agricultural production economics - university of kentucky

100
Agricultural Production Economics THE ART OF PRODUCTION THEORY THE ART OF PRODUCTION THEORY DAVID L. DEBERTIN University of Kentucky This is a book of full-color illustrations intended for use as a companion to 428-page Agricultural Production Economics, Second Edition. Each of the 98 pages of illustrations is a large, full-color version of the corresponding numbered figure in the b k A i lt lP d ti E i S d Editi Th book Agricultural Production Economics, Second Edition. The illustrations are each a labor of love by the author representing a combination of science and art. They combine modern computer graphics technologies with the author’s skills as both as a production economist and as a technical graphics artist. T h l i di ki th ill t ti t th l ti Technologies used in making the illustrations trace the evolution of computer graphics over the past 30 years. Many of the hand- drawn illustrations were initially drawn using the Draw Partner routines from Harvard Graphics®. Wire-grid 3-D illustrations were created using SAS Graph®. Some illustrations combine hand-drawn lines using Draw Partner and the draw features of Mi f P Pi ® ih d hi f Microsoft PowerPoint® with computer-generated graphics from SAS®. As a companion text to Agricultural Production Economics, Second Edition, these color figures display the full vibrancy of the modern production theory of economics.

Upload: khangminh22

Post on 16-Jan-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

Agricultural Production Economics

THE ART OF PRODUCTION THEORYTHE ART OF PRODUCTION THEORY

DAVID L. DEBERTINUniversity of Kentucky

This is a book of full-color illustrations intended for use as a companion to 428-page Agricultural Production Economics, Second Edition. Each of the 98 pages of illustrations is a large, full-color version of the corresponding numbered figure in the b k A i lt l P d ti E i S d Editi Thbook Agricultural Production Economics, Second Edition. The illustrations are each a labor of love by the author representing a combination of science and art. They combine modern computer graphics technologies with the author’s skills as both as a production economist and as a technical graphics artist.

T h l i d i ki th ill t ti t th l tiTechnologies used in making the illustrations trace the evolution of computer graphics over the past 30 years. Many of the hand-drawn illustrations were initially drawn using the Draw Partnerroutines from Harvard Graphics®. Wire-grid 3-D illustrations were created using SAS Graph®. Some illustrations combine hand-drawn lines using Draw Partner and the draw features of Mi f P P i ® i h d hi fMicrosoft PowerPoint® with computer-generated graphics from SAS®. As a companion text to Agricultural Production Economics, Second Edition, these color figures display the full vibrancy of the modern production theory of economics.

© 2012 David L Debertin© 2012 David L. Debertin

David L. DebertinUniversity of Kentucky,Department of Agricultural Economics400 C.E.B. Bldg.Lexington, KY 40546-0276

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, without permission from the author.

Debertin, David L.Agricultural Production EconomicsThe Art of Production TheoryThe Art of Production Theory

1. Agricultural production economics2. Agriculture–Economic aspects–Econometric models

ISBN- 13: 978-1470129262 2

ISBN- 10: 1470129264

BISAC: Business and Economics/Economics/Microeconomics

SupplyPrice

Demand(New Income)

p

p

1

2

Demand(Old Income)

q Quantityq1 21 2

Figure 1.1 Supply and Demand

y y x= 2y y = 2x

yy = x0.5

1

xxA B

xC

Figure 2.1 Three Production Functions

C

y

D

y = f(x)

y

x

B

A x

2

Figure 2.2 Approximate and Exact MPP

SlopeEq als

yor

TPP

Slope EqualsMPP EqualsMaximumAPP Maximum

APP

EqualsZero

MaximumTPP

TPPy = f(x )

InflectionSlope

Equals

y = f(x1)

Inflection

Point

EqualsAPP

MPP

APPor

x

B

AMaximum

MPP

x x1 1

o *

1Maximum

APP

APP0 MPP

3

xMPP 1

Figure 2.3 A Neoclassical Production Function

TPP

120

140y = 136.96

TPP Maximum

TPP

80

100

y = 85.98

APP Maximum

40

60y = 56.03

MPP MaximumInflection Point

0

20

0 50 100 150 200

1

1.1

1.21.01 0.94 MPP = APP

60.87 91.30 181.60

x

MPPAPP

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

APP

0

0.1

0.2

-0.1

-0.2

-0.3

0 50 100 150 200

0 MPP

MPP

x

4

Figure 2.4 TPP, MPP and APP for Corn (y) Response toNitrogen (x) Based on Table 2.5 Data

