dissecting the quorum sensing regulatory networks in pseudomonas

50
Miguel Cámara Nottingham University, UK Dissecting the quorum sensing regulatory networks in Pseudomonas aeruginosa

Upload: others

Post on 12-Sep-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dissecting the quorum sensing regulatory networks in Pseudomonas

Miguel Cámara

Nottingham University, UK

Dissecting the quorum sensing regulatory networks in Pseudomonas aeruginosa

Page 2: Dissecting the quorum sensing regulatory networks in Pseudomonas

Recognition and Communication in the Unicellular Bacterial World

• Sexual Exchange – Conjugation

• Protecting Your Niche

• Combating Host Defences

• Population Migration

Page 3: Dissecting the quorum sensing regulatory networks in Pseudomonas

High Population Density

Bacteria Communication: Quorum Sensing

Low Population Density

Cell-to-cell communication via a diffusible signal molecule

- phenotypic change

Page 4: Dissecting the quorum sensing regulatory networks in Pseudomonas

QS Signal Molecules are Chemically Diverse

XanthomonasStentrophomonasBurkholderiaXylellaPseudomonas

Staphylococci Clostridia Listeria Enterococci

Pseudomonas Burkholderia

Vibrio

Acinetobacter Agrobacterium Aeromonas Burkholderia Chromobacterium Erwinia Pseudomonas Rhizobium Serratia Vibrio Yersinia

Bradyrhizobium Rhodopseudomonas Silicibacter

Page 5: Dissecting the quorum sensing regulatory networks in Pseudomonas

ST

Signal

SynthesisSignal

Transduction

Amplification

Loop

Quorum SensingCell-Cell Communication via Small Diffusible Signal Molecules

Mechanism for co-ordinating gene expression at a population level

T

Multiple Gene Expression

• Antibiotic Production

• Symbiosis

• Virulence

• Swimming & Swarming

• Conjugation

• Biofilm Development

• Growth Inhibition

Page 6: Dissecting the quorum sensing regulatory networks in Pseudomonas

The Lifestyle ofPseudomonas aeruginosa

•Gram-negative - Ubiquitous in soil and water

•Environmentally highly adaptable

– 6.3 MB genome

– 5,570 predicted ORFs

– 521 Putative Regulatory Genes

•Opportunistic pathogen

-Wide spectrum of infections in humans

- Cystic fibrosis

•Intrinsically antibiotic resistant

•Multiple surface-associated and extracellular virulence determinants

Page 7: Dissecting the quorum sensing regulatory networks in Pseudomonas

Flagellum

Type III Secretion ExoS,T,Y,U

Type II Secretion

Exotoxin A; Elastase

(LasB); LasA Protease;

Phospholipase C; Lipase

Type I Secretion

HasAp; Alkaline Protease

Lipopolysaccharide

Exopolysaccharides

Alginate; Psl; Pel

Adhesins & Lectins

Type IV pili; Cup fimbriae; LecA; LecB

Secondary Metabolites & Signal Molecules

Cyanide; Pyocyanin; Siderophores; Rhamnoplipids; 4-quinolones; N-acylhomoserine lactones

Virulence Determinants of P. aeruginosa

Page 8: Dissecting the quorum sensing regulatory networks in Pseudomonas

Quorum Sensing in

Pseudomonas

aeruginosa

Elastase, HCN, Lectins;

Swarming Alk.Protease,

Pyocyanin, Lipase,

Chitinase, Chitin BP

Rhamnolipids, Type II

Secretion Type III

Secretion, Pyoverdin;

Multi-Drug Efflux Pumps

rhlR rhlI

Elastase Exotoxin A

LasA Protease Alk.

