advances in wireline logging technology - workshop

159
TECHNOLOGY CONNECTIONS PETROLEUM TECHNOLOGY TRANSFER COUNCIL Central Gulf Region Thursday, September 13, 2001 Shreveport Louisiana Petroleum Club PTTC acknowledges its primary funding source, the US Department of Energy through the National Petroleum Technology Office and the National TechnologyLab. PTTC/CGR also appreciates the financial support of the State of Louisiana.

Upload: khangminh22

Post on 30-Mar-2023

0 views

Category:

Documents


0 download

TRANSCRIPT

TECHNOLOGY CONNECTIONS

PETROLEUM TECHNOLOGY TRANSFER COUNCIL

Central Gulf Region

Thursday, September 13, 2001Shreveport Louisiana Petroleum Club

PTTC acknowledges its primary funding source, the US Department of Energythrough the National Petroleum Technology Office and the National Technology Lab.

PTTC/CGR also appreciates the financial support of the State of Louisiana.

TECHNOLOGY CONNECTIONS

PETROLEUM TECHNOLOGY TRANSFER COUNCILCentral Gulf Region

Advances In Wireline Logging TechnologySeptember 13, 2001

Shreveport, Louisiana

Program

8:30 am Registration

9:00 am Welcome and Introductions.Bob Baumann & Don Goddard, LSU Center for Energy Studies

9:15 am Borehole Imaging & Dipmeter Applications.Mark Larsen, Schlumberger

9: 45 am StiMRIL Process: Applying NMR Technology forImproved Economic PerformanceDan Buller, Halliburton

10:15 am Advanced Ultrasonic Scanning Tool (CAST-V)Gary Frisch, Halliburton

COFFEE BREAK10:45 - 11:00 am

11 :00 am Compensated Chlorine Tool.Ronnie Bothner, Techlog Services LLC.

11:30 am Geochemical & Cased Hole Resistivity Tool.Rob North, Schlumberger

12:00 pm LUNCHEON

PETROLEUM TECHNOLOGY TRANSFER COUNCIL

CENTRAL GULF REGION

Photograph courtesy of Donald Davis, AdministratorLouisiana Applied & Educational Oil Spill Research & Development ProgrOtlice of the Governor/LSU

Louisiana State University and A&M CollegeCenter For Energy Studies

Baton Rouge, Louisiana

The PTTC Central Gulf Region acknowledges its primary fundingsource, the U.S. Department of Energy, through the

National Petroleum Technology Officeand the National Technology lab.

PTTClCG R also appreciates the financial support of the State of Louisiana.

r

Center for Energy Studies, Louisiana State University and Agricultural and Mechanical College1 East Fraternity Circle Baton Rouge, LA 70803 225-578-1804/ Fax: 225-578-4541

PTTC's Central Gulf Region Aims & Objectives

For independent oil and natural gas producers of Louisiana, as in other petroleum producing States, access to cost­effective exploration and production technologies is essential fortheir economic survival. With today's razor thin, or non­existent, profit margins they need field-tested and proven cost-effective solutions to meet their technology needs.

The Petroleum Technology Transfer Council (PTTC) was established in 1994 to connect independents--when theyneed it--with technological solutions in:

ExplorationDrilling and completionOperations and productionReservoir and developmentEnvironmental issues

This is accomplished through PTTC's products and services, which include:Low-cost targeted workshops and other events that provide real-world solutions to specific problems.Regional resource centers with technical referral assistance and the latest exploration and production software.An award-winning national website that is linked to PTTC's 10 regional websites and other oil and natural gasresources on the Internet.Publications including a quarterly newsletter, "best of' workshop books, and case studies.

Service and supply companies join PTTC in its technology transfer mission by supporting regional producer programs .."from Alabama to Alaska. Producers who attend PTTC workshops, visit the regional resource centers, or access the .•.-1websites are actively seeking technical assistance. By sponsoringl PTTC programs, companies add to their customerbase and reach potential buyers who need their products and services the most.

PTTC's mission is to strengthen the U. S. independent oil and natural gas industry for the benefit of consumers andthe nation by helping producers make timely, informed decisions based on effective access to relevant solutions.Although targeting independent oil and gas producers, PTTC activities also benefit consultants, major companies andother participants.

The non-profit Petroleum Technology Transfer Council was formed in 1994 by the Independent Petroleum Associationof America, in cooperation with other groups, Today, the U. S. Department of Energy, through the National PetroleumTechnology Office and the National Technology Lab is the main funding source for the organization. Support is alsoprovided by the State of Louisiana.

In each PTTC region there is a Producer Advisory Group (pAG) and a Regional Lead Organization (RLO). The CentralGulf Region (PTTC CGR), which comprises Louisiana and its offshore waters, has been designated as one of the tenregions of the PTTC by the National Headquarters from recommendations of area producers. The Center for EnergyStudies (CES) at LSU serves as the Regional Lead Organization for the Central Gulf Region. A Producer AdvisoryGroup (PAG) advises on regional activities. The PTTC CGR Program is managed through CES and includes the LSUPetroleum Engineering Department (PETE) as the regional resource center with the Basin Research Energy Sectionof the Louisiana Geological Survey also providing technical expertise. PITe's approach is industry-driven; problemidentification workshops were held in all regions, and the results are used to determine priorities for regional programs.

L. Mark LarsenSchlumberger

Mark graduated from the Geological Engineering program of theUniversity of Saskatchewan in 1980. He immediately joined TennecoOil of Canada with initial assignments in Alberta and Louisiana. Markmoved to Canadian Occidental Petroleum in 1985 where he workedas a geologist with both clastic and carbonate reservoirs in WesternCanada and Yemen. Mark joined the interpretation developmentgroup of Schlumberger in 1996 specializing in dipmeter and electricalimage interpretation. Mark is currently Schlumberger's 10 geologistfor US Land-East and is based in Shreveport.

L. Mark LarsenPrincipal Geologist, US Land-East330 Marshall Street, Ste 610Shreveport, Louisiana 71101

• 'It.:t; \

Dipmeter / Imaging Tools

* WATER BASE MUDSQlps Only

High Resolution Dipmeter Tool "HDT" (1968)Stratigraphic High Resolution Dipmeter Tool "SHDT" (1982)

Qlps and Ima~

Formation MicroScanner "FMS" (1986)Formation MicroImager "FMI" (1991)Resistivity At the Bit "RAB" (1995) (LWD)

* OIL BASE MUDSQlps Only

SHDT with Scratcher Pads (1984)Oil Base Dipmeter Tool "OBDT" (1988)

Qlps and Ima9§

UltraSonic Borehole Imager "UBI" (1993)FMI (Possible with mud considerations)OBMI Oil Base Mud Imager (2000)

Dipmeter Data Acquisition

Dip Curves

Borehole

ThinConductiveBed -.. I .",

,,

jJ 34

1

tDepth

.,I I "' ..

11~~ r1~:l:.j [;;J 3) -' - - 4~"

Er~N

• Microconductivity Data - 0.1" sampling rate• Caliper X-Y hole size measurement• Tool Orientation - Pad 1 & Hole Azimuth, Deviation

Interval, step, search angle1 2

COAAel.OGRAM

~

HtGH VAt-US WI" ERECURVES t.4ATCH

SfHFT IS CENTER OF seARCHTO PEAK of CORftELOGRAM

SEARCHANGLE

sTepo,srANCE

C~~~i~~~~ON -WCENTERCc ..".....c:..1 ~O~N6~L~~~;~ORVES.,.. • __ .. Jd'

MSDPresentation w

N

-t E

s

~A

00

Azimuth Histogram

~ ~(deg)

Dip Magnitude & Direction

1510

15

C1

C2

(in)

__ .:r_E_~~ 1 SHDT - Dipmetff Fast ChanreJs

10000 a 250 50(in) I I (Ibt)

(deg)

Tool Rdelioncf' ·················330

BhDrft '5

~ ~a (deg)10I s

1 : 240 I G9mma Ray

(ft) a 150(gI\PI)

~l<

fif

i~:I~ ~

;>

~ f,ITIIJIR=

v(I -<

~ -

~~

1~r:;

(~~:----~tI+l-+-Hf+H+!++++++l+++W-

"

\7500

Tadpole or arrow plot

DIP AZIMU1HTOWARD NEUNIFORM DIPANGLE 20°

NE DIPSTEEPENING TO30°

DIP AZlMUlHTOWARD DUE EAST.UNIFORM 10° ANGLE

1

DIP ANGLE {degfees!

20 ~W 40 50 60 70 80

20 30 40 50 60 70 80

10

10

-

v

v-II

:.....- I

-/I

./

V

--I--I....f....

DEPTH tltl

7800

7900

Formation Microlmager

nOie

egrees

Slim holesOil Base Mud

Same as FMS-CHeterogenitiesFiner features

egrees

StructureStratigraphyReservoir

Slim holesTLC Operation

Specifications

Ovalized Hole ILarge Boreholes ISlim holesEccentralizatlon. Oil Base Muds Oil Base MudHigh content solids

Oil Base MudSame as FMS-C

Limitations

Applications

Pad and Flap

ws

E

Image Presentation

•Display 1 ; scale 1/10

ORIENTATION: NORTHo 45 90 135 180 225 270 315 36

Low Resistivity

9722.0

9723.0-TD: 45/90

9724.0

Dynamic

#

High Resistivity

N E s w N

TD = True Dip: Dip Magnitude / Dip Azimuth

STATICApplies to anEntire Interval

IIJ.2"0-a5()

Q)D')roE

Static & Dynamic Presentations

IImF.t'8••mF..r:.,Mi'

ORIENIA lION: NORTH ORIENTAlID": NORTH) 45 S& 135 18& m m 315 360 Q 45 SO 135 18& 225 270 315 3ts ,: ::::

._----

.~ ~.. ' .......~.~!~.•'.,l.~........, ._•• " .... ~.••,' ....

'I".... , .sa.•.,. . . ~6iP!• •"... ""~~ ..""~ 'I·...~~~~.

DYNAMICApplies to al' . 2' Moving Window

,~ -+_-=::'Wi"iF---+--+--+­-----+.-----+-- - --+------+-----+-----\---t-­

~_+.--_4_--_+--_+---+­--+---+- ~ -+---+---+---+---t--

Q.-+.---+---+-----I----+-

o

Core to Image Comparison

235

236

237

232

a O:llsbedded "

233

238

f51ig-d1y coers.r thrl abOl., 1of! 1hck,speckl~ with eb.Jrd..-.t pyrite .rdlamafic detrital mirEtrals

~ grey to butt, hgh erglea onbedded. finely cofiv debris til engbed ool.nderi e:s, Cph em a ~2'J:Sf?

irer eesirgty rn ot1I ed w ith $5, irtl!liselybotllbeied

40 1 Core Image I Core_Description I.6Deg

v.lci,ilii,iU"h~':"u, ' 10

...

.;f;""','......

l!JI'!!

-iiii

'\,

~, ~j,~

"

,~..• =rr

•'I

"'fI

•.... ,~!&i~ .. t'

....

..

-

..•."

R..islhfoFMS 41m~cthf.

I it

Imaging Applications* STRUCTURAL

Structural Dip - Verify MSDFaults - Depth, Strike, Downthrown , Angle, Sealing?Breaks - Unconformities, Sequence Boundaries

* STRATIGRAPHICDepositional Environment / SystemOrientation (Paleocurrent Flow / Progradation)

* RESERVOIRThin BedsCalibration to/from Whole CoreLocate / Ana lysis of SidewaII CoresPermeability Trends / BarriersFractures / VugsBorehole Geometry / In-Situ Stress Orientation

Structural Dipo 10 20 30 4i •• "G,., o 10 20 30 40

&"IIIlllli

.. ~Ul or1t11

12672.0

12674.0

12660 I 11.11111111111111111 Azimuth plot of:MSD dips (blue) "top"

Hand Pick dips (green)"bottom"12660.0

~::a •• R ~ IIUillllllllllllllill IIHIIIIIIIIIIIIIIIII• ,," .... g_." "--_,%F' ID:4/127

Azl.uth

~ Ref: True,

'II~' II it ...~ ~12'" ~ (

... 26 912662.0

~ \Ir: ., ._~ ..... ~.'