MPP

+

0

fff

1

2

3

MPP

+

0

fff

1

2

3

MPP

+

0

fff

1

2

3

MPP

+

0

ff1

2

MPPMPP

MPP

MPP> 0> 0> 0

> 0> 0

= 0

> 0> 0< 0

> 0= 0

(a) (b) (c) (d)

- - - -

MPP

+

0

fff

1

2

3MPP

+

0

fff

1

2

3 MPP

+

0

fff

1

2

3

MPPMPPMPP

> 0< 0> 0

> 0< 0

= 0

> 0< 0< 0

(e) (f) (g)

-

MPP

+

0

fff

1

2

3

- -

MPP

+

0

fff

1

2

3

MPP

+

0

fff

1

2

3

MPP

+

0

ff1

2

MPP

< 0< 0< 0

< 0< 0

= 0

< 0< 0> 0

< 0= 0

(h) (i) (j) (k)

-

MPP

+

0

fff

1

2

3

-

MPP

+

0

fff

1

2

3

MPP

+

0

fff

1

2

3

- -MPP

MPP MPP MPP

MPPMPPMPP

< 0> 0> 0

< 0> 0

= 0

< 0> 0< 0

(l) (m) (n)

- - -

Figure 2.5 MPP’s for the Production Function y = f(x)

5

Ep

Ep Ep

> 1 0 < < 1 < 0MPP

APPor

y,

B

Ep> 1

A

B

E p =1

0

APP

xC

MPP-

6

Figure 2.6 MPP, APP and the Elasticity of Production

TVPTVP$

pyor

pTPPTVP

InflectionPoint

x

VMP

AVPpMPP

$

MFC

AVP

MFC

AVPpAPP

0

7

VMPx

Figure 3.1 The Relationship Between TVP, VMP, AVP, and MFC

ZeroSlope

TFCZeroProfit$

MaximumTVP

TVPMaximumProfit

MaximumAVP

Parallel

TVPTFC

InflectionP i t

ZeroProfit

MaximumVMP

ParallelPoint

MinimumProfit Maximum

Profit

X*MaximumVMP

VMP =MFC

MinimumProfitVMP =MFC

AVP =p APPo

MFC =v

x

v o

0

VMPAVPMFC

$

o

MaximumProfit

ZeroVMP

xVMP

0

0

Profit$$

8

MinimumProfit

ZeroProfit

ZeroProfitx*

Profit

x

Figure 3.2 TVP, TFC, VMP, MFC and Profit

600

547.86547.69$

300

400

500

520.62520.69

Profit

TVP

100

200

00 40 80 120 160 200 240

181.595179.322

x

500

600

546.28 547.86$

TFC

300

400

500467.69 466.14

Profit

TVP

100

200

174 642 181 595

TFC

Profit

9

00 40 80 120 160 200 240

174.642 181.595

x

Figure 3.3 TVP, TFC and Profit (Top and Second Panel)

500

600

541.26$

547.86

300

400390.75 384.42

100

200

181.595167.236

00 40 80 120 160 200 240

xFigure 3.3 TVP, TFC and Profit (Third Panel)

4

4.023.77

1.5

2

2.5

3

3.5

4$

AVP

0

0.5

1

-0.5

-1 VMP

MFC 0.90

MFC 0.45MFC 0.15

10

-1.50 40 80 120 160 200 240

x

Figure 3.3 Profit Maximization under VaryingAssumptions with Respect to Input Prices (Bottom Panel)

91.304 181.595179.322167.23660.870 174.642

10

y

TPP

A B C

Stage I Stage II Stage III

xy

MPP

APP

x

0

11

MPP

Figure 3.4 Stages of Production and the Neoclassical Production Function

CD

$

MFC

RevenuePer Unit

CostPerUnit

B

D

E

AVP

Loss

0x* x

VMP

A

Figure 3.5 If VMP is Greater than AVP, the Farmer Will Not Operate

$

MFCVMP

0

MFC

MFC

12

x

VMP

Figure 3.6 The Relationship Between VMP and MFC Illustrating the Imputed Value of an Input

SRMC1

SRAC2

SRMC5

SRAC5

LRAC

$

SRAC1SRMC2

SRAC2

SRMC3SRAC3

SRMC4

SRAC4

y

Figure 4.1 Short and Long Run Average and Marginal Cost with Envelope Long Run Average Cost