Protease

Neuraminidase

Biofilm Maturation

Type II Secretion

Catalase SOD

PrpL Aminopeptidase

RhlRO

O

NH

O

Microarray studies indicate QS

regulon consists of ~6% of genome

lasIlasR rsaL

H

O

O

O

N

OLasR

Page 9: Dissecting the quorum sensing regulatory networks in Pseudomonas

QS controls community behaviour in P. aeruginosa

WT WT + Tobramycin

lasR- rhlR- lasR- rhlR-

+Tobramycin

Biofilms Antibiotics

Swarming Motility

WT rhlR-

Page 10: Dissecting the quorum sensing regulatory networks in Pseudomonas

P. aeruginosa is bilingual

2-heptyl-3-hydroxy-4-quinolone (PQS)

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5

OD600

Py

ocy

an

in (

g/m

l)/O

D

+ PQS

0

0.05

0.1

0.15

0.2

0.25

0.5 1 1.5 2 2.5 3 3.5

Ela

stase

A495/O

D

OD600

+ PQS

Pyo

cyan

in

Elastase

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

Time (h)

RL

U/O

D4

95

lecA

exp

ress

ion

0

2

4

6

8

10

12

14

16

18

20

Su

rfa

ce

co

ve

rag

e (

%)

No PQS

10 uM

20 uM

40 uM

60 uM

100 uM

Bio

filmsu

rface coverage

Diggle (2003) Mol Micro 50:29.

NH

O

OH

Page 11: Dissecting the quorum sensing regulatory networks in Pseudomonas

pqsA p qsB pqsC pqsD pqsE phnA phnB pqsR pqsH

Biosynthesis

Virulence factor production

?

PQS autoinduction and virulence regulation

Page 12: Dissecting the quorum sensing regulatory networks in Pseudomonas

pqsA pqsB pqsC pqsD pqsE phnA phnB pqsR pqsH

Biosynthesis

Virulence factor production

?

PQS autoinduction and virulence regulation

Page 13: Dissecting the quorum sensing regulatory networks in Pseudomonas

Rhl

Las PQS

Transcriptional Two Component Systems Post-Transcriptional

VfrVqsRQscRVqsM

MvfRANRRpoSAmpR

GacA/S RsmZDksA

TranscriptionalPost-transcriptional

MvaTRsaLRpoS

RpoNAmpR

RsmARelA

Page 14: Dissecting the quorum sensing regulatory networks in Pseudomonas

+1 AUG CGU CAG ...

RBS

mRNA

Transcription oftarget gene

Post-transcriptional regulation by RsmA

DNA

Page 15: Dissecting the quorum sensing regulatory networks in Pseudomonas

+1 AUG CGU CAG ...

RBS

RsmA

mRNA

RsmA binds near RBSand prevents translation

DNA

Post-transcriptional regulation by RsmA

Page 16: Dissecting the quorum sensing regulatory networks in Pseudomonas

5'3'

Regulatory RNAIs transcribed

+1 AUG CGU CAG ...

RBS

RsmA

DNA

mRNA

Post-transcriptional regulation by RsmA

and folds…

RsmZ

Page 17: Dissecting the quorum sensing regulatory networks in Pseudomonas

5' 3'

+1 AUG CGU CAG ...

RBS

RsmA

mRNA

Post-transcriptional regulation by RsmA

and folds… regulatory RNA

RsmZ

Page 18: Dissecting the quorum sensing regulatory networks in Pseudomonas

5' 3'

+1 AUG CGU CAG ...

RBS

RsmA

mRNA

Post-transcriptional regulation by RsmA

and folds… regulatory RNA

RsmZ

Page 19: Dissecting the quorum sensing regulatory networks in Pseudomonas

5' 3'

+1 AUG CGU CAG ...

RBS

RsmA

mRNA

Post-transcriptional regulation by RsmA

and folds… regulatory RNA

RsmZ

Page 20: Dissecting the quorum sensing regulatory networks in Pseudomonas

5' 3'

+1 AUG CGU CAG ...

RBS

RsmA

mRNA

Post-transcriptional regulation by RsmA

and folds… regulatory RNA

RsmZ

Page 21: Dissecting the quorum sensing regulatory networks in Pseudomonas

5' 3'

+1 AUG CGU CAG ...