<II : MSD Ot. - ......I ," --. _.:;. 6;;;=;_........ .... .

MSO Dips:I .... . .'.' d~ti_,, __- --..." ID.3/144.. 2.1/ us

, ••:- .. ~::::z::uc _~ -::"12664.0

12666.0

I~~ £§O'~:L ~g;:, _ .... ....!!!!T'·- 11l1111W'11I111111111112680

1.1111.1111.1111.1111 -s- I. "'e..a u'hn

>iihi" 'M.MH'.fi1•.n!DttrmttJl!i:~

12668.0 !~~._._.--:-;;,Q_.. ___. !Co' ~:::::-~:f_J. ID: 2/177 Inlllllllllllllllllli ! ! II ! ! ! ! II!! II!!!I!!!./"~"'- I Az1.utn

Ref: True,.. 41 I

'1' : Hand P

I;';';".,~·'----~::~-~,~-:::--"'''''''I'' -_. _. _.- / II~IIIIIIIII"IIIIII

IIn111111111/ 11111 II ..f\ IHood PiC'"12670.0 .2.1/ t37

12690

12700

MSD Dips Hand Pick Dips

~~~~

......=~

:ro~......No=~~~

>=~......~~......=~~r:IJ.

r:IJ.~~=

HLLD

901110 100000or,mmHRLS

10 100000ohmmHLLS

901110 - - - - '10iii00ohmm

Deg

66Deg

uprr~~'\51pres

••MarQlI1al frnctures

~True up360240

Resi>li.. DynamiCIm~;'.

c:IiI

o 120

STB021 FMIDYNAIC250334Horizontal Scale 1 : 12.368 10

Orientation Top of Hole

360240

STB .021 FMI .STAT[C250329Horizontal Scale 1 9.647

OrientatlOll Top of Hole

14 • 0--.!.fQIn

SGR

BI1 size

4

IBoreHole drift• BoreHole eM!

o Deg 100

a

j

(")o(")(\J

f'l'£;';::>;iCio~~.~ _Jill. L::"~-"t~";;:':- ..""•. '.¥" ~ §l,_~:~_~

~.~,,i ·~~•.;~~''''~~lY~~=A;:aik'·I N _. ~ ,,-&-:-,,"". <f " \I. ~;»1;;J:]mm $ ... F ....&1".F·:"': "'''' #-:-. '-:-.l.'1oi.I1C;J~ ."...Ja!:~;", -~.,;. ~.~ ~~<:-;"~:::-_~~ ~-2_Q& ~j_'_>,-<-~_:,.·"!.=ZE?'-"

J .M'--". jT:5J / - tl··:L·' '\ A,J<':.. "'.,\~:IT - JIt~~" 7' ~ • ~;.,'C ~ ·~~·-f"·''''''\ # We

0 .<D •

OJ M '6<5 -ilI 6a <)

0 OJ"- " 16'0 Nl- E<:0

~iii u..c 0OJ

N

."50

Faults

N

/'/~~-~~~,. I~"\

I1E

~~~,-~s

I

- ..'

Normal fault

Striking:N25E-S25W

Down to WNW

2309.0

2310.0

2311.0

2312.0

2313.0

ORIENTATION: NORTH105 135 165 195 225 255 285 315 345

• TO: 62/304

FractureAnalysis

5345.0

5346.0

5347.0

5348.0

5349.0

5350.0

5351.0

5352.0

ORIENTATION: NORTHo 30 60 90 120 150 180 210 240 270 300 330 36

, , ! ! , ! , , , I , ! ,

• w::a:a i3-D view looking from the east

towards the west, showing southerlydipping fractures.

Fracture apertUiRef : NJrth

N 16 samples N

~P-;;~~ ./'.' ··.···.'~."."...r4

N Scale 1:7 N

............/,,""r."'. .

J-/-'\'....... . Ii" .. ~........... .~~ ...... . ·r~",

;~if/I . ..;.~~··~;7\ r 'xl,., .."""...•.. . :\\r" ... . 1

••~;~\ .j•.;. ... .1

.03

.01

.003

.0

.TO:7I119

.TO:54/235

.TO:5:1/102

• TO:49/74

.TO:69/63

.[0:51109

,,-

...IlI\.i

1/.....".\

10553.0

1056').0 I

I\ ·~; ..

, 1I"....-,;;.~#~

10561.0

10559.0

10562.0

FractureAperture

Drilling induced fractures(maximum stress

direction)

Breakout orientation(minimum stress

direction)

~

Drilling inducedtensional fracturesindicate the directionof present daymaximum horizontalstress

Borehole breakoutThe orientationindicates thedirection of presentday minimumhorizontal stress

FBSTB .023FMI.DYNAIC4111671jHaiZantaiScale: 1: 6866

CXlentatian Nath

375

I ! ~~ l I .._ I 120 240 360

Breakout &DrillingInduced

Fractures

East - Weststrikinginduced

fractures.

After Mini-Frac

1622.0

1624.0

1623.0

1621.0

1620.0

1619.0

t' •. " :--~~ :--_}~!'J!!!l' :ii

~~~;4~"-= i"'_~,j'1j.", " .. , _:~_;"l<\;-~:;:~;:;,:~~_.~~~

~~ §!~~*' -,"........... _. ",-- .

I$""-J.~ .~._..~ .-t~.~:"::::

',,-,.,

Before Mini-Frac

."......-::: ......:;.:....=

~+,~,c :,~~......,.......

Before andAfter

Mini-Frac

UnconformityORIENTATION: NORTN

o 30 60 90 120 150 180 210 240 210 300 330 360

Structure Below:15 degrees to

NE

Structure Above:8 degrees to ENE

14380

14310

4Tn.

.-TO:13/213

,.-TO: 3/280

• TO: 15/29

,.TO:11/42

-MiII4I11ii "'-~-5..- '_ • I!I!!!!l!i.TO:15/30

• TO: 22/46

• TO: 22/34

---.:::J.TO: 22/29

II-~.TO:13/283

•. TO: 6/220

~n- '-j.-TO:71231

~!! ...BI 51. iii•.........- ",-.'" -.• ' ;;a ...:'J>- ~ ~'.'_~ ...... t ... ':~ ..,.;,...•'

- ~

•.... 4_

•...-

!Ii . ij1 ::~ :.:::D ;~ .~:::::~:::

I-!!IS

14310.0

14313.0

14315.0

14311.0

14314.0

14316.0

14312.0

14369.0

1562

1563

1564

~

Resistive cobbles inalluvial material

High angle erosionalunconformity

Low angle openfractures

Sand

Sands and Shales

SiltySand

Sand Silt

Perm

Clay

1000 100 10 1 .1

.J...... Resistivity

, '

Cum, Sand()

12.23 r;

ti .'}

"] t

,:) -(; :,~

:'; ;?t_~

,,~ :? ~.:

:~-'-! ]

':':./?

, ,,1 F3";

8,12 ::<;7

952 tJ ~f)

15.09

15.74

1663

20.34

14.16

17.47

1102 '1:'3

1278 t.:,

18.66

1334

I I I II 1.'1 I t~,...;.

W.=,W. "?A·.V~~.~'~__· ~_~ __~'~__"'I.iiiiiiiiI~""";;;;;;;;"'~'_-A=-==-''''''''''-~''~''''~ ~?_~,',·mw.w,

I - .....----...

I I I Willi I I 1111111 II I I I Ii == ;:. == III '::: ::::_ _ _ ~~ ,-,!-.-+-1'l!!H:::::+--I-+-+--+---+-

~ H-+-+-4--l-+-IW--l~ ~ == =:..:. ~.... :'!!! "'J!lo'''' ~_ .... !I~,1---1I--+-

~ I I I I ,I I,l I I 'II •• ~~ •• 1I··H---Io!Pi=+=H:....l--J--U~ -~ .... - ... ~-----

I I I 111 I,' I ~.~ ..... =!:e', ••!! "=1: ::I! =.1: 1783

111111111 111111111 II 1 I I I III I II z= ~I;= ~-+-~~H-+-+--+--l--

I I I I ~ II I I ~~ S~ ~~ E~ ."'~f-+=i'I I I I II II I I [ii iiii .;D iia ~.

;II •• :i,. =1 ,-u--l1---!=• Ii::: == == I'll!

I I I I I II I I I::: -:: -- -=iii:j;.;,,;,--....~ . _.--.: " :, '" -~

I I I I A I' I I 1- -- - .... --. iii II== =.. •• d-+-±:=="i"''''''F'-I--l,--t,-+,-+,---i

I I I I II II I I ~;;.;,:; -,,- .-;....; - ~ :::HH~~""'!-':.j-+-I--J.--I;; ;:::; Iri • II:: -=--~- -- ..~...I I I I ! III I [;; .-. .... ., - .

t ~ _ !'lIl'~ !!':!~ tell! _. ;~.~rH~:.-t-+-+-+-I---I--I: ~~ ~~~~ ';~~ ===~ ~~ ~= ....!II-+-,*"""~.~:;.;...;..;:...., _..~ ........­

~,,,,,, .:~~

-".- ._-

I I I I r 1\ I I r._--= ......=-=-. --~ . '1---+-+--~~--- .-_......- -- .~

\

I

(;

'.0: /I

, I'I~II"IIII;,F20 I IIAIIII I 11111111

,.~ I I I I It II II I I 1111I1t--

30

C2FBSTO6 16

(indv, FB T 0

6 16( In)

II' ~ R10

(1)

SandCount

Tested interval xx875' - xx960' 3742 BOPD (30.2 ')

FMI .STAT [C4328511jlZenla! Soale: 1 13.1

(f..~~'''''

Crossbeds indicatingnorth west paleocurrent

flow within channelsystem.

Be<fP~Y

~ba ;;,."_:...:......:.'---....:..:::~-:;;..: ..-;-77;.-w::3

Cross Bed

(SinusOid)Orientation Norlh

R...ol;,............... FMllmz"'" "'., ..•.•.•~..[:F;I

StratigraphicAnalysis

515

516

,-" *

.;! "

~....II".,."

1--ew .

I

I

IIII

I

I

I

II

I

I

I

IIII

I

I In I'"I

IIIII

I

II.I

DESC 1

u

FB STB .01 0 FM I .DYNA [C327895)Horizontal Scale: 1 : 6.185

Orientation North

OOdfJ

9941

9940

o 120 240 360

II MD II Resi$llve FMllmage CcndJetlve ~~----S-i-d-e-w-a-II-c-o-r-e-s----II1: 5,5

ft

Sedimentarystructures

C<rIdJctiv.

FSSTS .010 FMI .DYNA[C327895)Horizontal Scale: 1 : 6.185

Orientation North

9691

9690

9689

c=-

Tadpoles

• Borehole drift II Resislill'Ml Im~dJeti\l.

o Deg 10

Bit~ize B .010 FMI .EID [C326" - - ~ - - -16 rizontal Scale: 1 : 16.4

In Orientation North

..I I'

" ;1\"11 " II -11111' 9~ •

qm-f--t-iI-t+-!-H!+-4-+-.

;1I-I)t........ NIl

ContortedBedding

Sidewall CoreGR

...............6 'in' 16

BllLfslzeBOO.7FMI.EIDIC326" - - -; - - -16 "zonta/Scale 1 . 16.4

In Orientation North

Clean Core...

90

90

90

Deg

Partiall,.?Je~£ racture

••Deg

Sidewall Cores

Erosion'fr~'NpSurface

66Deg

o

o

Bed Boundary

(Sirusold)

Orientation North

Internal Bedding

(SinusOid)

Orientation North

R"'~". .. FMllm; Ccn<Lct".li&

o 120 240 360\0 I

o 120 240 360

R"i~..•."4"Mllm.<I.Jet".~D10 111;i 1 : 5.5.. ft

16

150

oJ:1::J:1:i:tlll 11111.1 ••••••••• 111851.1:1:J

Tadpoles

• Borehole drlfl

o Deg

6

o

0 a •

~ t.~ 0

rfJ0 a....

~C'l

0 ~

~

~u.

!il

~bI)bI)~

>

--

,~TD:17I261

.1D:18I2&1

3589.0

3590.0

3588.0

Depositional Environment / System

Orientation (Flow / Progradation)

* STRATIGRAPHIC

* RESERVOIRThin Beds

Locate Sidewall Cores

Calibration to/from Whole Core

Permeability Trends / Barriers

Fractures / Vugs

Borehole Geometry / In-Situ Stress Orientation

~I' Conclusions1* STRUCTURAL

Structural Dip - Verify MSD

Faults - Depth, Strike, Downthrown, Angle, Sealing?

Breaks - Unconformities, Sequence Boundaries

2]0'.0

2312.0 • --= dlllI!I ••

10594.0

10593.0

10592.0

Dan BullerHalliburton Energy Services/Numar

Dan Buller worked for Schlumberger logging wells in Kansas &Oklahoma from 1981-1988. He moved to Shreveport as a wirelinesales engineer with Schlumberger in 1988. He joined Numar Corp. in1996 and subsequently, Halliburton, in 1997 through their acquisitionof Numar. He is currently working as the Southeast MRIL ProductChampion and a Logging Technical Advisor for Halliburton based inBossier City, LA. He has published technical papers in both JPT andWorld Oil. Dan obtained a BS degree in Physics and Math in 1980from Nebraska Wesleyan University, and an MS in Physics in 1981from Kansas State University

Dan BullerHalliburton Energy Services416 Travis Street, Suite 505Shreveoort. LA 71101-5502

StiMRILo

ProcessEast Texas I North Louisiana

Applied NMR Technology forImproved Economic Performance

Dan Buller - Southeast NMR Specialist - Halliburton Energy Services

MRIL'sNMR Measurement

o

• Does not see the rock,only sees the porespace fluids

• Sorts porosity by pore•size

• Has an embedded Hesignal

(I

~ /00

~

)...~ $D.....l?~~

Soo40030D200

Small Pore Size =Rapid D~cay RateLarge Pore Size =Slow Decay Rate

T2 -1 ~ P (SIV)

/00

Pore Size - T2 Relationship

4' •• 0' It

oo

40

G6

20

.............