13

TCTC

VC orTVC

$Minimumslope ofTC

Minimumslope ofTVC

Inflection Point

FC

y

$

MC

AC*

MC

ACAVC

AVC*

B

A

14

FC = k

AFC*

Figure 4.2 Cost Functions on the Output Side

AFC

y

14

ACAFCAC

+

$

AVC

AVC AFC

AFC

MC

Stage II Stage III

0

AFCAFCAFC

y* y

-

MC

15

-

Figure 4.3 Behavior of Cost Curves as OutputApproaches a Technical Maximum y*

pp y

TC

TVC$

TR

$

Parallel

y

p

FC

Parallel

MC

y$

MR

AFC

AVC

ACMR = p

y

y0

$+ Zero

Profit

Maximum Profit

Profit

16

-Minimum Profit

Figure 4.4 Cost Functions and Profit Functions

500

600

$TR

300

400

500TC

VC

0

100

200 Maximum Profit

ProfitFC

7

0

-1000 20 40 60 80 100 120 140

Zero Profity = ~ 115

y

$

4

5

6

MR

$

AC

MC

1

2

3

AFC

ACAVC

17

00 20 40 60 80 100 120 140

AFC

y

Figure 4.5 The Profit-Maximizing Output Level Based on Data Contained in Table 4.1Based on Data Contained in Table 4.1

Y Y

MaximumTPP

MaximumAPP

45o

TPP

MaximumMPP

(InflectionPoint)

X Y

$$TVCTC = vx

Point)

V

X

MinimumAVC

MinimumMC(InflectionPoint)

v = price of x

YX

X

Figure 4 6 A Cost Function as an Inverse Production Function

18

Figure 4.6 A Cost Function as an Inverse Production Function

p3

AVC

MC = Supply

$

p1

p2

p3

y

Figure 4.7 Aggregate Supply When the Ratio MC/AC = 1/band b is less than 1

19

Y

Corn Yield

134

136

Y

120

136

114

121

127

130

20

40

6080

X120

40

60

8088

104

101

106

X

96

Figure 5.1 Production Response Surface Based on Data Contained in Table 5.1

8096 100 1101 120 129 134 134

115105 125

00

20X2

X2

50

60

70

80

129

125

120

10

20

30

40120

115

110

105

20

Figure 5.2 Isoquants for the Production Surface in Figure 5.1 Based on Data Contained in Table 5.1

X1Potash

00 10 20 30 40 50 60 70 80

105

20

x2

2x

21

2

1x

x

x x

y 0

1

2

x

x

Figure 5 3 Illustration of Diminishing MRS x x

1

21

Figure 5.3 Illustration of Diminishing MRS x1x2

Figure 5.4 Isoquants and a Production Surface (Panel A)

22

Figure 5.4 Isoquants and a Production Surface (Panel B)

Figure 5.4 Isoquants and a Production Surface (Panel C)

23

Figure 5.4 Isoquants and a Production Surface (Panel D)

Figure 5.4 Isoquants and a Production Surface (Panel E)

Y

167

250

1416

1820

1618

200

83

24Figure 5.4 Isoquants and a Production Surface (Panel F)

02

46

810

1214

02

46

810

1214

16

X2

X1

X1X2

Figure 5.5 Some Possible ProductionSurfaces and Isoquant Map A .The Production Surface

5

X1X2

X2

3

4

5

0

1

2

25

0

X10 1 2 3 4 5

Figure 5.5 Some Possible ProductionSurfaces and Isoquant Map B. The Isoquant Map

Y

6.67

10.00

68

10

68

100.00

3.33

02

46

X2

02

46

Figure 5.5 Some Possible ProductionSurfaces and Isoquant Map C . The Production Surface

X1

q p

X2

8

10

2

4

6

26

0

X10 2 4 6 8 10

Figure 5.5 Some Possible ProductionSurfaces and Isoquant Map D . The Isoquants26 q p q

YY

6.67

10.0

68

10

810

0.00

3.33

0

2

4

6

X2

0

2

4

6

Figure 5.5 Some Possible Production Surfaces and Isoquant MapsE. The Production Surface

X1

X2

6

8

10

2

4

6

27

0

X10 2 4 6 8 10

Figure 5.5 Some Possible Production Surfaces and Isoquant MapsF. The Isoquants

Y

3.67

6.83

10.00

2.44.3

6.28.1

10.0

2 44.3

6.28.1

10.0

0.50

X2X1

0.50.52.4

Figure 5.5 Some Possible Production Surfaces and Isoquant MapsK. The Production Surface

X2

10.0

X2

6.2

8.1

0.5

2.4

4.3

0.5 2.4 4.3 6.2 8.1 10.0

28

X1

Figure 5.5 Some Possible Production Surfaces and Isoquant MapsL. The Isoquants

Y

10.00

3.33

6.67

02

46

810

X2

02

46

8100.00

X1

00

Figure 5.5 Some Possible Production Surfaces and Isoquant MapsG. The Production Surface