RBS

RsmA

mRNA

Post-transcriptional regulation by RsmA

and folds…

to titrate RsmAfrom the RBS…

regulatory RNA

RsmZ

Page 22: Dissecting the quorum sensing regulatory networks in Pseudomonas

5' 3'

RsmA+1 AUG CGU CAG ...

RBS

mRNA

Post-transcriptional regulation by RsmA

to titrate RsmAfrom the RBS…

regulatory RNA

RsmZ

Page 23: Dissecting the quorum sensing regulatory networks in Pseudomonas

5' 3'

RsmA

+1 AUG CGU CAG ...

RBS

mRNA

Post-transcriptional regulation by RsmA

to titrate RsmAfrom the RBS…

regulatory RNA

RsmZ

Page 24: Dissecting the quorum sensing regulatory networks in Pseudomonas

5' 3'

RsmA

+1 AUG CGU CAG ...

RBS

mRNA

Post-transcriptional regulation by RsmA

to titrate RsmAfrom the RBS…

regulatory RNA

RsmZ

Page 25: Dissecting the quorum sensing regulatory networks in Pseudomonas

5' 3'RsmA

+1 AUG CGU CAG ...

RBS

mRNA

Post-transcriptional regulation by RsmA

to titrate RsmAfrom the RBS…

regulatory RNA

RsmZ

Page 26: Dissecting the quorum sensing regulatory networks in Pseudomonas

regulatory RNA

5' 3'

RsmA

+1 AUG CGU CAG ...

RBS

mRNA

protein

…allowing translation

Post-transcriptional regulation by RsmA

to titrate RsmAfrom the RBS…

RsmZ

Page 27: Dissecting the quorum sensing regulatory networks in Pseudomonas

RsmA-regulated phenotypes in P. aeruginosa

LecA

PAO1 rsmA- rsmA++ C

Negative: Exoprotease, elastase, cyanide, lectin, pyocyanin,

staphylolytic activity

rsmA- rsmA-

(prsmA)

PAO1 (WT)

rsmA mutant

Positive: swarming motility, lipase

rsmA- rsmA (prsmA)

LipasePyocyanin

These are all QS AHL-regulated

phenotypes

Page 28: Dissecting the quorum sensing regulatory networks in Pseudomonas

PQS induces rsmZ expression in a dose dependent manner

PQS

EC50 13μM

EC50 25μM

rsmZ-lux fusion

NH

O

OH

Page 29: Dissecting the quorum sensing regulatory networks in Pseudomonas

Global Transcriptional & Post-Transcriptional QS–dependent Regulatory Networks in P. aeruginosa

LasR RhlR ? ?

RetS GacS LadS

GacA

mRNA

RsmA-mRNAcomplexes

RsmARsmA-RsmZcomplexes

Additional extracellular signals

C12-HSL C4-HSL HHQ PQS

RsmZ

Increased or decreased translation

QS Signal Molecules Exoproduct Synthesis Type III Secretion Motility Biofilms

?

Page 30: Dissecting the quorum sensing regulatory networks in Pseudomonas

Associated RNApurification Microarray

analysis

What is the nature of the RsmA regulome?

Page 31: Dissecting the quorum sensing regulatory networks in Pseudomonas

PA Number Gene Name Signal Comments PA Number Gene Name Signal CommentsPA0905 rsmA 97062 PA5487 281 GGDEF domain protein

PA0710 gloA2 41059 lactoylglutathione lyase (glyoxalase, EC:4.4.1.5) PA4723 dksA 269 DnaK suppressor protein DksA

PA4922 azu 15423 azurin precursor PA2735 hsdM 268 restriction/modification system subunit M

PA1545 15089 upstream gene encodes ANR PA4556 pilE 264 type 4 fimbrial protein

PA3529 9224 probable peroxidase PA5044 pilM 263 type 4 fimbrial protein

PA2743 infC 8585 InfC, initiation factor 3 PA1455 fliA 254 sigma factor FliA

ig 4956733-4956028 6838 new sRNA? PA1453 flhF 252 flagellar biosynthesis protein FlhF