~~~

~~\J

I ~'I

71"ffJ€ ems)

••

-0s.. ~

~ ns ~><

:C~(1)-s::::-s..~c.4Z oE>-00- (.)ns C) ~(1) s:::: '-'c:: .- ~

... s:::: ns... .-...........

\'\nlljJ) I·;! ... / I'I'

oTriple Combo V5. MRIL

North LA Hosston Example/Sailes Field

~_ .. ,... ,4-_ I.- , • I I I

. H·I!,--2..i ...,; I I; /-'~~~!l -=1£"'~.... ~~.:- ' I.~ I I , 1 .•..~,..,~....--1'7'~' t, I ~ ~-- I I . ( -z:':;;:+- :<-,'-'I" ' .. c;,,' I 'I 11, \ '~~=f 1~' .. -. tr-'-.' ::: it -~ -;: I ;: '-:,; : I, ~., ' ;.:m~:~;"'-:1t'. /. 1-~ .... ~! _ I f I I t _;. ;;..-o~T - ~ !!" f~-, •••1: ':tr.., I : III ' . r- ·1 \.•=.. J--

,_•.•.....J-:- T 'L,; • I I I, ........ .:-~ ..- •. .~L.-I,', I"~ J "j" ,. ., T

't'1_'r-1__+....;..'r :: ;:);_1 ~ : 1tt!~ -., 'i;. ; ."11' '1Q'if ' •.~ ~\,r

I ; 1, o;r ....'T!r· I • ~... ;;~: I_I I I Ir. I 1';--1-\", ~=il .j I

-;.;- t-H1;~:~: '-"5: .. ~~.. t-_-,-Lt' I ,T7" - ....,.,..) .! I. "i- ?~~ I' I- ......Ii ' , ,,; r. ~ ]:;- ... f' .-_.- ..:{! I'!

: i I I ·1 "M .:ri- .-" · .. :,J I

-~.J.l:! -j+t~::ll .-' ... ~ ....J~ It. ~ ~ ;.' ."..- '-.. 't -

-'~ 'i •.. _l,{" ' , I ..... , ,..,i·· --'t·,-J. 1---' ,< 7.lo : I I .~.t -__ :;;" I -1',''::::, " 'i~~. : 'II ~- ....:- ~•• f ., ..c·~·"

-=~~".·Cl~,i.:· 'f~)i·' ," ",', :.: .~ ;~,,:' •. -.',"=~:~"r'lt . ;.... :\i~. ':", 7::=i~'-""" .~ l, t:I~~...".''''--~'- .',100

,--r-r' i ",•• r'T "",J_ ' 'i 1 I : ·~r"':.i::'.--+-1,"-+--7i' ,: !' II j ! :,\0,

Nuclear Porosity similarin both zones, 11 to 13%.

Similar perm assumed

MRIL Effective Porosity,6% in upper, g% in lower.

Lower zone has 40 fold better perm.

f!I

MRIAN - MRIL Analysis

~Volumetrics

ClayBound Water (green)Capillary Bound Water (gray)Moveable Hydrocarbon (red)

Moveable Water (blue)

Echo DifferencePorosity

SpectrumLong-Short Tr3-3000 msec"Residual

Hydrocarbon"

T2 VOL.5 to 1024 msec

1st 3 divisionsClay Spectrum

Resistivity& Perm

Raw Bins &Correlation

Better permin top sand

due tomore 6th

binporosity

Upper Travis Peak Sand, Panola Co., TXnote: mixed layer clay in pay zone

Direct Hydrocarbon TypingDelta Tw - MRIL Prime Differential Spectrum

fJ

Water

Time

Gas

125

Oil

.......-tnoI-oa.

.......-tnoI-oa.

.......-tneoa.

1

LONG)

10 100 1,000 10,000

T2 Time (ms)

MRIL Prime Hydrocarbon Typing f:)

1.5 MMCF/D45 SOP/D

Low perm water4 BWP/D

Upper & LowerHaynesvilleClaiborne

parish

350SOP/D

200MCF/D

oClay Protection Today

(best practices if you know its' there)

• No strong acid breakdowns (15% HCI makes glue!)• Perforate underbalanced (or with Stimgun* gas charged

breakdown system)• Formation brine is inexpensive & safe breakdown fluid, but must

come from same zone or big problem!• 5% Ammonium Chloride solutions with a penetrating agent in

breakdown, pre-pad, or pad leakoff applications. ("fixes" ionicwater binding sites)

• 5 to 7% KCI gels in large fracs with as much temperature ratedbreaker agents as you can pump

• Nitrogen foam frac if single zone with fair perm• 5 to 7% KCI as backside packer fluid• Don't shut wells in at anytime during initial cleanup & production.

Flare, rather than shut in.

oStiMRIL Groundwork

East Texas & North LANMR Core Study 1995 & 1996

• Wide multi-field variety for Cretaceous Travis Peak/ Hosston &Jurassic Cotton Valley / Haynesville

• Optimum Spectral "BVI", capillary bound water,relationships established

• Optimum Perm equations determined to bestmodel insitu permeability

• Brine perm predicted =kg @ SWirreducible

Integrated, "All Bins", 0Capillary Bound Water (SBVI)

Recommended BVI FractionsBin Time 2 4 8 16 32 64 128 256 512 1024

jBVl fraction 0.910 0.836 0.718 0.560 0.388 0.241 0.137 0.074 0.038 0.019

Low Resistivity, High Cap Water Conditiono

7850_

"~RlII

Upper Travis Peak, Limestone County, Tx

Low resistivity, high BVI, 7p.u. moveable gas. Fining

~ upward, mixed layer clay!I ~I choked. TCP with 20,000#

nitrogen foam frac,1.1 mmcf/d & 5 BWPD

Thin zone,clay rich

Conventional zone,low porosity, lowBVI, fairly clean in

discrete sands, goodperm of 1.3 md in

bottom sand. 70,000#C02 frac

recommended

Low porosity, claychoked in top

o

MRIL Prime PermPredict Formation Flow Capacity

• If rock is completely flushed with fresh mudfiltrate, the T2 distribution from a long waittime, precisely describes the pore throatdistribution for a capillary pressure basedperm model

• If OBM is used, or a significant nativehydrocarbon signal is measured, acalibrated Free Fluid vs Capillary Bound

Water perm equation is solved.

Model 1- TzSbTravlc Peak Formation Cotton Valley Formation

1000100

T2Sbmu

10

)(Ka ,.movld

oKb'1nt(1)

,AKbMldlel

R'1lrllSioo:'''Kalr ••.66Eoo4l2Sb UlOI

r' .O.~KbrIM - 3.<4SE.7 T2Sb2.,.f -0.91

10

100

0.01

0.001

O.COOI1100001000100

T2Sbmax

10

10

l(JO

0.01

1000 i ....

0.001

0.00011

"0 •• '

"0E ~ .. ~. E~ '\..... .

~ 0.1a: "'" ' .w IIIQ.

.:~______·"'Win9N1ff.ill~~am~UI";; It n~11!!l1'l1Do

C) (J

0.1

Typical East Texas, Carthage Field,Cotton Valley Taylor

o

--I

OO..-r -.,

50

_..."..Jt'\:

,",

'.. .05 md

Water Frac Candidate?(No, clay stabilized, 6% KCI, 150,000# gel frac)

oGoal: To use MRIL based perm, moveablehydrocarbon volumes, and clay analysis topredict and plan best recovery strategies inorder to optimize production.

• Doesn't work in vacuum, need best source formation pressure

• Pick zones for kH profile for zone rank

• Generate decline curves from PROMAT

• NPV analysis with client inputs for gas price

• Decide on natural completion vs. frac stimulation

• Generate In-Situ Stress Plot for barrier strength

• 3-D FracPro generated frac designs if frac

• Tie 30, 60, 90 day actual results back to original design

o

Perm (k) Driven Stimulation

e High Perm (> .2 md)• Short, highly conductive frac

• PowerPerf and/or StimGun for natural completion

e Medium Perm (0.01 to 0.2 md)• Moderate fracture conductivity

e Low Perm «0.01 md)• Long frac with minimum fracture conductivity

• Effective Prop length (+/- 500') with Cr=10

StiMRIL Logo

L.cgOia

are 1riB\a 1riB\a N:t Pcy C3nna VS'Se \Nig D:r8ty Nlbm tvRL ~h o/aj>h Fern kh %:kh ~ Rt:drlim

N.nte TCf) B:ttan Ry 3D.raio Rmit Rn:8ty TcJa ~ R:1eiiaRn:8ty O:Jfajaj

1 gm gm 21.0 ~6 023 033 OCB OCB 004 0i9 68'10 0012 025 24% 2 24'/02 ~ am 130 472 025 051 013 OCB OCB 1.CE 9CY/o 0Cfi3 Offi 6&/0 2 681!cJ3 1CIIB 1CIID 11.0 51.8 01) 047 011 OCB 007 071 67'/0 OtE 1.33 137'!cJ 2 137'!cJ4 1QB7 1<lJi{) 'll.0 £:29 Q4) 037 010 OCB OCB 1.43 129'10 oem 2ffi 253'!cJ 2 253'/0l::; 1<D71 101(2 :;00 M"l" ""A 051 012 Qus OCB 2CB 17.5'10 OCffi 1.71 17.f3>/0v "'DU ~

6 1OtJ) 10151 340 536 032 054 011 OCB 007 2ZJ 19f3>/0 O(ffi 121 120'107 1061 1CRl3 4)0 51.4 033 08) 011 010 OCB 293 223'/0 OCE1 202 AlCY/o 1 AlCY!cJ8 1Cro 1Cl?22 100 ~3 023 054 011 007 OCB Off) 52'10 00?2 022 22'/0 1 22'/09