10

X2

6

8

0

2

4

0 2 4 6 8 10

29

X10 2 4 6 8 10

Figure 5.5 Some Possible Production Surfaces and Isoquant MapsH. The Isoquants

Y

0.181

-0.100

0.040

2.4

4.3

6.2

8.110.0

2.4

4.3

6.2

8.110.0

X2 X1

-0.241

0.50.5

Figure 5.5 Some Possible Production Surfaces and Isoquant MapsI. The Production Surface

10 0

X2

6.2

8.1

10.0

0 5

2.4

4.3

30

0.5

X10.5 2.4 4.3 6.2 8.1 10.0

Figure 5.5 Some Possible Production Surfaces and Isoquant MapsJ. The Isoquants

3.0

x

1.8

for

Ridge Linefor x

x

x

x2 *2.4

2

1

Ridge Line

0.6

1.2

for x2

x2***

x2**

0.00.0 0.6 1.2 1.8 2.4 3.0

y

x 1

y = f (x 1 | x 2 *)

y = f (

y = f (x 1

x 1 x 2 *** |

| x 2** )

)

31

0.0 0.6 1.2 1.8 2.4 3.0x1

Figure 5.6 Ridge Lines and a Family of Production FunctionsFor Input x1

Y

50 00

Maximum

33.33

50.00

8

10

8

100.00

16.67

Figure 6 1 Alternative Surfaces and Contours Illustrating

0

2

4

6

X1X2

0

2

4

6

8

A. The Surface

Figure 6.1 Alternative Surfaces and Contours Illustrating Second Order Conditions

X2

8

10

2

4

6

Maximum

32

Figure 6.1 Alternative Surfaces and Contours Illustrating Second Order Conditions

B. The Contour Lines

0

X10 2 4 6 8 10

32

Y

-16.67

0.00

6

8

10

6

8

10-50.00

-33.33

Minimum

Figure 6.1 Alternative Surfaces and Contours Illustrating Second Order Conditions

C. The Surface0

2

4

6

X1X2

0

2

4

6

X2

8

10

2

4

6

Minimum

33

Figure 6.1 Alternative Surfaces and Contours Illustrating Second Order Conditions

D. The Contour Lines 0

X10 2 4 6 8 10

Y

25.00

8 33

8.33

25.00

Saddle

6

8

10

6

8

10-25.00

-8.33

0

2

4X1X2

0

2

4

6

Figure 6.1 Alternative Surfaces and Contours Illustrating Second Order Conditions

E. The Surface

Second Order Conditions

X2

8

10

2

4

6 Saddle

34

Figure 6.1 Alternative Surfaces and Contours Illustrating Second Order Conditions

F. The Contour Lines

0

X10 2 4 6 8 10

Y

8.33

25.00

Saddle

8

10

8

10-25.00

-8.33

0

2

4

6

X1X2

0

2

4

6

8

Figure 6.1 Alternative Surfaces and Contours Illustrating

G. The Surface

Second Order Conditions

X2

8

10

S

2

4

6 Saddle

35

Figure 6.1 Alternative Surfaces and Contours Illustrating Second Order Conditions

H. The Contour Lines0

X10 2 4 6 8 10

Y

220

127

47

220

Saddle

1

3

5

1

3

5-300

-127 Saddle

Figure 6.1 Alternative Surfaces and Contours Illustrating Second Order Conditions

-5

-3X1X2

-5

-3

-1

-1

I . The Surface

X2

1

3

5

Saddle

-3

-1

36

Figure 6.1 Alternative Surfaces and Contours Illustrating Second Order Conditions

J. The Contour Lines-5

X1-5 -3 -1 1 3 5

Y

200

-147

27

Saddle

1

1

3

5

1

3

5-320

Figure 6.1 Alternative Surfaces and Contours Illustrating Second Order Conditions