PA2742 rpmI 4309 Ribosomal protein L35 PA2193 hcnA 239 HCN synthase subunit HcnA

PA5172 arcB 2931 ornithine carbamoyltransferase PA4462 rpoN 237 RpoN, factor sigma54

PA0762 algU 2033 RpoE, factor sigma24 PA2976 rne 235 ribonuclease E

PA5253 algP 1978 transcription regulator AlgR3 PA1803 lon 229 Lon protein turnover protease

PA4315 mvaT 1481 transcription regulator MvaT PA1430 lasR 210 quorum sensing transcriptional regulator LasR

PA0763 mucA 1476 anti-sigma factor MucA PA2494 mexF 207 RND multidrug efflux transporter

PA5171 arcA 1383 arginine deiminase PA0934 relA 193 RelA, GTP pyrophosphokinase

PA5173 arcC 1263 carbamate kinase PA5338 spoT 191 (p)ppGpp synthetase II

PA1092 fliC 1213 flagellin type B PA5112 estA 171 esterase EstA

PA5040 pilQ 1206 type 4 fimbrial protein PilQ PA0426 mexB 169 RND multidrug efflux transporter

PA1094 fliD 866 FliD, flagellar capping protein PA2397 pvdE 160 Pyoverdine synthetase

PA5170 arcD 753 arginine/ornithine antiporter PA2396 pvdF 157 Pyoverdine synthetase

PA0411 pilJ 742 type 4 fimbrial protein PilJ PA1246 aprD 148 alkaline protease secretion protein AprD

PA1544 anr 697 Anr, anaerobic nitrate respiration regulator PA3622 rpoS 146 stress sigma factor RpoS

PA0396 pilU 669 type 4 fimbrial protein PilU PA2586 gacA 138 response regulator GacA

PA0519 nirS 663 nitrite reductase NirS PA1443 fliM 137 flagellar motor switch protein FliM

PA0376 rpoH 646 heat-shock sigma factor RpoH PA4546 pilS 137 two-component sensor PilS

PA1432 lasI 613 autoinducer synthesis protein LasI PA1452 flhA 136 flagellar biosynthesis protein FlhA

PA3621 fdxA 558 ferredoxin I PA4230 pchB 128 salicylate biosynthesis protein PchB

PA5337 rpoZ 517 RNA polymerase omega subunit RpoZ PA1249 aprA 122 alkaline metalloproteinase AprA

PA4744 infB 414 InfB, initiation factor 2-alpha PA2567 121 GGDEF/EAL domain protein

PA5346 sadB 412 SadB, required for surface attachment PA2734 hsdS 118 restriction/modification system subunit S

PA0425 mexA 375 RND multidrug efflux transporter PA4525 pilA 115 type 4 fimbrial protein PilA

PA0652 vfr 328 transcription regulator Vfr PA3825 110 EAL domain protein

PA3861 rhlB 303 RhlB, RNA helicase B PA1181 101 GGDEF/EAL domain protein

PA5041 pilP 301 type 4 fimbrial protein PA2862 lipA 96 triacylglycerol lipase LipA

PA5043 pilN 295 type 4 fimbrialprotein PA3258 85 GGDEF/EAL domain protein

PA4843 285 GGDEF domain protein PA4554 pilY1 62 type 4 fimbrial biogenesis protein PilY1

Some RNAs bound to RsmA identified by microarray analysis

c-di-GMP metabolism

quorum sensing

gene expression regulators

secondary metabolism

stringent response

restriction/modification

multidrug transport

motility / biofilm

anaerobic respiration

Page 32: Dissecting the quorum sensing regulatory networks in Pseudomonas

Cyclic-di-GMP signalling

•Universal bacterial secondary messenger – intracellular signalling

•Involved in reciprocal control of motile or sessile growth

•↓ c-di-GMP motility ↑ c-di-GMP biofilm

•GGDEF (cyclase), EAL (phosphodiesterase) and HD-GYP (phosphodiesterase)

domain proteins produce and turnover c-di-GMP

•P. aeruginosa has 33 GGDEF, 16 EAL, 3 HD-GYP and 9 c-di-GMP receptors

Page 33: Dissecting the quorum sensing regulatory networks in Pseudomonas

PA2566 PA2568 PA2569

PA2567

1764 bp

Inducible expression of PA2567

PA2567

PA2568 PA2569

Ptac

lacIQPA2566

control plate + IPTGrevertants

recombinants

RsmA mutant RsmA mutant

Page 34: Dissecting the quorum sensing regulatory networks in Pseudomonas

Global Transcriptional & Post-Transcriptional QS–dependent Regulatory Networks in P. aeruginosa

LasR RhlR ? ?

