design  decisions  still  need  to  be  made  and  thus  can  positively  influence  the  project  outcome.  New  evolutions  such  as  “Integrated  Project  Delivery”   (IPD)   and   the   “Building   Information  Modeling”   (BIM)  methodology   are  being   applied   to   manage   these   new   processes,   in   addition   to   a   wide   variety   of   digital  communication   techniques,   such   as   cloud   computing,  model   servers   and   online   audio-­‐  and  videoconferencing  technologies.  

The  COM.BI  project   is  a   two-­‐year  educational   innovation  project  at   the  KU  Leuven  Association   in   Belgium   (Reference   OOF   2011/24),   where   different   construction-­‐related  schools  are  working  together  to  better  prepare  students  for  this  future  building  practice.  The   partners   in   this   project   introduce   students   to   these   technologies   and  methods,   by  organizing   information   and   learning   events   and   by   organizing   collaborative   exercises,  over  the  traditional  school  borders.  This  is  done  by  organizing  multi-­‐disciplinary  building  teams   that   use   digital   communication   techniques   to   work   together   and   by   including   a  reflection  phase  to  force  students  to  question  the  used  processes  and  methods.  

This   paper   describes   how   the   collaboration   between   architects,   engineers   and   other  disciplines   is   being   organized   in   this   project   and   how   it   fits   within   the   didactical  framework  of  the  project.  Within  the  first  year,  collaboration  scenarios  were  executed  and  

2  

evaluated  to  be  refined  during  the  second  year.  In  addition,  feedback  from  a  regional  BIM-­‐focused  workshop  with   educational   and   professional   external   parties,   confirmed   on   the  objectives.  At  the  end  of  the  project,  the  collaboration  activities  will  be  fully  integrated  in  the   different   curricula   involved   in   the   project,   to   ensure   the   longevity   of   the   project  results.  

Problem  Statement  &  Context  When   teaching   students   of   architecture   or   other   related   disciplines,   there   is   little  opportunity  of  embedding   them  in   life-­‐like  scenarios   that  mimic   their   later  professional  career.   Students   of   different   profiles   hardly   ever   meet   during   their   curriculum,   even  though   they   will   have   to   work   together   in   construction   projects   and   on   building   sites.  Internships  in  architectural  or  engineering  offices  are  but  one  method  of  preparing  them  and  allowing   them   to   experience  what   a   future   job   could  mean.  However,   there   is   only  limited   time   to   include   internships   as   part   of   the   curriculum   (e.g.   between   semesters).  Moreover,  since  places  are  often  limited,  alternatives  are  welcome.  

Within   the   OOF  2007/24   educational   innovation   project   on   multi-­‐disciplinary  collaboration   using   building   teams,   it   was   concluded   that   students   do   not   often   fully  understand  the  importance  and  correct  execution  of  collaboration  inside  a  building  team.  As  members  of  such  a  team  they  need  to  make  appointments,  assign  responsibilities  and  tasks,  utilize  the  relevant  communication  tools  or  set  up  systems  for  sharing  documents  and   models.   While   they   are   familiar   with   current   communication   technology   such   as  chatting,   text  messaging   and   especially   social  media   sites   (e.g.   Facebook),   they   are   not  very   aware   of   how   and   when   to   apply   them   properly   during   project   collaboration.  Similarly,   cloud-­‐based   systems   for   file   sharing,   such   as   the   Dropbox   service,   are   not  applied  in  a  structured,  thought-­‐out  way.  Communication  itself  proved  to  be  an  important  bottleneck  for  collaboration  in  a  building  team.  

The  COM.BI  Project  (OOF  2011/24)  that  is  described  in  this  article  extends  upon  this  previous  project,  precisely  by   focusing  more  on  means  of  digital   communication  and   in  addition   applying   the  BIM  methodology.  This   is   especially   important   as   future  building  project   collaboration   specifically   implies   an   increased   usage   of   digital   communication  tools  and  digital  building  models.  

Within  building  teams,  all  actors  collaborate  and  provide  mutual  feedback  on  an  equal  level.   When   architects   present   a   design   proposal,   it   can   be   directly   evaluated   on  performance  or  constructability  and  the  project  cost  is  continuously  monitored.  Partners  deliberately  gather  to  improve  project  quality.  Such  collaboration,  from  the  beginning  of  the   building   process,   is   very   relevant   in   a   context   of   increasing   complexity,   rising  performance  requirements  and  more  stringent   time  schedule   reductions.  Many  building  owners   start   to   request   such   collaboration,   where   design   and   analysis   of   financial,  energetic,  structural  and  other  performance  aspects  are  elaborated  in  parallel.  Reduction  of   the   cost   of   failures   is   one   of   the   reasons   to   require   all   this   expertise   upfront,   at   the  beginning  of  the  building  project.  