-5

-3

-1X1X2

-5

-3

-1

K. The Surface

X2

3

5

-3

-1

1Saddle

37Figure 6.1 Alternative Surfaces and Contours Illustrating

Second Order Conditions

I. The Contour Lines -5

X1-5 -3 -1 1 3 5

Y

379

Global Maximum

126

253

379

Saddle Local MaxLocal MaxSaddle

48

1216

20

X24

812

16200

Top Panel

LocalSaddleSaddle

Local Max

Minimum

X1

Figure 6.2 Critical Values for the Polynomial y = 40 x1 – 12 x12

+ 1.2 x13 –0.035x1

4+ 40 x2 – 12 x22 + 1.2 x2

3 –0.035x24

00

p

Figure 6.2 Critical Values for the Polynomial y = 40 x1 – 12 x12

38g y y 1 1

+ 1.2 x13 –0.035x1

4 + 40 x2 – 12 x22 + 1.2 x2

3 –0.035x24

X2

2 4

3.0C /v2

o

Expansion

1.2

1.8

2.4

v1

ExpansionPath

0.0

0.6

0.0 0.6 1.2 1.8 2.4 3.0

v

C /v1

2

o

Figure 7.1 Iso-outlay Lines and the Isoquant Map

Global Profit Maximum(Pseudo Scale Lines Intersect)$ (Ridge Lines Intersect)

Global Output Maximum

X1

Constrained Output Maxima(Bundle Allocated According toExpansion Path Conditions)

Price of the Input Bundle

39

The Input BundleX

VMP ofX

Figure 7.2 Global Output and Profit Maximization for the Bundle

Top Panel

Global Output Maximum(Ridge Lines Intersect)

Y

250

( g )

Global Profit Maximum(Pseudo Scale Lines Intersect)

83

167

Sample Isoquant(Constrained MaximumBelow Global Outputor Profit Maximum)

1012

1416

1820

1214

1618

200

83

02

46

810

12

X1

02

46

810

12

Figure 7.2 Global Output and Profit Maximization for the Bundle

Bottom Panel X2

40

X2

16

18

20

8

10

12

14

x2*

Point onRidgeLine

Point onPseudoScaleLine

2

4

6

8

0

X1

0 2 4 6 8 10 12 14 16 18 20

$ Profit Maximumfor x Holding

*

Output Maximumfor x1 Holding

x2 constant at x2*

2constant at x

2x

1

py = f (x1 | x2* ) = TVP

0 2 4 6 8 10 12 14 16 18 20

MFC = v1

41

X1

VMP x | x *2

Figure 7.3 Deriving a Point on a Pseudo Scale Line

1

X2

18

20GlobalProfitMaximum

GlobalOutputMaximum

12

14

16

18 Maximum Maximum

8

10

12IsocostLines

2

4

6X

X

00 2 4 6 8 10 12 14 16 18 20

Figure 7.4 The Complete Factor-Factor ModelX1

42

Y

Global Output Maximum

Gl b l P fit M i

167

250 Global Profit Maximum

ConstrainedOutput Maximum

83

Output Maximum

46

810

1214161820

0

24

68

1012

1416 18 20

X1X2 4

02

02

Figure 7.5 Constrained and Global Profit and Output Maxima along the Expansion Path

X2

43

$

Global Revenue Maximization

Global Profit Maximization

Revenue,Profit

153

250

153

250Global Profit Maximization

Ridge Line 1

Pseudo Scale Line 1

Ridge Line 2

Pseudo Scale Line 2

-40

57

16 18 201820-40

57

0 0

0 2 4 6 8 10 12 14 16

X1X2024681012141618

Total Revenue Surface Profit Surface

Figure 8.1 TVP- and Profit-Maximizing Surfaces

44

X2

16

18

20

16

18

20

Global Output Max

10

12

14

16

10

12

14

16

Global Profit Max

4

6

8

10

4

6

8

10

0

2

4

X0 2 4 6 8 10 12 14 16 18 20

0

2

4

0 2 4 6 8 10 12 14 16 18 20X1

Isorevenue Lines Isoprofit Lines

Figure 8.2 Isorevenue and Isoproduct Contours

45

x2Solution

Isoquant

y'

x

BudgetConstraint

1

Figure 8.3 A Corner Solution

46

Y

250

83

167

200

46

810

1214

1618

20

X168

1012

141618

A B C

0 02

4X22

46

Figure 8.4 A. Point B Less than A and C

Y

167

250

0

83

20

A B C

002

200

24

68

1012

1416

1820

X1X2 4

68

1012

1416

18

47Figure 8.4 B. Point B Equal to A and C

Y

167

250

B

20200

83

161818

A

B

C

002 2

46

810

1214

16

X1X2 4

68

1012

1416

18

Figure 8.4 C . Point B Greater than A and CY

167

250

B

83

CA

182020

0

02

46

810

1214

16

X1

X20

24

68

1012

1416

18

480

Figure 8.4 D. Point B Greater than A and C

Y

167

250

Y

167

250

2 4 6 8 10

16 18 20

X1X2024681012

200

83

167

1214 141618

A B C

2 4 6 8

16 18 20

X1X20246810

200

83

167

10 12 1412141618

A B C

0

00

Y

167

250

B

Y

167

250

B

16 1820

X20

2

200

83

C

24

68

10 12 14

X146

81012141618

A

16 18 20200

83

8 10 12 14

X11012141618

A C

2X2 024 4 668

00

49

Figure 8.4 Constrained Maximization under Alternative Isoquant Convexity or Concavity Conditions