RetS GacS LadS

GacA

mRNA

RsmA-mRNAcomplexes

RsmARsmA-RsmZcomplexes

Increased or decreased translation

Swarming motility Biofilm formation

c-di-GMP c-di-GMPphosphodiesterase

cyclase

Additional extracellular signalsC12-HSL C4-HSL HHQ PQS

RsmZ

Page 35: Dissecting the quorum sensing regulatory networks in Pseudomonas

Modeling transcriptional regulation by quorum sensing

Modeling is about making the correct simplifications:

Gene Regulation = Transcriptional Regulation

For every gene is the model we considering the following parameters:Affinity of the different transcription factors.Transcription rates for the possible promoter states. Messenger RNA and protein half lives.Synthesis ratesDiffusion rates

Page 36: Dissecting the quorum sensing regulatory networks in Pseudomonas

pqsA pqsB pqsC pqsD pqsE phnA phnB pqsR pqsH

Biosynthesis

Virulence factor production

?

Modelling QS regulatory circuits

Page 37: Dissecting the quorum sensing regulatory networks in Pseudomonas

The las system is an incoherent feedforward loop

The coherent and incoherent feedforward loops are among the most common

network motifs in gene regulation.

• Response acceleration• Emergence of transient subpopulations

ZY

X

Coherent feedforward loop

lasIrsaL

lasR3OC12-HSL

Incoherent feedforward loop

Page 38: Dissecting the quorum sensing regulatory networks in Pseudomonas

lasIrsaL

lasR

The las system is an incoherent feedforward loop

3OC12-HSL

RULE MOLEC ULAR INTERA CTION STOCHASTIC CONSTA NT/

REFEREN CE

LasR Ex pression and Activation

r1 [ Vfr + lasR ]b [ Vfr.lasR ]b 1min-1

(Berg 1981)

r2 [ Vfr.lasR ]b [ Vfr + lasR ]b UNKNOWN

r3 [ Vfr.lasR ]b [ Vfr.lasR + mlasR.RNAP ]b UNKNOWN

r4 [ mlasR.RNAP ]b [ mlasR ]b 3.33min-1

(Estimated)

r5 [ mlasR ]b [ ]b 0.362min-1

(Storey 1998)

r6 [ mlasR ]b [ mlasR + LasR.Rib ]b UNKNOWN

r7 [ LasR.Rib ]b [ LasR ]b 3.75min-1

(Estimated)

r8 [ LasR ]b [ ]b 0.362min-1

(Zhu 2000)

r9 [ LasR + 3OC12 ]b [ LasR+ ]b 1min-1

(Berg 1981)

r10 [ LasR* + LasR

* ]b [ LasR

*2 ]b 1min

-1 (Berg 1981)

r11 [ LasR* ]b [ ]b 0.0253min

-1 (Zhu 2000)

r12 [ LasR*

2 ]b [ ]b 0.0253min-1

(Zhu 2000)