Students  need   to   learn   their  position  and   responsibilities  within   this   global  building  and   design   process   and   learn   to   understand   how   to   use   communication   properly,   to  enable  productive  collaboration.  Moreover,  it  is  important  that  students  learn  about  other  

3  

disciplines,   to   better   understand   where   their   own   expertise   stops   and   assistance   from  other   experts   is   demanded.   By   receiving   feedback   from   other   disciplines,   the   building  project   can  be   examined   from  a  different  point-­‐of-­‐view,  which   can   lead   to  better,  more  qualitative  results.  

As  was  noticed  during  previous  projects,  students  within  an  architectural  school  often  had   no   idea   what   students   from   other   construction-­‐related   schools   were   doing,   which  came  to  them  as  quite  a  shock.  

Goals  and  objectives  The  COM.BI  project  has  three  main   learning  objectives.   (1.)  To  experience  and  critically  evaluate   the   possibilities   and   difficulties   of   communication   and   information   exchange;  (2.)   to   manage   project   information   through   the   application   of   digital   building   models  (implying  BIM)  and  (3.)  to  gain  insight  into  the  synergy  of  a  building  project  team.  

These   goals   will   be   achieved   by   forming   a   (simulated)   building   project   team,   with  specific   attention   to   communication   and   information   management.   Students   will  collaborate   within   a   common   framework,   across   the   borders   of   different   construction-­‐related  disciplines.  

In  addition,   learning  material   and  domain  knowledge   is  prepared  and   shared  by   the  project  collaborators,  to  better  support  educators  that  intend  to  embed  these  objectives  as  part  of  their  courses.  

The   didactical   framework   that   is   being   elaborated   during   the   funded   two-­‐year  timeframe  needs  to  be  implemented  and  embedded  in  the  respective  curricula  to  ensure  sustainable   project   results.   While   the   specific   collaboration   activities   are   inherently  domain-­‐specific,   such   as   the   assessment   of   energy   performance   or   the   elaboration   of   a  construction   roadmap   for   a   particular   design,   the   generic   didactical   structure   can   be  shared   with   other   educational   institutes   and   interested   third-­‐parties,   allowing   them   to  apply  similar  collaborations,  even  when  applied  in  different  domains.  

Challenges  It   was   understood   from   the   start   of   the   project   that   several   aspects   complicate   the  collaboration  activities.  

The  organization  of  digital  communication  and  information  exchange  requires  proper  technical   knowledge   and   understanding   of   different   communication  methods,   software  tools   and   best   practices.   This   is   complicated   by   incompatible   software   systems,  application   versions   and   proprietary   data   formats   that   can   only   be   used   in   a   single  application.  E.g.  Autodesk  Revit  does  not  support  saving  models  for  a  previous  version  of  the  program,  making   it   impossible   to  cooperate  with  someone  who  works   in  a  different  version  of  the  software.  

In   addition,   there   are   several   modes   of   communication,   which   can   differ   in   time  (synchronous  and  asynchronous)  and  place,  as  the  different  involved  curricula  are  located  in  different  cities  throughout  our  region.  Students  should  obtain  an  understanding  of  the  suitability  of   these  modes   in  a  given  situation.  E.g.  an   interactive,   real-­‐time  chat  session  presents  other  opportunities  than  an  asynchronous  e-­‐mail  exchange.  Moreover,  there  are  different  maturity   and   experience   levels   between   participating   students,   as   Professional  

4  

and   Academic   Bachelor   and   Master   students   are   involved.   This   is   also   exemplified   by  “cultural”   differences.   Whereas   students   in   architecture   are   famous   for   occasionally  continuing   a   project   till   late   at   night   before   a   deadline,   this   is   uncommon   with  engineering  students  and  can  lead  to  frustration  during  collaboration.  

The   different   roles   in   the   building   team   should   not   be   underestimated   either.   By  effectively   taking   on   a   particular   role,   students   discover   their   specific   tasks   and  responsibilities.   This   is   advantageous   over   the  more   traditional   approach   of   the   design  studio  teacher  or  tutor  taking  on  the  different  roles  themselves  towards  the  student,  such  as   building   owner,   contractor   or   consultancy   office.   In   traditional   group   work   in   the  design  studio,  all  students  usually  take  on  the  role  of  the  designer.  