18

20GlobalOutputMaximum

LandGlobalProfit

Maximum= 1

12

14

16= 0

8

10

12

L* L*R

B C

A

2

4

6

X

X

R

00 2 4 6 8 10 12 14 16 18 20

X (a bundle of all inputs but land)

50

Figure 8.5 The Acreage Allotment Problem

50

2

BC

D

2

C

D

40

x x

1

A

B

1

A

B

C

30

0A > AB > BC > CD0 0

0A < AB < BC < CDxx

403020

1020

10

2

B

C

D

30

40

x

1

A

B

20

30

0 0A = AB = BC = CD x

10

Figure 9.1 Economies, Diseconomies and Constant Returns to ScaleFor a Production Function with Two Inputs

51

X2

10

6

8

2

4

0

X1

0 2 4 6 8 10

Figure 10.1 Isoquants for the Cobb-Douglas Production Function

52

A . Surface y = x10.4x2

0.6

X2

8

10

4

6

8

0

2

0 2 4 6 8 10

53

X1

B. Isoquants y = x10.4x2

0.6

Figure 10.2 Surfaces and Isoquants for the Cobb-Douglas Type Production Functionyp

C. Surface y = x10.1x2

0.2

10

X2

6

8

2

4

0

X1

0 2 4 6 8 10

D. Isoquants y = x10.1x2

0.2

Figure 10.2 Surfaces and Isoquants for the Cobb-Douglas Type Production Function54 Type Production Function

E. Surface y = x10.6x2

0.8

X2

10

6

8

2

4

55Figure 10.2 Surfaces and Isoquants for the Cobb-Douglas

Type Production Function

0

X1

0 2 4 6 8 10

F. Isoquants y = x10.6x2

0.8

yp

G . Surface y = x10.4x2

1.5

X2

10

6

8

0

2

4

X1

0 2 4 6 8 10

H. Isoquants y = x10.4x2

1.5

Figure 10.2 Surfaces and Isoquants for the Cobb-Douglas Type Production Function

56

I. Surface y = x11.3x2

1.5

X2

10

6

8

2

4

57

X1

0 2 4 6 8 100

J. Isoquants y = x11.3x2

1.5

Figure 10.2 Surfaces and Isoquants for a Cobb-Douglas Type Production Function

A. Surface

X2

10

6

8

2

4

0

X1

0 2 4 6 8 10

B. Isoquants

58 Figure 11.1 The Spillman Production Function

X2

3

22

-Ridge Line 2

MaximumOutput

2

1

00 1 2 31

X10 1 2 3

1

1

Figure 11.2 Isoquants and Ridge Lines for the Transcendental, = 2; = = 0

-

59

1 = 2 -2; 1 = 3 = 0

A. Surface

X2

4

2

3

0

1

60

0

X1

0 1 2 3 4

B. Isoquants

Figure 11.3 The Transcendental Production Function Under Varying Parameter Assumptions

C. Surface

3.90

X2

1.95

2.92

0 00

0.97

61

X10.00

0.00 0.97 1.95 2.92 3.90

D. Isoquants

Figure 11.3 The Transcendental Production Function Under Varying Parameter Assumptions

E . Surface

4

X2

3

4

1

2

62

X1

0 1 2 3 40

F. Isoquants

Figure 11.3 The Transcendental Production Function Under Varying Parameter Assumptions62 y g p

G. Surface

0 5X2

0.3

0.4

0.5

0.1

0.2

63

X1

0.0 0.1 0.2 0.3 0.4 0.50.0

H. Isoquants

Figure 11.3 The Transcendental Production Function Under Varying Parameter Assumptions 63y g p

I. Surface

X21.00

X2

0.50

0.75

0.00

X1

0.00 0.25 0.50 0.75 1.00

0.25

64

J. Isoquants

Figure 11.3 The Transcendental Production Function Under Varying Parameter Assumptions