-~

101112

--- ~. f-------- --~ -- -

131415

Tda ¢1, Ala FerncrdTda 141 11.93 1CDCY/o OCffi lOCB 1CDCY/o it)5l!cJ

StiMRIL Logkh Profile

13

11

9Q)

c:0 7N

5

3

1

0 1 2 3

kgh, m d-ft

(I

StiMRIL Logo

Rqe:t Ba1Pe'M1 Irtavc:;js em 9rl2

Wil GHa"#1 ml2 fm3

Irtevas 01,~~ 01; CQ C6 1mB 1aIDTcp Qffi) 1CIB7 1CIJiUB:itan 1Q222 1~ 1CID3

1(210 10!22

Ig1 711 mj.ft EiDn1icBaLBio Bmj01rvRLlcg 6BLBi01

N:tPcv 1220fe:t lJ(&t)= S) 1s) 2D E 45Rmny 6CPib Q{I\t07Q= 1,49 ~1ffi ~ffi3 ~1U7 4EffiSN 4:i9'ib 8t. GBRc(E[F)= 1.731 1.1ffi 1.781 1.191 1.i9GBFErm ocmtrd o/oGBRc= iQ9'ib 78BJib i92'ib i9EJ>/o fiOReB.re 43:5 p3a AnReBm(JB)= 931 a;g SiD 851 fE1Terrp 2DCf" ~($VJ= $ ~ffi) $ ~0J7 $ ~197 $ ~341 $ ~433

Pres EDa:n:s Ufe{}4s)= 170 138 120 106 9FVJ ~ffD p3aCl3P 22DErF

6200

oStiMRIL Example: Carthage Field,

Upper Travis PeakKSB Perm predicts accurate flow capacity, no frac required

Zone Zone Top Bottom Net Pay kgh Avgkg ¢h kh % Est PI Comments*# Name Deoth Deoth feet md·ft md %·ft PaY Dsla

3 TP 6175 6192 9.5 17.15 1.805 0.84 37.2% 2473Use NH4Cl in completion fluid due to hIgh clay content.Attempt Natural Completlon with Tep

Nodal analysis w/zero skin predicts 500 mcfd,actual =450 mcf/d

...J~-c.~E~m..-><(/)w

(1)s:::: ~

s..-'=otn<c.c ---- m...J~a.u

c:o.....enenoJ:Q)--c-c.-~

NQ)C)ca.....enucas..

LL

f:)

Estimated Production Profile

1201089684n60

Producing Months

4836

''''~ "'II", :""",',"""'''1 '>:"'i':i~";W::M>'-:i$'}luKu),'1."Jf~.l'~~.:.·" ....W"'>{""" """-'["1 _ Lf = 100 ~eet.~;j" ..,;.t·_,~ "",.V'~/,',"'I'c '-'.;.n<..,.~ ... ,"p,.I"".+,.",04.·~~::" ' ,.. II

- Lf = 200 feet

Lf= 300 feet

- Lf = 400 feet

2412o100

1000 I ?":i(-O_,:_~"<'..'.J'~.'- ,~

10000.' "'~.~'.~~ '. >:~' ~ .~~.,;.,- ~N:{ ,<' ,~: :-t ·,.7 -:;.. Of,::'~:,~':·<;;;;::~~::~~~ 'i:;;~~;~::"";/'~'-~:~' .~"~~: ~~~. ~~~: ~",.',. :",:.: ,~:, ~?~<

:r"':. ·i.;", t__~":\;~/A., t)\~>~:j~.,',:;,:,nr'_~'~. ,~~:~: ~t.~"~;l,·i"~~~~Y·' ")'.'\f~~>"~'¢\~~~I.~r~ '?(~': \" ,",;' ~ .'. ,~;, ...: Fitchtenbaum #1 -"' .... ¥_..., ',,' '. .'. " H .. ", ~,~ .':' " ,..~<I":-.>~ :",q- .".. };f L~<Ji:"": _;;;.. ~.~¥ ".- ,',,:'

~~

iib!

"Promat" predicted decline curves

oPre-Design Rate, NPV, Cummulative

Production Projections(using 100% frac efficiency)

Lf= 100 200 300 400 500Qi (MCF/D) = 896 1,244 1,612 2,038 2,565

PPabn = 4.69E+07 3.32E+07 2.62E....07 1.95E+07 1.51E+07Pabn= 811 768 624 521 660

P/z abn = 856 802 649 540 676% Gas Ree = 79.5% 80.8% 84.5% 87.1% 83.8%

Est. Gas Ree (BCF) = 0.925 n QA1 n CUl'! .. ""1 " 6.,11,.. ........... .......vv I.V IV V.fiI' V

NPV ($M) = $ 936 $ 1,033$ 1,133 $ 1,216 $ 1,223Life, yrs = 11.6 9.9 9.0 8.2 7.0

_. ..

Zone5678

Qi Est Gas Ree488 0.328829 0.291131 0.088165 0.081

Stress Profile8500

8600

8700

8800

I- I----------;----r I-"+--I II I

I !

i I--------'[------t------I-+----

1

III

-------r------- i I +--

I I Stage #2

Fracture Conductivity (mD·ft)

1000

~

750

Fracture Conductivity (mO-II)

I, r I' P' '1."'; If! jj j, t,,-~j ,~:~~;;;t.. ...:or,. ........ .o

500Length (ft)

250

_ .._----------------"~~",".

"

"J/,.,/;/'

~,/"

..--'

-------...-'

o9000

I,,- ------r__··__1

j r• I

'l- c::=:±-~~r.--';,i':"-;:;;;;;':;:;"-;:;F .•-" '.,

II

"t- I .. --~,-

. --------T----r-- --l- I

I

9100

9000

8900

9200,

w __._._.•.. w -.f.-_.__._. ~_..... _

I,I 1

9300 .~_.- ... __L----j 1 I -l

I i II I I

9400 ~wTIiiW1-----1 -t---

9500 I I ! I6000 6750 7500 8250

Closure Stress (psi)

or..cC.Cl>o

oResults vs. Design

• Aggressive design ramped up to 8 Ibs/gallonconcentration at end of job. Small screen out left10,000# of sand unplaced. 96.5% of job went inground

• FracPro Model predicted 670/0 efficiency with apropped length of 636' ( equivalent 426' at 100%

efficiency). Small screen out left us with equivalent ofa 400 to 410' half length.

• Rate simulator predicted 2.04 mmcf/d I.P. with 400'half length.

Actual rate =2.1 mmcf/d

2500 r-,--------

2000

"C;;:::u 1500EI

Q)....I'l

0:::t:0';;u~

"C 10000~

a..

500

o1 234 5 6 7 8

3/31/1999

G-10 Production Tests

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Well Test Number 3/08/2000 5/251/2000

....c:Q)

EC-o-Q)

>Q)

c c0)c: .-en en

0 Q) .-o en>.-- ........ -.... c co(.) Q) C

E«:::::s rn oes-c Q)

s-

O r-s.-a..-COE--....C-O

i ~ ··"'0 ··Q) 0) ··N en C ·s- O' •L... .- i ·Q) 0 'C ·co~ ·::J ~ C Q) 3

"'0 en Q) I> c Q) C i« en .-i"'0 Q) 0)

c a:: Cw

I I I !

enen>.coC«0)o

...J

C'­~eno-oc::.t:(.)Q)

I-Q).t:....enc::--tn~

~

o~

Q)I-

<C

~

o>-~:

c::~l

..c::I-!

Gary FrischHalliburton Energy Services

Gary Frisch is a Principal Technical Professional for Halliburton inAdvanced Formation Evaluation supporting Cased Hole Technologies. Hehas developed new interpretation software and theory, along with trainingprograms for both cased hole and openhole environment over the last tenyears. He has been responsible for development of numerous computerprograms for casing inspection, cement evaluation, production logging, andthin-bed analysis. He has taught several industry schools on productionlogging, cement evaluation, conformance, and openhole log interpretation.He has integrated logging data into both stimulation and cement slurrydesign. He started with Halliburton as an openhole field engineer inFarmington, New Mexico, and Gillette, Wyoming.

He graduated from the University of Wyoming with MS in petroleumengineering in May 1988 with an emphasis in reservoir engineering. Hereceived his undergraduate degree is in business administration fromWestern State College in December of 1981. He is a member of SPE andSPWLA and had written over a dozen technical papers on both cased holeand openhole log interpretation including one U.S. patent.

Gary James FrischHalliburton Energy Services3000 N. Sam Houston ParkwayPO Box 60078

CAST-VAn Advanced Ultrasonic

Scanning Tool AndEvaluation Methods

for Cased HoleApplications

Gary Frisch

(281) 871-7215

Halliburton Energy Services

[email protected]

Outlilne

• Tool Theory and Modles of Operation

• Cement Evaluation• Standard Interpretation

• Advanced Cement Evaluation (ACE)

• Casing Inspection• Riser Inspection

• Casing Damage

CAST-VOperational Modes

• Image Mode• Amplitude

• Travel Time

• Casing Internal Diameter

• Travel Time Corrected for Eccentering

• Cased Hole Mode• Same as Image Mode+ Cement Evaluation

+ Casing Thickness

CAST-V Image Mode

200 Azimuthal Shots @~ 60 Samples I Foot

CAST-V Cased Hole

100 Azimuthal Shots @2, 4 or 12 Samples per Foot

Typical CBl and CAST-VTool Comttination

Cement Evaluation

• Cement Interpretation Logging Tools• Cement Bond log (CBl)

• Single Transducer or Multi-TransducerUltrasonic

• Job Execution• "Normal Cement Evaluation Guidelines"

• Pressure Pass Required if MicroannulusAnticipated

• Maximum Pressure on Wellbore

• Changes in Borehole Fluid

• Advanced Cement Interpretation• Requires Digital Recording of Data

• Normal Interpretation

• Image Segmentation

• Statistical Variance Processing

Displacement Efficiency

Cement

Impedance Values

Z==pxV

FoamCement

DrillingMudWater

5

4

3

2

1

0 ........------------Free Gas

Nearly Free Pipe

o 150AVZ

10 0ECEN

o

XOOO

1

CSL WA, VEFORM

WN

IMPEDANCE IMAGE

-.v....'"..~.,";'

.."

TRAVEL TIME180 28

o 150AVZ

10 0ECEN

o 1

X200

Bonded Pipe

CSL WAVEFORM IMPEDANCE IMAGE

Image SeQ.!!lentation

High Side ()f Hole

SectionC

SectionB

SectionA

SectionE

SectionI

SectionH

SectionG

Right Side Of Map Left Side Of Map~........- ..........

Low Side Of HoleCenter Of IMap

-.a aaaaa

o 150AVG_Z

10 1ECEN

o 1

Nearly Free PipeSegmented Curves

A2 R14 C24 n~~ I=A~ ~~R G~R HaD 190

-·, ....c MAP

0 1lli0 5 0 5 0 5 0 5 0 50 5 0 5 0 5 0 5

1 JJJ~

~."'1,4., 41HI" I' ....!'o!'!l\:! =iElii

=-,

-5

,I

Bonded PipeSegmented Curves

GFG~G~f [-f[G[-f [INl [-ffGf-{

(j 'I!;(j :::[Gr:: Gf [-fGLr::

f\fr: - />-~-C·G-r::·f-G-r-f- r:;-,1-

'i(j 'i

r::C r::1 r IG~P r::rJf 1fCr:: G~F P(j 'i 0 (j E (j r;

I+-+-++-Pll-I-+-I-f / ~ (j (j

ACE for an 8 Ib.lgal Slurry

Gf. r\~r\~;;.

iJ 'IiJiJ;;VG.l.'IiJ iJ

i=Ci=[ riJ 'I CC[_

;;fI~P .;;r\~p UTfJ[jiJ--~

;; fI~PUTfJ[jiJ 7iJ

l.P 1= r'I iJCi=r\~i=[ rT 1=[

Image & Curve Segmentation8 Ib.lgal

rw:;r-{--UJlfi(--r-{rGr-{ SEGR~r::J r I E[J rr\~PE[J~.r rCE curVESGFr\~r\~F ;;rfJi= Gf r-{Gr_i= (j ~

(j ~ (j (j ;; -8 -C-fJ-i=-f-G-r-{ -r F?- 8 ~ ~ C?-l [J ~ r:; E~r:; r-~8 Gf,8 r-;8 (j rG (j

FVG. 7- ~~~,(.~"~8~,r~,f,~r:~.r~?-f~:-; ~[J~~~8~E""""=(.~~8~~r-~r:;~(j ~G~-7~(j~~r-;~8~?-+-:r~G~?--t

'I() (j Fr:; 818 C?-E [J~(j E~(j r-f,?- G7?- H8~ rG~

ECEf\r rR~PE[J~.r\rCE ~,8 8?-(j c~r:,,_1~[J;.;.:~?~_......:.;E;.;.;;~~?-~r-...;-f,,;;,;,,J(.:-.. ,f...;,;G;..:.7....~·_f...:r..:.;-;r~~r:;;..J f-:.;r0;;,;.~r:;~

(j ~ (j f,.~~ F~(j 8?-?- C~/.. G(./'· E~(. Ff,f, G7f, rJ 88 fG8~--....:+-~Ir-- ~................-+-".......;.....................'""-I~--- ......................~.....~.-...