Students  from  different  curricula  speak  a  different  language,  as  was  noticed  during  the  previous  project  and  during  the  first  phase  of  the  current  project.  While  an  architect,  an  engineer   and   a   building   contractor   use   similar   terms,   they   sometimes   imply   a   very  different  meaning  within  their  own  context.  E.g.  for  an  architect,  the  floor  belongs  as  part  of   the   story   above,  where   the   activity   occurs,  whereas   an   engineer   looks   at   the   floor   as  forming  a  load  above  the  beams  and  columns  from  the  story  below.  

There  are  also  concerns  about  the  different  time  restrictions  when  collaborating  with  students   from  different  courses,  as  each   involved  course  can  have  a  different  amount  of  credits   and   expected   efforts.   This  was   experienced  when   architecture   students   taking   a  5  credit  course  could  not  motivate  engineering  students,  for  whom  the  participation  only  represented  1  credit  from  another  course.  

Furthermore,   it   can   also   be   challenging   to   properly   convince   tutors   and   teaching  assistants   of   the   added   value   of   a   multi-­‐disciplinary   collaboration.   There   are   different  teaching  cultures  between  participating  institutions.  During  the  first  phase,  some  teachers  saw   the   collaboration   efforts   mostly   as   an   additional   burden   on   their   tasks,   without   a  direct   benefit.   This   was   partly   remedied   by   changing   the   collaboration   in   the   second  phase  to  other  courses,  where  project-­‐partners  are  more  involved  and  thus  motivated  to  take  on  the  extra  efforts  caused  by  the  collaboration.  Timely  involvement  of  the  teaching  staff  is  paramount  to  ensure  everybody  is  working  towards  the  same  goals.    

The  Challenge  of  using  BIM  in  the  design  studio  In  most  architectural  schools,  traditional  2D  CAD  drafting  is  still  prevalent,  while  the  use  of   3D   is   limited   mostly   to   representation   and   visualization.   Furthermore,   some   design  studio   teachers   exhibit   hesitation   or   even   a   negative   attitude   towards   BIM,   effectively  warning   students   against   the   application   of   BIM.   Some   of   their   concerns   could   be  countered,   at   least   partially,   by   providing   additional   guidance   and   learning   material,  liberating   design   studio   teachers   a   bit   from   the   difficulties   students   encounter   while  learning  BIM.  Ambrose  (2012)  specifically  argues  that  “abstraction  is  at  the  heart  of  most  design  studios   in  schools  of  architecture”,  whereas  BIM  presents  a  “way  of  thinking  that  seeks   to   simulate   the   construction   of   a   building”.   Most   design   studio   teachers   are  practicing   architects,   but   many   of   them   still   rely   on   traditional   2D  CAD   for  documentation  and  drafting.  However,  as  further  confirmed  by  Ambrose,  BIM  is  a  design  methodology  and  not  just  a  tool  and  “the  way  we  make  architecture  is  being  transformed  through   the   very   digital   tools,   methods   and   processes   we   use”.   Berwald   (2008)   also  

5  

describes  how  BIM  will  alter  architectural  education,  even  against  the  prejudice  that  BIM  might   hinder   design   creativity.  While   on   the   one   hand,   BIM   provides   convenience,   by  offering  pre-­‐defined  materials,  assemblies  or  optimized  modeling  tools  or  wizards,  it  also  presents   complexities   that   are   not   encountered   with   traditional   drawing   methods.  Berwald   (2008)   argues   that   “creating   new   objects   […]   requires   relatively   fewer   skills”   in  2D  CAD   when   compared   with   setting   up   custom   objects   or   components   for   BIM.   In  2D  drafting  a  single  set  of  methods  can  be  applied  to  represent  anything.  

In   the   long   term,   BIM   should   be   accepted   as   a   methodology,   rather   than   as   a  representational  software  tool  and  should  be  provided  sufficient  support  beyond  a  single  introductory  course.  This  is  in  line  with  the  evolution  of  BIM  from  being  used  locally,  as  an   internal  method   inside  an  architectural  or  engineering  office,   towards  a  more  global,  collaborative  usage  among  project  partners.  Jernigan  (2008)  dubs  this  “Little  BIM”  versus  “BIG  BIM”.  

Reflections  after  the  first  project  phase  Within   the   previous   OOF  2007/24   project,   collaboration   and   working   in   design   teams  where  the  primary  focus.  After  the  first  phase  of  the  COM.BI  project,  some  collaboration  scenarios  have  already  been  implemented  and  a  few  alterations  were  required.  