64

A. Surface

X220

8

12

16

X1

0 4 8 12 16 200

4

65

Figure 11.4 The Polynomial y = x1 + x1

2 – 0.05 x13 + x2 + x2

2 – 0.05 x23 + 0.4 x1 x2

B Isoquants

FFx2

M

H

P2

P

D

K Midpoint

y*

P1B

C J A E L G0 X1

66

Figure 12.1 The Arc Elasticity of Substitution

A. Case 1 Surface

X210X2

6

8

0

2

4

67

0

X10 2 4 6 8 10

B. Case 1 Isoquants Figure 12.2 Production Surfaces and Isoquants for the CES Production

Function under Varying Assumptions about 67

C. Case 2 Surface

10

X2

4

6

8

0

4

-1/(k/ 2x2 =

X1

0 2 4 6 8 10

-1/

D. Case 2 Isoquants

Figure 12.2 Production Surfaces and Isoquants for the CES Production Function under Varying Assumptions about

x1 = (k/

68y g p

E. Case 3 Surface

X210X2

6

8

0

2

4

0 2 4 6 8 10

69

X1

0 2 4 6 8 10

F. Case 3 Isoquants

Figure 12.2 Production Surfaces and Isoquants for the CES Production Function under Varying Assumptions about

G. Case 4 Surface

X210

4

6

8

0

2

X10 2 4 6 8 10

70

J Case 4 Isoquants

Figure 12.2 Production Surfaces and Isoquants for the CES Production Function under Varying Assumptions about

I . Case 5 Surface approaches -1

X2

8

10

4

6

8

0

2

X10 2 4 6 8 10

J Case 5 Isoquants approaches 1

71

J. Case 5 Isoquants approaches -1

Figure 12.2 Production Surfaces and Isoquants for the CES Production Function under Varying Assumptions about

$

MFC1

MFC2

AVP

DemandInput (x)

MFC3

MFC4

x

MFC4

VMP

Figure 13.1 The Demand Function for Input x (No Other Inputs)

72

x2 x2x2

"

1

y'

y"

y"y'

y"y'

A B C

x xx11

B C

Figure 13.2 Possible Impacts of an Increase in the Price of x1 on the use of x2

73

$

AVP2MFC2

AVP3

MFC1

MFC3

Input (x) Demand

AVP1

x

VMP1

VMP2

VMP31

Fi 13 3 D d f I t h D i th P i

74

Figure 13.3 Demand for Input x1 when a Decrease in the Price of x1 Increases the Use of x2

p

Maximum TR

TotalRevenue

TR = ay – by2

|Ep| = 1|Ep| > 1

Demandp = a - by

|Ep| < 1

yM T

|Ep| = - Ep

Marginal Revenue

0

MR = a - 2by

75

Figure 14.1 Total Revenue, Marginal Revenue,and the Elasticity of Demand

$ $

n

TVP

p TPP

p

p TPPo

n

p TPPo

TPP

TVP

p TPP

xxo

x n

xxo

x n

$

A B

TVP

p TPP

p TPPo

p = p (y )

p = p (y )

y = y (x )

y = y (x )

o o

o o

n n

n n n

y y (x )

76

xxo

x n

C

Figure 14.2 Possible TVP Functions Under Variable Product Prices

Guns

ProductionPossibilities Curve

Bundle X o

Possibilities Curve

for a Resource

Butter

77

Figure 15.1 A Classic Production Possibilities Curve

Corn

136

Corn

(bu. per acre)

TPP

111

Panel A

Fi 15 2 D i i P d t T f ti

x (other inputs)

78

Figure 15.2 Deriving a Product Transformation Function from Two Production Functions

Soybeans

(bu. per acre)

55TPP

Panel B

x (other inputs)

79

Figure 15.2 Deriving a Product Transformation Function from Two Production Functions

Soybeans (bu per acre)

45

50

55

Soybeans (bu. per acre)

30

35

40

45x = 10

15

20

25

0

5

10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140111 136111 136

Corn (bu. per acre)

Panel C

80

Figure 15.2 Deriving a Product Transformation Function from Two Production Functions

80

y y SupplementaryRange

22 g

yy

y

y yComplementary Range

Competitive Supplementary1

1

22

y y

Complementary Joint

11

81

Figure 15.3 Competitive, Supplementary, Complementary and Joint Products

p y

81

X

A. Surface ν approaches -1

Y1 Y2

6

8

10

Y2

0 2 4 6 8 100

2

4

82

Figure 15.4 Isoproduct Surfaces and Isoproduct Contours for a CES Type of Function, ν <-1