, ..r

I~ 14

tI

•It

I~

I~

I~

,.

, >

I' •

)

,

,\

1+o+o~+-+-+iH X550

Casing Inspection Software

• Correction for Tool Eccentricity

• Segments and Images

• Three-Dimensional Images

• Joint and Depth Listings• Top, Bottom and Length of Joints

• Minimum, Maximum and Average

• Internal Radius

• Thickness

Corrections for Eccentricity

Riser Raw Data19.25" ID 22" OD

N-+--+--+--+--4 X050

H-+--+--+--+--f X100 'I

ECCENTRICITYCORRECTEDTRAVEL TIME

1545 1585

Eccentricity Differences

Non-Correcteld Corrected

10

MINIMUM MINIMUMOVALITY MAXIMUM RADIUS IMAGE MAXIMUM RADIUS IMAGE

o 0.2 AVERAGE AVERAGEIECJ~IEHiU'II::JI)1Y NOMINAL NOMINAL NOMINAL NOMINAL

1 r -.25, +.25~-.25 ~j +.25~

~~ ~ ~ t:~mill

_--rc-' EW- c 1frl '""~ f p ~

IJ-+o-+-~""'" X050 t; -~ ~ ~ '•.. I .~.. • ,.

• ~ 1~~ oil

~ "'

45..~ I

-......

'.

i:I

­,"

t-~

--....

.~

.. i(t,}

- i•t'j

Ii~.}

......,.-+--+--+--1 X1001---+-I-OO\\--+--Iil(; ~

,J;~ ;~~F_~I""'-"')'Il..iiiifll-iiiiiiil·II~"..~....~_~~!!!!.'~1Jri-...-...ft~iI''''~!''!!!.,.!!!!!!!!!!!!!!!!!!!!!!!!!!!!~~.1

Packer Damage Raw Data7" 26 lb. Casing

OVALITYo 0.2ECCENTRICITYo 0

1+M....f--++-+-+-+-HIY025 I(D)

(C)

(B)

M-f1W-l-+-+-+-+-1-I 1Y0301

ECCENTRICITYCORRECTEDTRAVEL TIME

500 425 500

Packer DamageSegmented Presentation

cA B

MINIMUM AVERAGE MAXIMUM RADIUS MINIMUM- IMAGE MAXIMUM

NOMINAL AVERAGE1-----r_--r_--y-_-._25-.--..__+-r-.2_5---,__,._....,.._-t NOMINAL NOMINAL

D E F G H I .25" .-1;.•25 -.25 +.25...--.........- ........--1--+---1-----1--+--+--.......- , r

I

• II ••I~

~1-+-~H-fw-+-+-"'Il'l+-++-fIllq....f-~'-I. 1-H1fH-+~~"'+-l'Ir~I-ooIIIlo-t.. ..

(D)

.. ...

-/}

I...

'.,...

(B) • ~ ~ r- .. e i-.. r. .. It • I~ t~ .. -Ilv03v, - ;:,..- :::Iill - :II .. ~ ...

1--...

l1li;

Three-Dimensional ImagePacker Damage

ECCENTRICITYCORRECTED

AMPLITUDE TRAVEL TIME3000 5000

Second RunImage Comparisons

Cased Hole Image ModeCORRECTED

AMPLITUDE TRAVEL TIME AMPLITUDECORRECTEDTRAVEL TIME

......-.4;;..;.;;;+4.;.;1:...;;0_ 430 _....=;.;:;a.;4;:;,;:6::.::0:-,. 475

Cased Hole ModeRadius Thickness

I" '~t\

;'I "

.~ I

NOMINAL• +.15

t--=.........--...-::;,;;;.........THICKNESS IMAGE

NAL NOMINAL+.25 -.15 +.15 -.15

RADIUS IMAGEAVERAGE

MI 1M MMAXIMUM

NOMINAL-.25 +.25 -.25

n' ,II I I II II I 1 "'WI I~ ~~"'i,:' ~

1-' I

~Y010(E) I I

~I i I I I ' JIJ~J' I ~ \ 1 ~ I

f'1 1,7 ) 1 I I

~.. 1

, ll~ f II, I'rl

'I- 1\ I I I

020 ' I II I'I II

*1II

",It ' 11.1, ,. I' " I•~~,

'I IIJ IiiII

,I, '. \'' 1 1

(D) i,

GAMMAo 150

Cement EV4aluationConclus~ions

• Interpretation of Both CBL and CAST-VData• Conventional Cement Slurries

• Foam and Complex Cement Slurries

• Determination of Zonetl Isolation• Reduce Unnecessary ~temedialOperations

• Associated Costs Savings

• Operational Issues• No Additional Rig Time

• Near Real Time on Location

• Allows Interpretation of Multiple Strings

• Interpretation of Other ServiceCompanies Data

Casing InspectionConclusions

• Corrections for Eccentering AreNecessary for Accurate Evaluation

• Image Mode Provides Accurate InternalWear Assessment

• Cased Hole Mode Provides AccurateCasing Thickness

• Tabular Listings Allow Monitoring OverTime

NUCLEAR RESERVOIR EVALUATION, INC.2608 SOUTHWEST DRIVENEW IBERIA, LA. 70560

Ronald E. BothnerNuclear Reservoir Evaluation Inc.

Ronald Bothner is the president of Nuclear Reservoir Evaluation, Inc.He graduated from Nicholls State University with a B.S. degree fromthe College of Life Sciences and Technology. He has worked for N.LMcCullough, Teleco Oilfield Services, Western Atlas WirelineServices, Western Resources Technology, and TechLog Services. Inthe past twenty-five years with these various companies, he has beeninvolved with nuclear measurements in both open and cased wellbores.

John S. DavidSuperior Well Services

John David began his career in 1980 and has worked for variousservice companies specializing in open and cased hole loginterpretation in the Gulf Coast area. He has also been involved innumerous assignments overseas. He is currently employed bySuperior Well Services. John helped to develop the Chlorine Loggingsystem at N.L. McCullough when it was licensed from TexacoResearch and Development. He is an active member of the Societyof Professional Well Log Analysts and the Society of ProfessionalEngineers. John graduated from Nicholls State University with a BScfrom the College of Life Sciences and Technology.

John S. David1207 Redwood Bough LaneHouston Texas, 770621 (888) 485 [email protected]

DUAL SPACEDCHLO TOOL

Battery Powered & Memory

v . ---·------------7NUCLEAR RESERVOIR

EVALUATION, INC.

Dual Spaced Chlorine Tool

• Determine current Sw.

• Identify gas/oil/water contacts.

• Distinguish between high porosity gas zones &low permeability (tight) intervals.

• Profile depletion through time-lapsed monitoring.

• Identify formation Rw changes with respect to welldepth.

• May be used with confidence in shaley sands.

Capture Gamma Spectral Logging

• Emission of high energy neutrons

• Thermilization of high energy neutrons

• CaJ2ture of thermal neutrons

• Isotope formation & decay (caJ2ture gammaemission)

• Measurement of capture gamma energy levels& intensities

Thermalization and Capture of HighEnergy Neutrons, Isotope Formation,

Decay and Gamma Emission

OriginalElement

CAPTUREGAMMA

RADIATION ~

Isotope (Decay)

BGO DETECTOR

Thermal Cl-I • • ~ Capture •

H+

H+ Epithermal (other elements)(Slow) Neutron

H+

H+

H+

Scattering(inelastic & elastic)

(Am241Be)High Energy (Fast) Neutrons

• (4.5 MeV)

DSCT (Near & Far)Spectral Window Selection

~~.~

r:JJ.=C)~=~C);>.~

~~

C)

~

Hydrogen Window

o 1 2 3 4 5 6 7 8 9 10

Capture Gamma Ray Energy (MeV)

Three factors effect the behavior of the aggregate spectrumover an interval of constant well bore geometry and fluid:

1. Porosity - Hydrogen index of pore volume fluid effects the rateof neutron thermilization; thus effecting the rate of capture. Itis a volumetric response.

2. Salinity - Dominates spectrum due to Chlorine's high capturecross-section and concentration in pore volume fluid. It is aconcentration response relative to porosity.

3. Shaliness - Hydrogen in the lattice structure of shale (clay)skews the rate of neutron thermilization; thus effecting thevolumetric porosity response and effecting the rate of capture.The existence in shale of the high capture cross-section traceelement Boron effects the concentration response of Chlorinerelative to porosity.

Thermalization and Capture of HighEnergy Neutrons by Boron

(Am241Be)High Energy (Fast) Neutrons

• (4.5 MeV)IBGO DETECTORS I

Boro

Thermal \I ~ • ~ Capture ~ Isotope (Decay)

Boron \

alphaRadiation

H+ Epithermal(Slow) Neutron

H+

H+

H+

Scattering(inelastic & elastic)

DSCT Specifications

• Data Acquisition Memory

• Power Battery

• Tool Length 16 ft

• Maximum OD 111/16 in

Tool Weight 60lbs•

• Temperature Rating 450 OF

• Pressure Rating 22,000 psi

• Source Strength 18.5 ci @ 4.5 MeV

• Source Output 4E+07 neutron/sec

• Logging Speed (5 samples/ft) 20 ft/min• Presentation Quick look overlay, Sw computation,

Effective Porosity, & Volumetrics

Time Lapse / Moveable hydrocarbon

* Recommended logging speed is function of formation porosity, salinities, wellbore geometry

DSCT Interpretation (Overlay Method)

SP Gamma Hydrogen Chlorine

API CPS

...~--------------•··...

~.

~~..~~~~~~~~~:~~~-------- :..,---

-------------.......... - p£ ---------

oo

"co

oo\0co

Shale

DSCT Interpretation (Cross-plot Method)

• Shale Points

• Data Point

... Water Sands

•T

Dt

...-"'­...-"'-

...-"'-...-"'-

~~C\ ...- ...- ...-1,=,0,000 ~2~ ...- ...- '"~~C\...- ...- ...- I \,=,0,000 ~~

...-"'- I...- ...- I °/oS\f'J ...

-­~.~ 300=;::IQJ

>.-­~c; 2000:::-­~-=::oU 100

QJ

=.~

o-.cU

20 30 40 50

Hydrogen Counts (Relative Units)

o

It)

o

is.-o

mo

Io

, 0 == 150 cps

Point of Interest @ X325 ft.I I I I

Chlorine == 1200 cps

L::- I'" I I I Hydrogen = 1275 cps_C">

prw -, I I I I I I I I ,-

Ot (Os) I Sw Scale Factor (Shale) from Chart I, _I I

,,,,,, I 80 / = cps J UI---L-J '

850 900 950 1000 1060 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

Hydrogen

§ I I I I I I

I I I I 1/1.-

§ I I I I ....