Some  of  the  groups  during  the  first  project  phase  did  not  see  themselves  as  part  of  a  group  and  hardly  communicated  with  their  peers.  It   is  therefore  important  to  effectively  bring   together   students   from   the   start   of   the   actual   collaboration.   At   first,   this   allows  students  to  get  to  know  their  team  members  during  a  so-­‐called  forming  stage  (Verclyte  and  Dekeyser,  2003),  to  smoothen  the  collaboration  stage.  Students  will  be  more  willing  to  have  regular  communications  with  their  team  members.    

During  the  first  meeting,  students  and  teachers  give  each  other  oral   instructions  and  explain  their  assignment.  While  they  work  on  the  same  project,  they  have  different  tasks  and  will  be  graded  on  different  criteria.  Students  really  required  clear  and  unambiguous  instructions,   in  addition  to  understanding  the  task  of  other  students,   to  better  see  what  they  need  to  achieve  as  a  group.  

It   is   important   that   time   is   foreseen   to   practice   digital   communication   tools.  While  students   might   be   aware   of   some   of   the   technologies,   they   might   not   always   fully  understand  how  they  can  be  used  properly.  This  was  especially  apparent  when  using  web-­‐conferencing.   In   general   it   takes   about   half   an   hour   (ore   even   more)   of   testing   the  technology,   installing   required   software   components   and   setting   up   microphone   and  headphones.  Even  when  all  technical  requirements  are  met,  it  is  necessary  to  learn  how  to  properly   “talk”   in   a   virtual,   online   group.   These   experiences   were   used   for   additional  guidelines,   to   clarify   the  different   roles.  Full  video-­‐conferencing  was  also  organized,   in  a  dedicated   and   adequately   equipped   room,   using   high-­‐quality   microphones   and   large-­‐screen  video  transmission.  However,  such  facilities  were  not  available  on  all  locations  and  this  could  not  compete  with   the  convenience  of  web-­‐conferencing,  where   students  work  on   their   own   laptop,   from   any   location   with   reasonable   Internet   connection.   Proper  introduction  and  guidance  to  the  usage  of  such  tools  is  absolutely  necessary,  as  students  would  fall  back  on  their  trusted  current  habits,  even  though  they  might  not  be  the  most  appropriate.   That   said,   during   the   first   project   phase   it   was   noticed   that   most  

6  

communication  was  not  so  smooth.  The  collaboration  itself  required  more  tutor  guidance  as  well.  When  using  web-­‐conferencing,  moderating  the  session  proved  really  helpful.  

In  addition,  meeting  each  other  during  the  preliminary  design  phase  is  obviously  more  effective  to  be  able  to  anticipate  adjustments  to  reach  the  required  building  performance.  The  group  acts  as  a  team  with  equal  roles,  as  equal  partners.  While  still  not  common  in  our  regional  building  practice,  working  in  building  teams  is  gaining  acceptance,  especially  when  combined  with  BIM.  

Based   on   these   experiences,   it  was   decided   to   take   on   a  more   gradual   approach.   By  focusing   on   actual   information   exchange   processes,   the   chances   of   communication  problems   diminish.   This   involves   a   mixture   of   live   and   virtual   meetings,   BIM   model  exchanges   but   also   generic   CAD   drawings,   for   situations   where   students   are   not   using  BIM  at  all.  

Methodology  

Educational  Methodology  The  notion  of  “Constructivism”  (Dochy  et  al.,  2000)  from  didactic  literature  is  followed  in  the  next  section,  applied  in  the  context  of  project-­‐based  education  of  the  COM.BI  project.  

Learning  is  active:  students  will  elaborate  the  learning  material  at  their  own  pace.  They  are  requested  to  structure  and  assimilate  this  more   independently,   instead  of  relying  on  classroom   explanation.   Working   in   team   on   a   project   is   not   a   very   common   learning  format   in   higher   education,   although   it   is   more   widely   applied   in   architectural   and  engineering  schools.  

Learning   is   cumulative:   assimilating   new   knowledge   always   builds   on   previous  gathered  knowledge.  All  students  are   familiar  with  digital  communication  tools,  such  as  Facebook,   Skype   or   services   like  Dropbox,   but   they   are   not   familiar   with   how   to   apply  these   tools   in   a   collaborative   situation.   This   is   something   that   they   can   learn   in   this  project.  In  addition,  while  the  involved  students  of  architecture  are  well  acquainted  with  the   design   process,   they   lack   the   construction   execution   skills   from   students   from   the  professional  bachelor   in  construction.  By  receiving  feedback  from  other  disciplines,  they  gather  new  knowledge,  directly  applied  in  their  own  context  and  activity  and  which  can  be  related  to  their  already  established  knowledge  structures.  