B. Isoproduct Contours ν approaches -1

0 2 4 6 8 10

Y1

82

XX

6.67

10.00

68

10

Y168

100.01

3.34

0

24

Y1Y2

0

24

C. Surface ν = -2

Y210

4

6

8

0

2

Y1

0 2 4 6 8 10

83

Y1D. Isoproduct Contours ν = -2

Figure 15.4 Isoproduct Surfaces and Isoproduct Contours for a CES Type of Function, ν <-1

X

6.67

10.00

68

10

810

0.00

3.33

0

24

6Y1

Y2

0

24

6

E. Surface ν = -5

Y210Y2

6

8

0

2

4

84

Y1

0 2 4 6 8 10

F. Isoproduct Contours ν = -5

Figure 15.4 Isoproduct Surfaces and Isoproduct Contours for a CES Type of Function, ν <-1

X

3 33

6.67

10.00

46

810

Y1Y2 4

68

100.00

3.33

02

Y2

02

G. Surface ν = -200

Y210

4

6

8

0

2

4

Y1

0 2 4 6 8 10

85

Y1

H. Isoproduct Contours ν = -200

Figure 15.4 Isoproduct Surfaces and Isoproduct Contours for a CES Type of Function, ν <-1

86

Figure 16.1 A Family of Product Transformation Functions

Y2Y2

1010

88ProductProduct

TransformationTransformation

OutputOutputExpansionExpansionPathPath

RRpp22

ooFunctionsFunctions

44

66

IsorevenueIsorevenueLinesLines

22

pp

2211 pp

00

00 22 44 66 88 1010

22

RRpp11

ooY1Y1

87

Figure 16.2 Product Transformation Functions, IsorevenueLines and the Output Expansion Path

TobaccoGlobal

f

10Output

ExpansionPath

Output PseudoScale LineFor Other Crops(Y)

Output PseudoScale Line for

TobaccoMaximum

Profit

6

8

B

(Y)

A

T*

2

4

CT

00 2 4 6 8 10 12 Y

Figure 16.3 An Output Quota

88

Forage

(z )2

Isoquants for

MRSx1x2

z1z2

= RPT

Beef Production

ProductTransformationFunction forGrain and

Forage

Grain andForage

Grain (z )1

(z )2

Sell

Line p

pz1

z2

ProduceIsorevenue

Isocost or

Produce Purchase Grain (z )1

Figure 17.1 An Intermediate Product Model89

$ per bu.

B

C

M C

MR =Price ofCorn

AC

B AVC

A

Output of Corn

90

Figure 19.1 Output of Corn and Per Bushel Cost of Production

Probabilitiesand Outcomes

ProbabilitiesAnd Outcomesand Outcomes

are KnownAnd OutcomesAre not known

Risky Events Uncertain Events

91

Figure 20.1 A Risk and Uncertainty Continuum

Utility UtilityUtility Utility

Income IncomeRisk-Averse Risk-Neutral

Utility

92

Income

Figure 20.2 Three Possible Functions Linking Utility to Income

Risk-Preferrer

ExpectedIncome

ExpectedIncome

Risk-Neutral

Income Variance

Risk-Averse

Income Variance

Expected Income

93

Figure 20.3 Indifference Curves Linking the Variance of Expected Income with Expected Income

Risk PreferrerIncome Variance

1212y2

1010

y2

Constraint 1 (Amount of x1 Available)

88

6 2/3

y 4

6

4

6

FeasibleRegion Constraint 2 (Amount of x2 Available)

5

4

2

22

ProductTransformationFunction Objective Function

FeasibleRegion

4

0

0 2 4 6 8 10 12 14 16

0

0 2 4 6 8 10 12 14 162 2/3 y1

94

Figure 22.1 Linear Programming Solution in Product Space

444

x2

Feasible

Isoquant

333

FeasibleRegionIsoquant

Constraint 2

12

2

111

Objective Function

16

Constraint 1

0

0 1 2 3 4 5

0

0 2 3 4 5

0

0 2 3 4 5

x1

95

Figure 24.2 Linear Programming Solution in Factor Space

x2x2

x1 x1

x2

Diagram A Diagram B

96

x1Diagram C

Figure 23.1 Some Possible Impacts of Technological Change

X2X2

Assumption 1 Holds Assumption 1 FailsX1 X1Assumption 1 Holds Assumption 1 FailsX1 X1

X2 X2

Assumption 2 Fails Assumption 2 HoldsX1X1

Figure 24.1 Assumptions (1) and (2) and the Isoquant Map

97

X2

P1

P

X’2

P2

X”2

X’1 X”1 X1

Figure 24.2 A Graphical Representation of the Elasticity of Substitution

98