RsaL Ex pression and DNA binding

r13 [ LasR*

2 + rsaL.lasI ]b [ rsaL.LasR*

2 .lasI ]b 1min-1

(Berg 1981)

r14 [ rsaL.LasR*

2 .lasI ]b [ LasR*

2 + rsaL.lasI ]b 2.4min-1

(Schus ter2004)

r15 [ LasR*

2 + rsaL.RsaL.lasI ]b [ rsaL.LasR*

2 .RsaL.lasI ]b 1min-1

(Berg 1981)

r16 [ rsaL.LasR*

2 .RsaL.lasI ]b [ LasR*

2 + rsaL.RsaL.lasI ]b 2.4min-1

(Schus ter2004)

r17 [ LasR*

2 + rsaL.RsaL2.lasI ]b [ rsaL.LasR*

2 .RsaL2.lasI ]b 1min-1

(Berg 1981)

r18 [ rsaL.LasR*

2 .RsaL2.lasI ]b [ LasR*

2 + rsaL.RsaL2.lasI ]b 2.4min-1

(Schus ter2004)

r19 [ RsaL + rsaL.lasI ]b [ rsaL.RsaL.lasI ]b 1min-1

(Berg 1981)

r20 [ rsaL.RsaL.lasI ]b [ RsaL + rsaL.lasI ]b 50min-1

(Estimated)

r21 [ RsaL + rsaL.LasR*

2 .lasI ]b [ rsaL.LasR*

2 .RsaL.lasI ]b 1min-1

(Berg 1981)

r22 [ rsaL.LasR*

2 .RsaL.lasI ]b [ RsaL + rsaL.lasI ]b 50min-1

(Estimated)

r23 [ RsaL + rsaL.RsaL.lasI ]b [ rsaL.RsaL2.lasI ]b 1min-1

(Berg 1981)

r24 [ rsaL.RsaL2.lasI ]b [ RsaL + rsaL.RsaL.lasI ]b 0.5min-1

(Rampioni2007b)

r25 [ RsaL + rsaL.LasR*

2 .RsaL.lasI ]b [ rsaL.LasR*

2 .RsaL2.lasI

]b

1min-1

(Berg 1981)

r26 [ rsaL.LasR*

2 .RsaL2.lasI ]b [ RsaL + rsaL.LasR*

2 .RsaL.lasI

]b

0.5min-1

(Rampioni2007b)

r27 [ rsaL.LasR*

2 .lasI ]b [ rsaL.LasR*

2 .lasI + mrsaL.RNAP ]b UNKNOWN 2min-1

r28 [ mrsaL.RNAP ]b [ mrsaL ]b 9.88min-1

(Estimated)

r29 [ mrsaL ]b [ ]b UNKNOWN 0.5min-1

r30 [ mrsaL ]b [ mrsaL + RsaL.Rib ]b UNKNOWN 0.01min-1

r31 [ RsaL.Rib ]b [ RsaL ]b 11.25min-1

(Estimated)

r32 [ RsaL ]b [ ]b UNKNOWN 0.1min-1

LasI Ex pression and 3OC12 production

r33 [ rsaL.LasR*

2 .lasI ]b [ rsaL.LasR*

2 .lasI + mlasI.RNAP ]b UNKNOWN 20min-1

r34 [ mrsaL.RNAP ]b [ mlasI ]b 3.96min-1

(Estimated)

r35 [ mlasI ]b [ ]b 0.0539min-1

(Erickson2002)

r36 [ mlasI ]b [ mlasI + LasI.Rib ]b UNKNOWN 0.1min-1

r37 [ LasI.Rib ]b [ LasI ]b 4.48min-1

(Estimated)

r38 [ LasI ]b [ ]b 0.1204min-1

(Takaya 2008)

r39 [ LasI ]b [ LasI + 3OC12 ]b 16min-1

(Raychaudhuri2005)

r40 [ 3OC12 ]b [ ]b 0.04175min-1

(Chen2005)

r41 [ 3OC12 ]b 3OC12 [ ]b 1.5min-1

(Pearson1999)

r42 3OC12 [ ]b [ 3OC12 ]b 0.005min-1

(Pearson1999)

A computational model has been

generated to predict the

behaviour of the las system in

bacterial populations

Page 39: Dissecting the quorum sensing regulatory networks in Pseudomonas

Generation of a suitable reporter strain

mini-CTX1

��

��

��

MCS FRTFRT attP

tet oriT

Hoang et al., 2000, Plasmid 43:59-72.