Learning   is  constructive:   the  collaborative  assignments  places  emphasis  on  the  whole  building  process.  Links  between  different  disciplines  are  established.  Students  learn  each  other’s  tasks  and  responsibilities  and  how  to  apply  them  into  the  building  process.  

Learning   is   context-­‐based:   by   applying   their   assignment   in   a   fairly   realistic   context,  they   are   prepared   for   a   future   professional   context,   where   similar   collaborations   will  occur.  

Learning   is  meaningful:   the   received   learning  material   and   information   is   applicable.  The  gained  knowledge  can  be  applied   in  their   later  professional  working  context,  which  can  be  a  motivating  factor  for  students.  

Learning  is  a  cognitive  conflict:  looking  for  a  solution  presents  a  challenge  for  students.  The  cognitive  conflict  is  presented  here  as  an  actual  construction  problem.  

7  

Learning  is  a  matter  of  extensive  practice:  students  need  to  apply  their  knowledge  in  a  variety  of  situations.  They  are  presented  with  an  unsolved  (at  least  for  them)  problem  and  need  to  apply  their  knowledge  (again)  in  a  new  situation.  In  this  project,  this  implies  both  the   knowledge   obtained   on   communication   tools   as   knowledge   on   the   specific   context  (construction,  building  performance  and  BIM).  

Knowledge   originates   and   evolves   in   a   social   context:   collaboration   will   improve  learning  results.  

Learning   is   self-­‐regulating   and   purpose-­‐oriented:   students   need   to   formulate   targets  and   have   to   take   responsibilities   to   obtain   them.   They   are   requested   to   plan   their  communications   and   collaboration.   While   the   actual   planning   and   execution   is   not  provided  for  them,  it  is  imperative  that  tutors  provide  a  good  structure  or  framework,  as  will  be  described  further  on  in  this  article.  

Collaborative  aspects  Capabilities   in   collaboration,   communication   and   information   management   can   be  noticed   in   this   project.   Dijkstra   (ND)   mentions   collaboration   capabilities   explicitly  referring   to   Fogarty   (1999),   who   distinguishes   between   four   different   collaboration  capabilities:  

(1) Leadership  capabilities:  control,  encourage,  taking  responsibilities;  (2) Communication  capabilities:  letting  others  talk,  explain,  listen;  (3) Conflict  resolution  capabilities:  compromise,  respect  alternative  opinions;  (4) Team  building  capabilities:  involve  others,  share  material,  and  identify  with  a  group.  

This   project   presents   an   opportunity   to   practice   all   these   capabilities   through  collaboration   activities.   There   are   three   distinct   collaboration   scenarios   that   are  elaborated  in  this  project.  To  assess  the  effectiveness  of  the  collaborations,  students  reflect  on  the  chosen  communication  method  and  on  the  collaboration  process  using  surveys  and  peer  assessment.  

The  first  collaboration  occurs  synchronously  between  master  students  in  architecture  and  professional  bachelor  students  in  construction.  The  architecture  students  work  on  a  zero-­‐impact   building   project,   which   is   elaborated   and   evaluated   by   the   construction  students,  who   translate   certain  building  element   connections   into   a   logical   and   feasible  construction   sequence,   to   take   the   proposed   solution   into   a   planning   process   for   a  contractor.  This  is  also  used  to  prepare  a  cost  calculation.  While  the  architects  are  using  a  combination  of  CAD  and  BIM  to  model   their  design,   it  was  decided,  based  on  available  knowledge  and  guidance,  to  stick  with  CAD  drawings  exclusively  for  the  exchange.  

8  

 Figure  1:  physical  meeting  between  students,  discussing  their  design  on  the  computer.  

 Figure  2:  physical  meeting  between  students,  discussing  their  design  on  the  computer.  