I I I

§ ;: I,/ / " I

NUCLEAR RESERVOIRUS EVALUATION. INC.

I J I I I DSCTX-PLOT I I I

SW Scale Factor 0 lOt I I I I== 150 cps /444cps == 0.34

- / \ I I I.. ""V V @i / / I I I I Iy V

Water Sands I I I I Ii I

i I I I I I I I I

o SOs == 80 cps

~

~g

~ ~i"

I

mci

Ici

?~

I~100

701OO7SOO

HCLXPLC>T~f- ---- .--

eoOo 8200 e.400 ll800 8800 7000 T200

HYDROGEN

,.+I

j

S800

III' ~1 ...1----11-,. ci

1 /.~ i I -1

1

:

Pickett Plot

-'-l--·t--i-e-i-iU\:--,

"

RESISTIV1TY

I I I !' 'j " ,

, I i 11\, ", 1'\I !, , . I

I I I I' \ '\!'I. I i I! " \

.f:,~~~_~LjJ L ,lIt". .., """I0.1 1 10i j i I I_._+ -r-1'1.'

I ,

+-+-Hffiil I I I k'4{I I I I I +i+--if+ iii I Ii 111111111 I 1 I ..,

X400

X200

X300

l;)1::"'j12__~et!®J 10i 6'~~M . .20 10:6 ...... ~~;~OH .. ~j 1SQ09_HYPgPrI:N 80001 tfol:~ lillo.rH~DOH 0\ ~~~81J §

[.g==~~~ .. ===~~i [~ ~~~~~ ._ol [~~_~§f~NE ;oJ ~~2E] rg;~ I~H~O-~l "iT ! fTI~i SEOP I[ SIGMA ] [ BVWHCCl~ ~j f···· 1___ \--- i....-! VO.[=~=<5J:jt~~~_:::~J 4.~:::·:.~~.:.:.s·(j·:····· ..·..i~ I i~~.Q§·iL.QJ lCflt!.!!!l] 1)1 I ,

,'i iii I ~t . [ j j

I! ! I I I !I-I:-"--H++H...L- , 8! I I '. :J !I 1!!! I

"+...;r,.,-+-d-+-+H-+-,...~H-+-+' i I ! I I.- ...,t i' :~r'

w '

'§ ~\is I I~+ I ! / __1 /, I

------HCL XPLOTS . - ---- ---------- ------

~c:i

~ ~

o

~o

Id

I

~

Id

~~I-I

, I 1m"f ·',1 1 1\1 i "J~:

50

5500eoooHYDROGEN

Pickett Plot

1

RES1STMTY

-.l5500

If

5000

§,,...,

~ L,lF+ -~ '\4.:: lbt':-f'----j-- "";--1-J-.;.-t I: i I I I !' " - - \,; IT ; ", J- ~.

I'iL' ll.f' " " ',',

".-j"JJl-l._- ,1 kIi If"''''--- 1--- "1Ll'kJIJ+-II-W.~+t--H'+-'TkT' litI iT''-ll-++1I 1J :. :: " . I ' . ..

i I II i I

H-- -\I IIIf,.' - +U

1

i---__i !

i i, ,, ,

1.1J045... o.s21 i"'.2,15 !

'":,.... ? 1.1 i°0,05 0,1

X600

X500

,bEPT f1. GRHCL ~ C-------RsF[----i r-NPHibH ~ r'---HYDROOar--;i] fDm0H II PHIEOH I[O@TL'!J.!J 30 CPS 130; l@_ <:?':l~t~L__~Qj LO.::LfU'O 14500 CPS 7500~ Q,! PU 0~

~§ "'S~H---~l r~-;---- t~~M. ~1~~k~~NE =r;] 11~g~ [@~AF6llrH~to~

';--G~~~~~ ~i~:~~~=::~~J ilfl~G~"'ol IO,~~CL oilattMMOi PHITH Ilb,! 10 0

~o

~ ~',

~o

I !

l

"• I"

Pickett Plot

..~

t.. ··.. ·~1 jlaI L ""a-----i--.- - I··[ I 1,0t- i IL_'.~_'_'_I ;;

!. i

..-...-.--.-+.-----,--·-~----·-----J.·----l·---- C>500 eoo 700 eoo 900 1000 1100 1200

HYOROGEN0100

~

~~

tiel XP[01'S-- .. --...----

~ I i I ---, .. --

~++ ! I I / I / _-, fSI'l I I

! Is:l L""-----I-"L-.";II '

I !~~----+-

I 1/~+---4

~T-I

I~+·--+-..........i-- .. j··f

111.1'..I !'iJ ..['LI

i ! 1:i : 1'1! ' ,i I!! i. I·.' [. , '1 '! ; I I

! iiiflw - 0.022~ -o.62i I'

'" -2.15..,~o '

0.05 0.1

!DEPTH. .. ,fof.l----., '---·~-AHTf(f--------lIJfpHro-.:r~IT~~-=HYDROOEN=T"···swo,.-jjH~~fT__! LO_.,m.G.:~~I~~~f:~J &L oA~.M ~.Qj Lo.'s -pu --~qj L~Q9_. .9.~~ 1M.Qj!l DeC ~ l.QJi ~~

r~;-SP~SH 201Io::r====~~~-===--"2~ ro.fp~ 1275 CH~~~INE 13001 11sogrg~1 ~~~~ ~~~OHol~-_._-~-.. ~L_~_=-.2J 'fi·.~ ...·._,...,.;

fo·····~~9~=.~~J [~.[-:~==-~~~:=:-:-~~ lQI~~rr~~o] l~:~"i;f~~~1 [~~~Q]

.15G@~~C 135) [~~~~l

-----HctxPLOT~

lit) -Ii

ci ~.

~"

Ici

100

1300

10

'ii I i j .1 I~' I aiii i i : i' a

......... ;,;;.1 ,;

II I' III ....I; I: i i! i I

·!'·'··'1·····~-·- ··t··

II iIII • ~ ~" : !: ! I\,' , ! i I! . ~, 'l ! '! ! ,

.... ·· .. --t"~:, ... ~-i',-'"' ..;.. I'.·.·.. ··,;

:....,~,Jil··1 I~·.... ··:.; .~ ''i : t. ,

k j;;

o

1200

I I

i I --L.J__~ I a-+ .... +--- i I '1'c.'..•. !

---........-.....1---,---- .....

RESISTIVITY

+---1, . .. j--- I +700 eoo 900 1000 1100

Hydrogen

~ :...~,:-~l~T~I!IT~I~I'\" -'~I~If--"""""", ! I I" I

,I

~jI

8~-.... ,

§+--'--'

: J.! !Rw- 0015."·-(;[62 ~

m-2.15 !8~°0:1

~Ii

§j-I --

~.~---~I

I~+---

i~l---- I{~r-· ..--------_.------..B§ i... :---

!

xxooo

DEPTfi---GRHCL " ·At1.0 .... ·...···.·.1 l-cDpHR5H-"~~-"-"--HY6ROOEN I~'~fHIEOH I~4AJFT _..Q~~_~Q§j l~..Q!i~~ u. _2.11 L~:L--E.U 0 IMo CPS 1750 lI]g]J ,0:5 PU 0 !

~;~G~.~] lQ:~.-:t:~--2~] ~~bo.!C~l [~;'----CH~NE"-_ 2a2.~ IL~p] l~~~.J] IrJ>t;c~j0.0."_ ATOO - - .-~ r;; P~ ! IlVWHCl ]~o.2--oFilJ:a--20J(j:~:··':':PU"~:·.:_QI .QAPE~Lo. L~t.!~

PERFS ! r-PHiTSJ10--0ECO; la.5 pO~

Recommended Conditions for Optimum ToolPerformance & Interpretation Quality

• Porosities> 15%

• Salinities> 25,000 ppm CI

• Well Geometry- Borehole sizes of 12 1/4" or less.

- Casing sizes of 9 5/8" or less.

- Concentric casing strings not recommended(especially with the presence of tubing).

- Liquid filled annulus (preferred but not required).

Rob NorthSchlumberger

Rob North is an Interpretation Applications Engineer forSchlumberger's Data and Consulting Services in Houston, Texas.Rob joined Schlumberger Wireline & Testing in 1977 holding variousfield and marketing positions throughout California, specializing incased hole logging and EOR project evaluation. After California hespent five years in Sumatra, Indonesia and three years in Anchorage,Alaska in interpretation and management positions. He has beenstationed in Houston for the past 3 years specializing in cased holelog applications. Rob holds a BS degree in Geology/Geophysics fromSan Jose State University in California.

Rob NorthReservoir Management - DCSSchlumberger, DCS-ID,1325 S. Dairy Ashford Road, Suite 300,Houston, Texas 77077, USA

Advances In Wireline Logging

Technology

Geochemical Logging

&Cased Hole Formation Resistivity

d ~----lf-

«~ &~ S;-(~O'oc

/J. \////.~"" ,',' ','" ~~- -

/-

- I

Presented by: Rob North "You idiots!. .. We'll never getthat thing down the hole!"

.::/~-

...... • __ .. U .. _& ~'-l__ .... -.•• _

Schlumberger

Elemental Capture Spectroscopy&

SpectroLith

Quantitative Lithology for

Enhanced Formation Evaluation

Schlumberger

Evolution of Gamma-RayMeasurements

• Total natural gamma ray

-GR• Natural gamma spectroscopy (NGT & HNGS)

- U, Th and K

• Neutron induced capture spectroscopy (ECS)

- excite elemental nuclei

- measure capture gamma-rays emitted

- Si, Ca, Fe, S, Ti, CI, H, ...

3 rn Schlumberger

Capture Gamma-Ray Spectroscopy

Lithology

y

2412123 13

. 3 an l'O1 Sf lila (ktj

Elemental Concentrations

~Xid) 6

Closure 8

Relative

ji Yields II

~I~

~

Capture Spectra

Elemental Standards4 rn Schlumberger

20,000 psi6.00 in

Schlumberger

T

Dry Weight ElementsSi, Ca, Fe, S, Ti, Gd

Dry Weight LithologiesClay, Carbonate, Anhydrite, QFM

I Elemental Yields If

I Gamma-Ray Spectra It

• Logging Speed: 1800 fthr

• Vertical Resolution: 1.5 ft• Borehole Fluid: All

• Tool Size: 5.0 in O. D.• Length: 6.6 ft• Maximum Temp: 35QoF

Spectral Stripping

~

~

• Maximum Pressure:• Min Hole Size:

GCQUiSiti°0Electronics

InternalDewar Flask

Boron Sleeve

BCD Crystaland PMT

AmBe Source

1=11=::1 Heat Sink

iI

\

lr::mi~

l:) I

( ~I~II! ii!i I

ECS Tool and Data ProcessingFlow

6,6 ft

5 rn

How does ECS and SpectroLitrProvide

Value?• More accurate

petrophysicalinterpretation products

• Wellsite product, real-timedecisions

• Lithology for mechanicalproperties and trac design

• Enhanced seismicattribute analysis

• Detailed models forreservoir simulation

6 rn

• Chemostratigraphy

BS,PoA U09 A7

:::illi'" "",i ,,:i.lli;i"ii'6 16 Clay(In)

COR 8PoA 009 [A? 2POASPE~09.1_

0 200 06(113/113)

0(OAPI)

~!::...2.P~~~_ A i 0-st'tA-oog- u, HI " oA 009" Carb 02 200 06 0·80 (mV) 20 (omm) ((13/113)

CALI,PEA009 [~ 24 _ ~'-90....S~E~ "-oo~[__ ~EF 8PEAOO9~ _

6·······;i~·)·······i6It Amy/Gyp 0,2

om,m)200 1

( )11

,j ~ i:C :::, ~~

[~ ~~Ift< I:' I~

1=-t> ( ci::J11

l~ 1\r-;:~, !< ~

( !~

~ ..,~[<~

I~2900 kl:

~ l.I f ~;l>

~ ~;... I ~ )

r'o.I- 1<

;,

11« [) I,;,I'~D~ N

I'-. I II [;;;

j..-V v 1< [ 1<\ ~,) II> I \ I

I j JI2950

~'I I ( 1-.1=£k I.! !-"~l"-

II~J= 1< I~1< +- gIr.J (;. I r< I~r.:

p

I~r, lit I> ,: pI I

) , Ii ~!

b, ~ II 1: I.;1<~, c.

