device characterization ece/che 4752: microelectronics processing laboratory gary s. may april 1,...

33
Device Characterization ECE/ChE 4752: ECE/ChE 4752: Microelectronics Processing Microelectronics Processing Laboratory Laboratory Gary S. May April 1, 2004

Upload: andrea-parks

Post on 03-Jan-2016

218 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Device Characterization

ECE/ChE 4752: Microelectronics ECE/ChE 4752: Microelectronics Processing LaboratoryProcessing Laboratory

Gary S. May

April 1, 2004

Page 2: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Outline

NMOS Device PhysicsNMOS Device Physics PMOS Device PhysicsPMOS Device Physics CMOS InverterCMOS Inverter

Page 3: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

MOSFET MOSFET = “Metal-Oxide-Semiconductor

Field-Effect Transistor”

Terminals: G = gate D = drain S = source B = body (substrate)

D

G B

S

IDn

VGS

VDS+

-

VBS

+

-

+

-

n-channel device

Page 4: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

MOSFET Key Quantities Currents:

IG = 0 (due to insulating oxide layer) ID

IS

=> since IG = 0, ID = IS (Kirchhoff’s Current Law) Voltages:

VG

VD

VS = 0 (usually) VB = 0 (usually)

Most important quantities: ID, VGS, VDS

Page 5: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

MOSFET Cross-Section

S VG

oxide

VD > 0

n+ n+ID

ID

L

p-type Si

cross-sectional view (not to scale)

G

D S

top view (not to scale)

Page 6: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Biasing1) Source and substrate grounded (zero voltage)

2) (+) voltage on the gate Attracts e-s to Si/SiO2 interface

When threshold voltage (VGS = VTn) is reached, an inversion layer is formed

3) (+) voltage on the drain e-s in the channel drift from source to drain current flows from drain to source

Page 7: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

I-V Characteristics IIDnDn vs. V vs. VGSGS::

VVTnTn = “threshold voltage” = “threshold voltage” Voltage where Si/SiOVoltage where Si/SiO22 interface becomes strongly interface becomes strongly

inverted with electronsinverted with electrons Voltage were NMOS transistor “turns on”Voltage were NMOS transistor “turns on”

VGSVTn

IDn

Page 8: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

I-V Characteristics (cont.) IIDnDn vs. V vs. VDSDS::

VGS increasing

VGS = 0V

VDS

IDn (2)

(1)

Page 9: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Linear Region Labeled “(1)” on previous plotLabeled “(1)” on previous plot IIDnDn = f(V = f(VGSGS, V, VDSDS) and V) and VDSDS < V < VGSGS – V – VTnTn, V, VGSGS ≥ V≥ VTnTn

Equation:Equation:

where: n = electron mobility in the channel, Cox = ox/tox, tox = oxide thickness, ox = oxide

permittivity (3.90 for SiO2)

2)(

2DS

DSTnGSoxn

Dn

VVVV

L

CWI

Page 10: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Saturation Region

Labeled “(2)” on the previous plotLabeled “(2)” on the previous plot IIDnsatDnsat = f(V = f(VGSGS) and V) and VDSDS ≥≥ V VGSGS – V – VTnTn, V, VGSGS ≥ V≥ VTnTn

Equation:Equation:

2

2 TnGSoxn

Dnsat VVL

CWI

Page 11: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Transconductance

In the saturation region:In the saturation region:

where: “Q” represents the quiescent operating point (i.e., fixed DC values of VGS, VDS)

DnoxnTnGSoxn

QGS

Dmn IC

L

WVVC

L

W

v

ig

2)(

Page 12: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Outline

NMOS Device PhysicsNMOS Device Physics PMOS Device PhysicsPMOS Device Physics CMOS InverterCMOS Inverter

Page 13: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Circuit Symbol

S

G B

D

-IDp

VSD

+

-

VSG

+

-

VSB

+

-

p-channel device

Page 14: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Cross-Section

Appropriate I-V equations found by:

1) reversing the direction of ID

2) reversing the polarity of all bias voltages (VBS => VSB, VGS => VSG, VDS => VSD)

S VSG

oxide

VSD > 0

p+ p+IDp

ID

L

n-type Si

Page 15: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Biasing1) Source and substrate grounded (zero voltage)

2) (-) voltage on the gate Attracts h+s to Si/SiO2 interface

When threshold voltage (VSG = -VTp) is reached, an inversion layer is formed

3) (-) voltage on the drain h+s in the channel drift from source to drain current flows from source to drain