9  

A   second   collaboration   involves   master   students   in   civil   engineering   and   bachelor  students   in   architecture-­‐engineering.   The   first   group   is   quite   experienced   in   the  calculation  and  simulation  of  building  performances  and  technical  installations,  while  the  latter  has  had  no  prior   introduction  to  building  physics  and  energy  performance  at   that  time  in  their  curriculum.  They  will  learn  these  aspects  at  a  later  phase,  so  receiving  some  insights  on  the  actual  performance  of  their  design  is  a  valuable  feedback.  Both  groups  are  learning  BIM  and  the  collaborative  aspects  of  BIM  are  seen  as  an  important  added  value  in  the   curriculum.   However,   for   various   reasons,   they   both   use   different   BIM   software  (Graphisoft  ArchiCAD  or  Autodesk  Revit).  The  architecture-­‐engineering  students  will  form  groups   to   elaborate   selected   designs   using   BIM   and   provide   the  models   in   the   neutral  Industry   Foundation   Classes   (IFC)   format   to   the   engineering   students,   to   calculate   the  energy  performance  and  to  design  an  HVAC-­‐system.  Mitchell  at  al.  (2007)  and  Hitchcock  and   Wong   (2011)   already   investigated   how   IFC   can   be   used   for   thermal   analysis,   by  exchanging  models  between   architects   and   engineers   and  how   specific  model   views   are  set  up  to  aid  the   information  exchange.  This  collaboration  has  both  synchronous  and  a-­‐synchronous   aspects,   as   a   combination   of   a   physical   common   meeting   and   online  information  exchange,  using  any  of  the  available  technologies,   if  deemed  appropriate  by  the  students.  

A   third   collaboration   involves   a   group   of  master   students   from   different   disciplines  (architecture,   engineering   and   energy)   who   are   asked   to   make   energy   performance  simulations   for   existing   buildings.  While   they   had   to   survey   and   draft   the   investigated  buildings  in  the  past,  it  was  opted  to  utilize  BIM  models  provided  by  architecture  students  from  another  school,  created  as  part  of  their  BIM  modeling  learning  process.  Since  these  two  exercises  occur  in  parallel,  the  models  from  one  year  can  only  be  provided  during  the  next   year,   so   this   is   a   fully   a-­‐synchronous   collaboration.   For   the   first   year,   project  collaborators  prepared  the  BIM  models  instead.  

It   is   good   to   understand   that   collaborations   during   the   course   of   the   project   are  usually  executed  with  a  subgroup  of  students.  This  helped  to  evaluate  the  project  after  the  first  year  and  allowed  some  alterations.  As  a  consequence,   student   feedback  was  mostly  qualitative   and   subjective.   As   some   groups   only   contained   about   10  students,   it   is   not  relevant  to  derive  any  statistically  meaningful  trends.  

Organization  of  a  BIM  Workshop  At  the  end  of  the  first  year,  a  regional  BIM  workshop  was  organized  for  teachers,  software  vendors  and  professionals  to  present  the  approach  of  the  COM.BI  project  and  to  receive  input  from  the  local  construction  industry  on  the  status  and  demand  for  BIM.  Break-­‐out  sessions  were  used  to  actively  involve  attendants  in  thematic  discussions.  The  event  was  also  used  to  present  the  current  state-­‐of-­‐the-­‐art  of  BIM  and  where  it  is  evolving  regionally  and   globally.   The   workshop   helped   to   refine   the   collaboration   scenarios,   check   the  demand   for   BIM   from   the   regional   industry   and   to   further   improve   the   project  methodology.  

10  

 Figure  3:  BIM-­‐workshop  and  break-­‐out  session  

Attendance   was   above   expectations   and   confirmed   the   growing   interest   in   BIM.  Participants  explicitly  appreciated  this  push  for  our  local  region.  In  return,  they  helped  us  to  orient  the  project  as  good  as  possible  and  bring  it  in  line  with  recent  methods  that  are  under  development  in  our  region  and  beyond.  

Implementation  and  project  output  

Prepared  teaching  material  To  assist  the  collaborations,  students  were  given  guidelines  to  receive  an  overview  of  the  collaboration   process   and   to   assist   them   with   agreements   and   requirements.   Several  documents  have  been  set  up  for  the  students.  

The   “building   team   file”   is   based   on   an   IPDP   (Integrated   Project   Delivery   Protocol)  document  set  up  by  a  local  BIM  software  vendor  (Kubusinfo,  ND).  This  document  focuses  on  how  to  organize  BIM-­‐based  project  collaboration,  by  specifying  agreements,  tasks  and  responsibilities,  planning  (using  a  Gantt  chart),  deadlines  and  the  used  technologies  and  document   formats.   The   building   team   file   consists   of   a   series   of   questions,   to   force  students  to  reflect  on  several  aspects  and  to  assist  the  task  assignment  between  their  team  members.  They  are  free  to  distribute  the  workload  however  they  see  fit.    