Schlumberger

Deepwater Interpretation Questions~!,;i'LC~S...l~§..k_H~ 1-- of Ascfi-LoadlA1B

02 20 1~ 00onmm) (U~trl

l'r.s~\~.

~~'r~~_"fE-.

-ft"

--.0-.

~H~~~~~1_!::iP!::!I...§~~C~C__S!;;!3_02 20 06 0

onm m ) { rt3Jrt3

k'[,A"",

·'c.····~·5;F"

... 1······:, , '1180

• What are the low GR, lowDT zones?- Seismic reflectors

I j

it>1225~'-+tillilll

~t9':;""

.,'"!~

t;o,

..... ,;c.

:if":>

1170

-<,-r-T'r

.>;.~ .' 11 75,"t-ri1t<l1t"-r-H-tt1rttt-+-+~-l:r:-+~--.j-~

• How clean is the reservoirsection?- Lowest GR not in pay- Gas effect on DIN

• Vclay

• Porosity

• ReservoirVolumetrics

7 rn Schlumberger

EC S Deepwater Solutions

• SpectroLith wellsitelithology

• Accurate identification ofmarls- low GR, low DT zones

- carbonate-rich condensedsections

- high amplitude seismicreflectors

• Real-time quantitativeclay- lowest GR not in pay

- gas effect on DIN8 rn

- improved reservoir volumetrics

_~~tLC,,!::!~<;LM§..R_H.!....--.-r ---iJTAS-~j8

02 20 160 60ahn. m 1 (usnl

02AH222~S~~~I56~.!::iI~~_C~C__Sh!3_

_J~:,~_~2 _N'__

1160

IlifftH I 110* I I1170ol-+++J(lll I 11111111 r""""1- <CS JJ I I

1'\Ul 1 ,I 11 ' 1121001 1111111, I 11111111 1 ls- I> I ? I I

Schlumberger

Shaley Sand -- Clay from G R,??

r--,-----,.. •

DIN

Free Fluid

URAN o -N Crossover

Schlumberger

____ .llif~ _06 0

( ft3/ft3)RHOZ

»

k"·' ...·.····..{-

.. "' , ,' .

I

r ..··

r

1.65 2.65cm3

HLLD PEFZ0.2 200 0 10

ohm.m

- ---~~---- CMFF0.2 200 0.6 0

rt3/ft3

MD~ TCMR: 24 0.6 0ft ( ft3/ft3

1750

150

150

1--··

.~: .

"

~~1180J r..-...~~:··~~ ..-

~ i if

~"~'fl,. "'"'r'!'''

i···1-,

BS

is1 ....

HCGR

(QAPI)

(QAPI)

"~.I..(:1-

t

g~.r;;~"~J .-1... m••• :•••.-.- •• • ~ m __.j 1700..Ji l .-;1 ; ."'-..:SJ,: . !",~, . ;

tt·· .,~ .j, !

II, • :

j~

..~.~....,:1II

<'1•J~

J'/f

-1.[

____ £.A.k!. _6 16

( in)SGR

DCAL

o

o

6-- -(in) 1-6

rn9

Improved Reservoir VolumetricsInterpretation Synergy with ECS SpectroLith, CMR &PEx

Schlumberger

Core analyses verify EC Slithology and C M R porosity

E C S lithology and CM R freefluid provide accuratereservoir volumetrics in lowerzone and increaserecoverable reserves

TCMR

Free Fluid

ft3/fl3

P",FZ

o -N Crossover

,65 RHOZ'- ~651 (oil)cm3'

VCLAY from GR and DIN--~~-"'I would condemn lower zoneQ6 0

ft3/ft3

20011 0 '0HLLD

ohm m

----~~ II cMFF02 200 06 0

API

SGR

URAN

DeAL

HCGR

o

BS

,,- - - ~n- - - -'-6._ 62-----~~~-~-----2cio 06 "3m3 0 Clay from SpectroLith well site

f '.····~.-.···i;.. '"1i'·......•.. '..... -i J ·······~f··~· J~: i.".'.",.'.,.}'······-.....• ·····3··.···· product (lithology track)1 i· ".,. . . ~. .... ; . z ... t=~ ..,...,. matches total clay from core(1.-' .•I' . I .'~ :. . I.! . ,,-. '. IV D n\-~ .' ... [. .... .. .._. ..... -~ ... ,.J I""""'" ;,;.,- .....!;'<'...... ""1 \ / '\. I '\. LJ Jr ' d:.J\. "L c~ d J

~~..'1~I.Iq'1',sl-~~'r '---' -J\-' --!

'I.,

I,J"~-l,I

.1x ..<~•,J

1II . _

-1 !J ..",

o API 150____ ~Ab!. _

6 '6

10 rn

Low Rate Gas Well

• Inter-bedded carbonatesand clastics

• Sandstone reservoir

~~ILTC~~_·80 20

(mV)HeAL HILTC .009 [Ii···· - 16

(n)

GFI HIUC 009 [A3 I~o 200 (It)...... (qAPI! u....

_l€f~}:!.L!.C_~L_o 20

()

02 AHT90~lo/f.?~·~~L.T·~·~?J..o(ormm) (113/113\

RXOZ~I ~oz HILTCCXl9[02 200 '75 VI

corm m) (alcm31<.",.,,_~.-".w __'~~:~'~".~_"_~~;_.:'-~;'~ m_~~;;':":;;';::;~':;;;;';~_~

U~==t-t1 375

o ~O

ff

\j~

··r....;:..~

L..

~:.~

I -,·5.. ,'"

I)I

~

~

,~,~l

~

y

..

"~,I IwJ}II.lI'~

:!~

,r ,v

~: (

" I

" I ~5i \

Carbonate cementassumed

Typical completion:

perforation

"clean up" with HCL

11 rn Schlumberger

Modified Completion

_~ HILTC OO91A3 _·80 20

- minimize clay damage(emulsion) 01'b'P1 I f I

• Best well in field

- acetic acid for all newwells

• SpectroLith indicatedminor carbonate cement in

.reservoir

• Iron chlorite dominant clay

• Acetic vs. hydrochloric acidclean-up

12 rn Schlumberger

C BM Evaluation Requirements• Delineation of coal beds

- bed thickness, coal footage

• Methane reserves

- in-situ methane content (scf/ton)

- cum total gas/bed (MMCF/acre)

• Cleating --> producibility

- amount and type of cleating

• Production potential

- pore pressure, temperature,dewatering time

13 rn Schlumberger

C BM Evaluation with SpectroLith

• Continuous, quantitativeore CilbOl'i (wt%)

lithology and coal footage0......•.. 11 •••••••• 11..~. Core cqsCFrtal)_u,i: 0

200

- real time

• Methane reservescalculated from database

- empirical relationships

• Cleating and ash content

14 rn Schlumberger

Ambiguous Correlations with GammaRay

Gamma Ray (API)o 50 100 150I ':SO i i

Gamma Ray (API)o 50 100 150

ShapeSimilarity

?•

~l·························t············'I~~ .........-----------====------ .L

..c......0­mo

..........4='--"

15 rn Well 1 Well 2 Schlumberger

Chemostratigraphy Lowers Ambiguity

16 rn

.........

.:t=--...-

..cof-'

Q.<L>o

Calcium (wt otic»10 20 30 40iii i

Well 1

Calcium (wt otic»10 20 30 40iii I

Well 2

ShapeSimilarity

&Absolute

Value

Schlumberger

Open and Cased Hole Spectroscopy

Schlumberger

• Easy interpretation

• Single spectrometer

• Simple processing

• Si, Ca, S, Fe, Ti, Gd

• Clay, carbonate, Q-F-M,& evaporite

Minitron andHV Ladder

RSCDetectorAcquisitionCartridge

NearGSOCrystaland PMT

Far GSOCrystaland PMT

RSXMinitronControlCartridge

Reservoir SaturationTool (RST)

1-11/16" 00 under 200 fph

Electronics

Heat Sink

Dewar Flask

Boron Sleeve

BGO Crystaland PMT

AmBe Source

NPLCDetectorAcquisitionCartridge

Elemental CaptureSpectroscopy (ECS) Sonde

5" 00 1800 fph

17 rn

o '00' 0X ~ 0 0X X ~

X: ~ ~

.......

..c~----Ie~

t)(J)~c.. C)Cf)0(J)­_0o..c~

I -­--I"""CCDenCOo

c'--

enco><Q)

I-

....ca.-

-..+0-1coEL-

au..cQ)Q)::J

a

CL..

aN

oo ,0x ,~ g 0X 'x )( It)

I )( )(

co--+.JCO

+.JQ)s....C. .s.... SQ)

+.JC-Q)-oI"""CQ)enco()

SpectroLith Quantitative LithologySummary and Conclusions

• Simplifies log interpretation (less subjective)

• More accurate porosity for better reserveestimates

• Better geologic and reservoir models

• Drilling and completion fluid compatibility

• Mechanical properties andfrac design

• Enhanced seismic attribute analysis

• Chemostratigraphy - improves correlation

• Proven results in exploration and development21 rn Schlumberger

?:'-->--I 'en--enQ)

0:::ca--I 'coEL-

aLLQ)

aI-cQ)enco()

Cased-Hole Formation ResistivityApplications

Location of bypassed

hydrocarbons

Primary evaluation

(no OH logs)

Reservoir monitoring

L - Residual oil saturation

23 rn Schlumberger

History of Cased Hole Resistivity

• 1939 - L.M. Alpin submits US Patent# 56,026which describes the principle

• 1956,1959, 1972 - Other patents describedetails on how to make the measurement

• Subject revisited by Kaufman (1989,1990),Schenkel (1991) and Vail (1991)

• Vail published field data in 1993 & 1995 atSPWLA

24 rn Schlumberger

C HFR Tooistring

25 rn

Telemetry

Top currentelectrode

Insulating joint~

Electronics

Arm section

Hydraulics

Bottomcurrent

electrode

13.0m

O.Om

~~-

---------,--

Schlumberger

C HFR -Formation currentmeasurement

26 rn

CHFR Measurement Challenges

Differential voltage (V,- V2)

Upper, lower voltage (V11 V2)

Casing voltage (Vo)

Calibration current

Casing-segment resistance (Rc)

Applied current (I)

Formation current (L11)

Downgoing casing-segment current Ud)

20 to 100 JlV

10t0100mV

0.5 to 3.0 A

20 to 100 Jlohm

0.5 to 6.0 A

2 to 20 mA

oto 3A

27 rn

A Typical values detected during CHFRmeasurements.

Schlumberger

C HFRSpecifications• Tool dimensions

• Pressure/Temperature

• Casing 0.0. Range

• Maximum Well Deviation

3/8"00

with stand-offs

• Stationary measurement

• Resistivity range

• Vertical Resolution

• Depth of investigation28 rn

3-3/8", 43' long

15000psi / 300 0 F

4.5" to 9-5/8"

70 degrees for 3­

any

- 2 minutes

1 - 100 Om

4 feet

7 to 32 feetSchlumberger

Cement Effect

- Rcem=0.1 Ohm.10hm.m20hm.m50hm.m

- 100hm.m- 200hm.m

Cement effect on CHFR (7-inch 00 casing)- 0.75-inch cement layer

100

120 I ! I , "

-20' I " , I '

10-' 10° 10' 102

Formation resistivity [Ohm.m)

'0 80'\"C ~,OJ '\

~ "'-! 60 "'"

~ ~ ..~ 40 """~,a; , ., _,,:W •

I . ~" 20 ~.' • . • WN,__ di",0: .~

01-

29 rn Schlumberger

2~

.()15

Itt

me

I~

RHOZ

'"':'1''',;'

'::.~ ;:.....