CTX-PlasI::RED

��

��

��

FRTFRT attP

tet oriT

PlasImCherry

��

��

��

FRTFRT attP

PlasImCherry

P. aeruginosa PAO1 PlasI::RED

Page 40: Dissecting the quorum sensing regulatory networks in Pseudomonas

Response acceleration time and initial overshoot

Model

lasIrsaL

lasRwild type ∆rsaL

lasIrsaL

lasR

Page 41: Dissecting the quorum sensing regulatory networks in Pseudomonas

Response acceleration time and initial overshoot

Model Experiments

lasIrsaL

lasRwild type ∆rsaL

lasIrsaL

lasR

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

time (h)

Pla

sI a

cti

vit

y (

%)

wild type 0 ²rsaL 0

Page 42: Dissecting the quorum sensing regulatory networks in Pseudomonas

Emergence of transient sub-populations

Model

P. aeruginosa wt PlasI::RED

P. aeruginosa ∆rsaL PlasI::RED

time

time

Number of molecules Number of molecules Number of molecules

Number of molecules Number of molecules Number of molecules

Nu

mb

er o

f b

acte

ria

Nu

mb

er o

f b

acte

ria

Nu

mb

er o

f b

acte

ria

Nu

mb

er o

f b

acte

ria

Nu

mb

er o

f b

acte

ria

Nu

mb

er o

f b

acte

ria

Page 43: Dissecting the quorum sensing regulatory networks in Pseudomonas

Emergence of transient sub-populations

Experiments

P. aeruginosa wt PlasI::RED

Page 44: Dissecting the quorum sensing regulatory networks in Pseudomonas

Emergence of transient sub-populations

Experiments

wild type ∆rsaL ∆lasI∆rsaL ∆lasI

+ 5

M

3O

C12-H

SL

OD600 = 0.2

Page 45: Dissecting the quorum sensing regulatory networks in Pseudomonas

Emergence of transient sub-populations

Experiments

wild type ∆rsaL ∆lasI∆rsaL ∆lasI

+ 5

M

3O

C12-H

SL

OD600 = 0.8

Page 46: Dissecting the quorum sensing regulatory networks in Pseudomonas

Emergence of transient sub-populations

Experiments

wild type ∆rsaL ∆lasI∆rsaL ∆lasI

+ 5

M

3O

C12-H

SL

OD600 = 1.5

Page 47: Dissecting the quorum sensing regulatory networks in Pseudomonas

Emergence of transient sub-populations

Experiments

wild type ∆rsaL ∆lasI∆rsaL ∆lasI

+ 5

M

3O

C12-H

SL

OD600 = 2.5

Page 48: Dissecting the quorum sensing regulatory networks in Pseudomonas

Computational modeling and simulation

Rules establishment

based on experimental

parameters

Programmable inter-cells communication

Coordinated gene expression

Quorum sensing-mediated signaling Dissecting gene expression into small units

Genes X, Y, Z

Experimental validation

Refinement

Model expansion

Page 49: Dissecting the quorum sensing regulatory networks in Pseudomonas

QS group

Chemistry Ram Chhabra Mary BruceAlex TrumanCath OrtoriDave Barrett

www.nottingham.ac.uk/quorum

Computer SciencesNatalio KrasnogorFrancisco RomeroJonathan Blakes

Stephan HeebPaul WilliamsJean DubernSteve DiggleMonica CartelleRobert GoldstoneMatthew TwiggAnne-Mai ProchnowLaura Tye

Giordano RampioniSteve AtkinsonMathew FletcherKarima RighettiMarco MessinaChristian PustelnyMarco GrassoYe ChenRobin BatesJosie McKeown

Acknowledgments

Pierre Cornelis (Brussels) Michael Givskov (Copenhagen)Alain Filloux (London) Karl Jaeger (Juelich)Wim Quax (Groningen Dieter Haas (Lausanne)

Page 50: Dissecting the quorum sensing regulatory networks in Pseudomonas

PhD studentshipSchool of Molecular Medical Sciences

School of Computer Sciences

4 years

Computational simulations of bacterial colonies and

data mining of their interactions using a human

opportunistic pathogen as a model.

[email protected]

[email protected]