A  second  series  of  documents  are  output  reports,  presented  as  structured  documents  to  be  filled-­‐in  by  the  students.  They  contain  the  “building  team  report”  and  a  “log  book”  to  be   completed   after   each   collaboration   moment.   At   the   end   of   the   project,   a   “peer  assessment   questionnaire”   evaluates   the   involvement   of   all   team   partners.   This   will   be  completed   together   with   the   final   submissions   of   the   building   models,   the   building  performance  analysis  report  and  the  “final  reflection  report”.  These  documents  are  part  of  the   students’   reflection  on   their   learning   trajectory,  which   is  paramount   for  a  conscious  and  controlled  learning  process,  referred  to  as  a  “meta-­‐cognitive  process”  by  Dijkstra  (ND).  

Several   self-­‐reflecting   questions   are   posed   during   these   evaluations.   But   to   arrive   to  this   point,   teachers   need   to   create   situations   that   foster   this   kind   of   questions.   One  possible  approach  is  the  organization  of  a  frequent  evaluation  roundtable  discussion,  with  the   teacher   asking   these   reflective   questions.   Another   approach   is   the   completion   of  questionnaires,   individually   or   as   a   group,   using   questions   such   as   “What   went   right?”  “What  went  wrong?”  and  “How  do  I  continue  from  here?”  

11  

In  this  project,  students  are  explicitly  asked  to  reflect  on  the  status  of  their  work,  the  collaboration  and  the  used  communication  methods.  The  “building  team  report”  is  used  to  collect   these   answers.   In   addition,   this   is   also   asked   at   the   end   of   the   collaboration,  through   the   “final   reflection   report”   and   the   peer   assessment.   It   is   important   that   the  process  and  the  collaboration  itself  are  also  evaluated  as  for  the  perceived  effectiveness  or  to  identify  bottlenecks.  

Shared  introductory  presentations  To   guide   students   to   the   concepts   of   BIM   and   building   team   collaboration,   several  introduction   presentations   were   set   up.   They   are   being   shared   and   extended   between  project  partners.  

A   first   presentation   is   a   general   introduction   to   Building   Information   Modeling  (http://prezi.com/ppmsvvw_el0a/presentatie-­‐bim),  which  explains  its  main  concepts  and  advantages.   This   is   accompanied   by   a   second   presentation   focusing   on   information  exchange  and  communication  methods  applied  in  the  context  of  a  building  project  team  (http://prezi.com/gxxttvqkmnwr/samenwerking).   A   third   presentation   discusses  performance  simulation  (http://prezi.com/6gqems1qkwov/simulatie-­‐en-­‐bim),  with  special  attention  to  energy  performance  and  technical  installations  and  how  information  can  be  derived  from  BIM  models.  Depending  on  the  audience,  one  or  more  of  these  presentations  are  combined  in  a  single  session.  

 Figure  4:  Prezi  Presentation  BIM  

Students  were  asked  to  fill  in  a  questionnaire,  forcing  them  to  reflect  on  the  concepts  of  BIM  and   the  possibilities   for   collaboration  during   the  building  process,  based  on   the  

12  

information   provided   during   the   presentation.   This   also   refined   the   presentations,  allowing  them  to  be  reused  and  shared  between  partners.  They  have  already  been  used  to  introduce  BIM  and  collaboration  to  other  audiences.  

Info  Evening  As   part   of   the   student   guidance,   dedicated   info-­‐evenings   are   organized,   where  professionals  present   their  usage  of  BIM  or   their   collaboration  activities  as  witnessed   in  their   practice.   This   increases   the   credibility   of   the   BIM   concepts   and   cooperation  methodology   and   proves   to   the   students   that   these   concepts   are   being   applied   in   the  construction  industry.  It  is  also  an  opportunity  to  present  certain  pitfalls  or  bottlenecks  in  the  current  practice.  

Feedback  and  evaluation  There  are  different  levels  of  feedback  identified.  

Within   the   collaboration   activities,   students   receive   project-­‐based   feedback   on   their  design.   This   is   mostly   noticeable   when   an   architectural   model   is   extended   with   an  engineering  model  and  the  performance  is  calculated.  This  will  lead  to  a  more  optimized  and  qualitative  design.  