Page 16: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Currents

Linear: VLinear: VSDSD ≤≤ V VSGSG + V + VTpTp, V, VSGSG ≥ -V≥ -VTpTp

2)(

2SD

SDTpSGoxp

Dp

VVVV

L

CWI

Saturation: VVSDSD ≥ V ≥ VSGSG + V + VTpTp, V, VSGSG ≥ -V ≥ -VTpTp

22 TpSG

oxpDpsat VV

L

CWI

Page 17: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Transconductance

In the saturation region:In the saturation region:

)(2)( DpoxpTpSGoxp

QSG

Dmp IC

L

WVVC

L

W

v

ig

Page 18: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Outline

NMOS Device PhysicsNMOS Device Physics PMOS Device PhysicsPMOS Device Physics CMOS InverterCMOS Inverter

Page 19: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Inverter Logic

Logic symbol:

Function:

Truth table: AA YY

00 11

11 00

A Y

AY

Page 20: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Ideal Voltage Transfer Characteristic

V+ = supply voltageVM = V+/2 = switching point of inverter (where input

voltage = output voltage)

Page 21: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Actual Transfer Characteristic

Page 22: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Voltage Definitions VIL = input voltage where slope of transfer characteristic is

-1 VIH = larger input voltage where slope of transfer

characteristic is -1 VOH = output voltage at input voltage of VIL

VOL = output voltage at input voltage of VIH

VM = voltage where output voltage equals input voltage VMAX = output voltage when input voltage is zero (usually

VMAX = V+) VMIN = output voltage when input voltage is V+ (usually

VMIN ~ 0)

Page 23: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Voltage Definitions (cont.)

VOH = minimum output voltage for valid logic 1

VOL = maximum output voltage for valid logic 0

VIH = minimum input voltage for valid logic 0

VIL = maximum input voltage for valid logic 1

Page 24: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Noise Margins Noise = unwanted variations in voltage which, if too

great, can cause logic errors Noise margin high (NMH): tolerable voltage range for

which we interpret the inverter output as a logic 1

NMH = VOH – VIH

Noise margin low (NML): tolerable voltage range for which we interpret the inverter output as a logic 0

NML = VIL - VOL

Page 25: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Switch Representation

Page 26: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Switching Dynamics

Input high: turn on bottom switch and discharge capacitive loadPMOS offNMOS on (linear)

Input low: turn on the top switch and charge capacitive loadPMOS on (linear)NMOS off

Page 27: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

VTC: Another Look

(1) Input voltage = 0 V, output voltage = VDD

(2) NMOS saturated, PMOS linear

(3) Both transistors saturated

(4) NMOS linear, PMOS saturated

(5) Input voltage = VDD, output voltage = 0 V

Page 28: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Approximate VTC

VOH = VMAX; VOL = VMIN

VM is input voltage where VOUT =VIN = VM

Page 29: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Currents

NMOS current at VIN = VM is:

PMOS current at VIN = VM is:

2

2

1TnMoxn

nDn VVC

L

WI

22

1TpMDDoxp

pDp VVVC

L

WI

Page 30: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Deriving VM

Define: Define:

and and

Setting ISetting IDnDn = -I = -IDpDp gives: gives:

oxnn

n CL

Wk

oxpp

p CL

Wk

n

p

TpDDn

pTn

M

k

k

VVk

kV

V

1

)(

Page 31: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Computing Noise Margins

To compute noise margins, the next step is to calculate VIL and VIH

Do so by determining the slope of the transfer characteristic at VIN = VM (i.e., voltage gain)

Then: Project a line to intersect at VOUT = VMIN = 0 V

to find VIH

Project a line to intersect at VOUT = VMAX = VDD to find VIL

Page 32: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Voltage Gain Voltage gain can be shown to be:

where: ron and rop are output resistances of the NMOS and PMOS transistors, respectively

In general: and

We can find ro by inverting the slope of the ID vs. VDS characteristic

)||)(( oponmpmnin

outv rrgg

v

vA

oo g

r1

QDS

Do v

ig

Page 33: Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004

Noise Margins We can find VIL and VIH using the slope (Av) of

the VTC:

Noise margins:

v

MDDMIL A

VVVV

)(

vMMIH AVVV /

vMDDMOLILL AVVVVVNM /)(

vMMDDIHOHH AVVVVVNM /