I m3lrn3)

... , ....

Heutro~.~?!.~.~:f.~ .

•• <I:.. r.; ..

~~:

.}:~'::

.....'Y~~

l""!"~'j'..7•... ':':::." .'~::~ ~.,~!:<,

~-: •.. ':~::.."i~~:::... ... M'

,',;J::' :·I':.:.:T:~..~

;.~:

,.,,~£·':r]:t

".i·"r .. ·•

," ~..

........... -,..:.,,::1:.,

.. ·....·:..~'··'t" ..":t:~: :'

195

T~:.I;:"·~~~;: ... ~~J..: ..

":f~I""'":",Jr

............;..

1000 ~ 0 45

t--

~L

(~m"~?iiiii j1jOa::J iF (ig/C~I ~

(ohm,m I

HllO IPtXj

ft(

CHFR ~parent Rt

""""" ,I

1200 f-

1250

MD1:500

m

CHFR-I I I

Repeat~

~)

100

ocoo 1

It

( )

eel

r gAPIJ

I ohm I

II~

Gamma f?ay

'jl tl,lJ£:

! <:

11 J=liq1:

il .

~Il\

lim

m

Casing Segment Resistance

·19

H-+--t':H:~.V,.1'j,t~

.....31m3 )

~"'", ;.::~,).

: .,.,-

",' ..

l('

".::TI"

8-1.;.I~

I..···........... ,

I \

. ': ..

~':"...;;

I . :::~!I.-"

HlT'

t--

fsr-

l-

!=±=

F-+

{

("h......... I

t--

Ilfc,,~~ App.,.",1 ~

1____ H\:~~"::l 1000 ~ ..~~ ..~~.;;:~;?~.C;.~'tL. I

CHFR-H:IIIIIIII~

HLLD~

1500

"01; 500

m

~I\.

wrf:R I:m

rlli1

L.ilAf'I) 100

CC',- ---

m1-

1f11t +-

, 1

Imc-8 .. ",,,, .. 1<,.,

c........ ~ ..... "_•• "••;.1., ....

Log Example - New Well OH/CHCom arison

~ .::,~,..

I1450 r-+-+++++Hl:--- ~ ..'::" "".,..

I ~ ....:~~> h:·;:;;;PI

rt-t+tttif-t-+~ ~,;::.:~

).. J~~ ····"M

·''':·:;·<:;H

Ie- ,~1-- .. :-

.r:'·

~ I

30 rn Schlumberger

High permeabilityLayer - deep invasion

Schlumberger

omparison withALS and AIT

AJ<OZ

, (ohrn.m) 1000

HART, ---------------------(-O-h-~_~)-------------------,OOO

HllS, ---------------------(-;h-~~)-------------------;OOO

HLlD1 _._ _ _ _.~... . _(..~~.~ ..~..,--_... . ".._ _-- __. "'---'---"--'1000

AHT90Cesing Seg me nt Ae$is1ll!l noe

o ohm' 0.0002 1 (Ohm.m) 1000

G.m~ ABy 1 M&O CHFR.pplllent Rt

o (gAPI) 19:) ft 1 (ohmm 1000

i-'f---",.CHFR F='~

I .Ai!AIT90 --

- f-- 750 l=--+-+-++-1I--H-+~-""'...(""""_-+-+t--++--t-++Htt=l-., ~,

(1)1 ;, ~ HLLS ++---+-+-+-+++H

~~

+-+-

r- 800 ~ HLLD ,+---+--t-+-,~'+i'<.1-~Rc HART~,

I I '" '-..~~II I r-t1iiTTrr-~~~~=tm1it1GR" .... Fl

I 1~HHod--+-+--+-+t-t-i~~ I~

1--_+--+-H-+I~~~;;;.)'i"!L-'--+-++-++---+--+-++++H

~'.' 850 ~

... ~' ---, "

.--P ~~>I-: ~;;.--,'; ~~

','

I I _ ~~>

I' - ~900",

.; ~ I......~+-t--t-+--+ .. ,. -H-++-+-~'---'''UM--+t--++------t-t-H-ti-ti-

- = ~ Top of Isolated Casing Section :;;;. ,.

; r ~>t-+-+--+-++-+-+-+--+,-+ ..>.-:;.

31 rn

LogExample ­New WellRes istivityComparis

j<:.(

)1----

7

2 1

~

.....y"

'U::.­"Fo: -t"..

~

:~.-J

.r-::1'- ~

~r.~~

"'d, I'\.: \

.1-"::

Iff>

.J=::

~

c"":-

I-t-if'

~

Es:

I~..

F¥'""~_-t--k

CHFR remains stable

Schlumberger

2000

J-

I--

~

t

E

J-

_...!:!£:.H~A..§.!£~9~__

2000106 0lohm.m) (113/113)

HLLS BASI C [A6592061

~

...~

I-

-=

~

tIE,''J(

f++;'Il..J,,!oit;,~.m

l~,jl

'f,;..

0.2

02

CHFR

02 - --:>- -(Cihfii" m"> - --:>- 2000RXOZ .AV§JA6.59231]

lohm.m)

8400

8450

8500

..L t";., , , , I}

.J..I•• .I.. J;'

(oAPll

,~'

"I:;

,..-..\

'.

....

....)

'\

?;-..

.~.,

'"

'I.I,

GR .AVE [A659225]

IS I tl)T1

o

•••• !i~.A"L. ~!"~l~ 1';~5.9.2; ~L ••• ,6 16

(in)

32rn ~

Washout~~

Caliper= Bit Size+8in.-1d±±±±f.HlI

Log .I~\EXampIe -1-..+--H----I-1~I---+-+--+--+-l

...

MD1: 500

nGamma Ray ____ ...... _.?.!~~ ~..d~;t~~~ ....

RCHFR

ROH

SW-OH =SW_I'f{

Depletion ratio

I~

Archie: Sw Depletion Ratio

I ..:::r::c:;:;.

-

200

~~...I ..

j;;:

I ohmm I 200 II ( )

(ohm.m)

CHFR Apparent Rl

t-

t-+-

0.2

L~.L.W1.l.#l1--

SQI "0.2

X750

X800

F'--- I;JJ'". III I I mm I -I 15 l;....rl~ ~CHFR ~IT......Ii 1f11111 I ~ J

X700 ILD'~J" f-. l-t:::::.J

'4++"1- ~ i£ IT., ~

, .J.-.S.

;. . , 13- 1 I I tjIII .' = 12..... ~

"~ - ~IJ1~1b-

~~I 1::::

+-C

180

--h:

I";;

~p'~,

f

..

:II~

<h::l~..

: I I t--+-

~

~" I-<f-....l-.-...

~ I ~

'I I I I­i

30

~.

EXampIe f---+--+--1DC.SI~_se

Q

1:::;e~i~.~ce 5e05

OldProducing'r-+--+-F

~~

Well

33 rn

f-

Htq.OOJ-r~

£:::::=F- I :

1> I I t~I~~"

~I~I'

j;:1'.'e;'

~

X900

X950

1

11 11'

~

"

~)

(

7,." ..-

'ft",'.

r"-O:

,.-"

?h

IfL~~7

"" l--'

Schlumberger

IIluliluerger

Gamma R.ay I MD________ E!~~~~d~~~~~ _________

0 150 1 ~60 02 200(gAPI) (ohm.m)

Arehie Sw Depletion RatioCasing Segment Resistance II1p·rlO, II CHFR Apparent Rt

0 20 (ohm) 5e·05 0.2 (ol'lm.m) 200 ( )

t7 -- -Uilllil ~C;

,.i.

I- 1£~x100

~L CHFR 4L ('- ., 11111 ~ If-- ~ b :'! f= I·,L ., IIIII =j I

~f-

l- t? r { .ILD -:',1/ II- -

~j;. i I: ,.~.

-

; f x150 ,-~

!~ , -l- I -

hI- 1 ,

= <1"

~P " l.:tf-- < j -~ {

<:p~i

x200r--- I>

;.-"'t .... I ~,

(I/""' i--'~!

I. ~

P i • II;; ,<k

"

\

I-!eI---k Iii I:';

( ~ I X250~i,

» ~f-- r

"In '. ,i...I--

~ I 1: <,

~:.,

;\ I--F It>- ~L0- r

J""=Ie:;:

i~x300

t-- f-~I

r- , <:~l ,P=>- ,- .

Li,

<I---

R nl, Chan2 41--'~ {!• ";, ;,f'

I t RJ nl, Chanl ~ ~~ .ft.

,f · x350'..~ l'r·I I I \~

"U

Alaska

34 rn

LogExample ­OldInjectingWell

"'"1'''11 I U is

1160

1126

')

0-0- esg resistance -0-100 Depth 1 0 hiD L I 1000( 0) ------------- pen- 0 e eep atero og ----------l-l (m) I Cement Map

0_ esg ~hic~ness_ 0.5 1 -0---------0- CHFR (Pass 1 & Pass 2) -0------0-1000 (USI)(USI) (m,)

I I I I ~ I I I I I I I 1100

35 rn

SRPC test well

LogExamplePoorCement

Log Examples - Time Lapse

1: 300(tt)150

GR

(gAPI)

3 runs 3 months apart - saturation change

Schlumberger

••••••..•••~S'~~•.••••••••.4 14

In

o

2000

~.-:.'

-~

.e-

..,

-~

~

~

.~-.J-':. ..

(I~

CHFR Run 2 (8 ep 28)--- ~

CHFR Run1 (May30)----- -.

""---.-,'-o""h-m-.m'""""'----IJ

cif!:,

... ' ~' ..~ •• ........Jtt:l

"'j~.

~

~~

~

~ ..

::~-.~...

"-~

~

...~~_ ..~i~

....T·fQi5...;.

..-'"~

.-.~

L~

02 "". (ohm.m) IJ 2000

0.2

-------~~~~~~------_.0.2 2000ohm.m)

MD11 1 : 400

ft

to-

I-

150

-+-

I-+-

2 runs 4 months apart - no change

GR

(V)

(QAPI)Casing Coli ars

36 rn

I

>

.

«~

~

~

>-

r:!rj

<,.

~

-<1

\

--.:

7

-g

o

5( )

DataFlag

DataFlag

ELECTRODE ID

ILD

LLS

(ohm,m)0,2

-----------------------02

GR

o (gAPI) 150

SP-----80 (mV) 20

37 rn

Best sandsproduce;lower permsands

•remainat original oil~ii","~

saturation

- ELAN ElemEntal Log AnalysIs Interpre1atlDn of CH~R and RSf reservoir moMonng logs, In thtsIndonesian welL the ClO log results are afiecl'lld by near''II'!!Ilhore efiects, In this case underustrrnatllrgthe remaming 001 du~ to ,,"','aSK}n, The deepm CHFR depth at trW8S110Alk>n helps to belter estimatothe rflm,~lmn\l ad

Schlumberger

Cli f)p~".)'C

III II t, ¥'),'11 1

Cl UII~'I'I:i~

!l " • ~ l, 11 :

(

l\r:-

Ii

(;+8 P",'l!'liI,

l.J ~

Fer1u'JtU1 Ii13 I J

I~ji

/;1

't!,w H ti~, ~:;,·IlJ-----II".."J',~...:.::.:__ _+__::::~~:::;_C~:~(!r!Oft Heilt~i.,t'f AS r 0;1 'vlitljj~

\I~' IrQ If

;:~

38 rn

CHFR readsbeyond• •Invasionwhich C:jlit?~ •.1 Ri1'f

t.: ,tJ1 ..:.t1

effectsnucleartechniques

I

.~

./

C H FR Conclusions• An accurate resistivity through casing

measurement can be made, with gooarepeatability in various productionenvironments.

• Applications include:

- Primary reservoir evaluation

- Locating by-passes pay zones

- Reservoir saturation monitoring

• The CHFR measurement is deeperthan39 conventional saturation monitoring fro'1JPJllumh

rn nuclear tools and allows direct compa~ls'mT'ergerwith open hole resistivity logs.