There   is   also   process-­‐based   feedback,   where   students   are   asked   to   reflect   on   the  information  exchange  and  the  collaboration,  through  questionnaires  and  peer  assessment.  They  will  have  to  reflect  on  how  to  organize  the  collaboration,  when  to  communicate  and  ask  questions  on  how,  when  and  with  whom.  This   also   implies   a   reflection  on   the  BIM  methodology   itself,   which   is   very   important,   considering   the   current   state   of   rather  limited  BIM  adoption  in  our  region.  With  this  knowledge,  students  are  being  prepared  for  their   upcoming   professional   career,   where   such   processes   will   play   an   increasingly  important  role.  

Results  Even  though  the  project  is  still  ongoing  at  the  time  of  writing,  several  project  results  can  already  be  reported.  

(1) There  are  a  few  curriculum  refinements  within  the  involved  schools  that  participate  in  this  project.  

(2) Insights  and  results  are  being  shared  between  partners  and  are  being  made  available  for  other  interested  parties  as  well,  through  the  project  website  (http://caad.asro.kuleuven.be/BIM/CMS/).  

(3) Learning  material,  either  set  up  as  part  of  a  particular  course  or  made  specifically  in  the  context  of  this  project,  is  being  shared  as  well.  This  includes  a  series  of  video-­‐tutorials  and  text-­‐based  documents,  which  can  be  useful  for  others  as  well.  They  are  being  linked  to  particular  courses  within  the  Toledo  system  (based  on  BlackBoard).  

The  project’s   success  will  be  measured  by  continued  collaboration,  after   the   funding  period.   The   aim   is   to   establish   a   regional   network   of   teachers,   researchers   and  professionals,  to  further  stimulate  the  education  and  application  of  BIM  in  our  region.  

13  

The   project   outcome   will   be   further   disseminated   to   other   involved   and   interested  parties   and   the   learning  outcomes  will  be   further  abstracted   to  be  more  applicable   into  other  domains,  which  broadens  the  validity  of  the  approaches  for  the  funding  body.  

Acknowledgements  This   project   was   funded   by   the   “Education   Development   Fund”   of   the   Association   KU  Leuven  Association,  with  reference  OOF  2011/24.  

The  project  also  builds  on  experience  gathered  during  a  previous  related  project  from  the   same   funding   body,   with   reference   OOF  2007/24,   focusing   on   multi-­‐disciplinary  collaboration  in  building  teams.  

Bibliography  Ambrose,  M.  A.  (2012).  Agent  Provocateur  –  BIM  In  The  Academic  Design  Studio.  International  Journal  of  Architectural  Computing,  10(01),  53–66.  doi:10.1260/1478-­‐0771.10.1.53  

Berwald,  S.  (2008).  From  CAD  to  BIM:  The  Experience  of  Architectural  Education  with  Building  Information  Modeling.  In  M.  Ettouney  (Ed.),  AEI  2008  (pp.  1–5).  Reston,  VA:  American  Society  of  Civil  Engineers.  doi:10.1061/41002(328)8  

Dijkstra,  R.  (Not  Dated).  Coöperatief  leren  door  Rinse  Dijkstra.  (PDF  from  http://lerendoejezelf.be/nl/node/372).    

Dochy,  F.,  Heylen,  L.,  &  Van  De  Mosselaar,  H.  (2000).  Coöperatief  leren  in  een  krachtige  leeromgeving.  Handboek  probleemgestuurd  leren  in  de  praktijk.  (p.  152).  Leuven:  Acco.  

Fogarty,  R.  (1999).  Hersenwerk  in  de  klas  (Dutch  translation).  Utrecht  (NL):  APS.  

Hitchcock,  R.  J.,  &  Wong,  J.  (2011).  Transforming  IFC  Architectural  View  BIMS  for  Energy  Simulation:  2011.  Proceedings  of  Building  Simulation  2011:  12th  Conference  of  International  Building  Performance  Simulation  Association  (pp.  1089–1095).  Sidney  (Australia).  

Jernigan,  F.  E.  (2008).  BIG  BIM,  Little  BIM  (Second  Edition,  p.  328).  4Site  Press.  

Kubusinfo  (Not  Dated).  IPDP-­‐Protocol  (PDF  downloaded  from  http://kubusinfo.nl/OpenBIM-­‐solutions/OpenBIM/IPDP-­‐protocol).  

OOF  2007-­‐24:  ‘Ontwerpen  in  multidisciplinaire  teams  (multi-­‐disciplinary  collaboration  in  building  teams)’  (2009),  Internal  final  report  

Verclyte,  G.,  &  Dekeyser,  L.  (2003).  Klasmanagement  :  methodisch  werken  met  de  klas  als  groep  (p.  124).  Wolters  Plantyn.