dc and transient - university of arkansase3da.csce.uark.edu/teaching/csce4914-17fa/lecture/5. dc...

47
[email protected] http://csce.uark.edu +1 (479) 575-6043 DC and Transient Courtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU

Upload: dangtruc

Post on 24-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

[email protected]://csce.uark.edu +1 (479) 575-6043

DC and TransientCourtesy of Dr. Daehyun Lim@WSU, Dr. Harris@HMC, Dr. Shmuel Wimer@BIU and Dr. Choi@PSU

Pass Transistors

We have assumed source is grounded

What if source > 0?

●e.g. pass transistor passing VDD

Vg = VDD

● If Vs > VDD-Vt, Vgs < Vt

●Hence transistor would turn itself off

nMOS pass transistors pull no higher than VDD-Vtn

●Called a degraded “1”

●Approach degraded value slowly (low Ids)

pMOS pass transistors pull no lower than Vtp

Transmission gates are needed to pass both 0 and 1

VDD

VDD

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 2

Pass Transistor Ckts

VDD

VDD

VSS

VDD

VDD

VDD VDD VDD

VDD

Vs = VDD-Vtn

Vs = |Vtp|

VDD-Vtn VDD-Vtn

VDD-Vtn

VDD-Vtn

VDD-2Vtn

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 3

DC Response

DC Response: Vout vs. Vin for a gate

Ex: Inverter

●When Vin = 0 -> Vout = VDD

●When Vin = VDD -> Vout = 0

● In between, Vout depends on

transistor size and current

●By KCL, must settle such that Idsn = |Idsp|

●We could solve equations

●But graphical solution gives more insightIdsn

Idsp

Vout

VDD

Vin

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 4

Transistor Operation

Current depends on region of transistor behavior

For what Vin and Vout are nMOS and pMOS in

●Cutoff?

●Linear?

●Saturation?

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 5

nMOS Operation

Cutoff Linear Saturated

Vgsn < Vtn

Vin < Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn < Vgsn – Vtn

Vout < Vin - Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn > Vgsn – Vtn

Vout > Vin - Vtn

Idsn

Idsp

Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 6

pMOS Operation

Cutoff Linear Saturated

Vgsp > Vtp

Vin > VDD + Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp > Vgsp – Vtp

Vout > Vin - Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp < Vgsp – Vtp

Vout < Vin - Vtp

Idsn

Idsp

Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 7

I-V Characteristics

Make pMOS is wider than nMOS such that bn = bp

Vgsn5

Vgsn4

Vgsn3

Vgsn2

Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 8

Current vs. Vout, Vin

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Idsn

, |Idsp

|

Vout

VDD

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 9

Load Line Analysis

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Idsn

, |Idsp

|

Vout

VDD

For a given Vin:

●Plot Idsn, Idsp vs. Vout

●Vout must be where |currents| are equal inIdsn

Idsp

Vout

VDD

Vin

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 10

Vin = 0

Load Line Analysis

Vin0

Vin0

Idsn

, |Idsp

|

Vout

VDD

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 11

Vin = 0.2

Load Line Analysis

Vin1

Vin1I

dsn, |I

dsp|

Vout

VDD

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 12

Vin = 0.4

Load Line Analysis

Vin2

Vin2

Idsn

, |Idsp

|

Vout

VDD

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 13

Vin = 0.6

Load Line Analysis

Vin3

Vin3

Idsn

, |Idsp

|

Vout

VDD

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 14

Vin = 0.8

Load Line Analysis

Vin4

Vin4

Idsn

, |Idsp

|

Vout

VDD

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 15

Vin = 1

Load Line Analysis

Vin5

Idsn, |Idsp|

VoutVDD

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 16

Summary

Load Line Analysis

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Vout

VDD

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 17

DC Transfer Curve

Transcribe points onto Vin vs. Vout plot

Transistor operating regions?

Vin5

Vin4

Vin3

Vin2

Vin1

Vin0

Vin1

Vin2

Vin3

Vin4

Vout

VDD

CV

out

0

Vin

VDD

VDD

A B

DE

Vtn

VDD

/2 VDD

+Vtp

Vin0

Vin1

Vin2

Vin3

Vin4 V

in5

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 18

Revisit transistor operating regions

Operating Regions

Vout

VDD

Vin

CV

out

0

Vin

VDD

VDD

A B

DE

Vtn

VDD

/2 VDD

+Vtp

Region nMOS pMOS

A Cutoff Linear

B Saturation Linear

C Saturation Saturation

D Linear Saturation

E Linear Cutoff

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 19

Beta Ratio

If bp / bn 1, switching point will move from VDD/2

Called skewed gate

Other gates: collapse into equivalent inverter

Vout

0

Vin

VDD

VDD

0.5

12

10p

n

b

b

0.1p

n

b

b

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 20

Noise Margins

How much noise can a gate input see before it does not recognize the input?

Indeterminate

Region

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logical High

Input Range

Logical Low

Input Range

Logical High

Output Range

Logical Low

Output Range

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 21

VDD

Vin

Vout

VOH

VDD

VOL

VIL VIHVtn

Unity Gain Points

Slope = -1

VDD-

|Vtp|

0

To maximize noise margins, select logic levels at

●unity gain point (slope = -1) of DC transfer characteristic

Logic Levels

bp/bn > 1

Vin Vout

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 22

Transient Response

DC analysis tells us Vout if Vin is constant

Transient analysis tells us Vout(t) if Vin(t) changes

●Requires solving differential equations

Input is usually considered to be a step or ramp

●From 0 to VDD or vice versa

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 23

Inverter Step Response

Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

V

V

u t t V

t t

V t

V

d

dt C

t

I t

0

2

2

0

2)

)

(( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V tV t

b

b

Vout

(t)

Vin(t)

t0

t

Vin(t)

Vout

(t)C

load

Idsn

(t)

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 24

Switching speed:

● tr: rise time▪ From output crossing 0.2 to 0.8 VDD

● tf: fall time▪ From output crossing 0.8 to 0.2 VDD

Propagation Delay: (max delay)

● tpdr: rising propagation delay▪ From input to rising output crossing

VDD/2

● tpdf: falling propagation delay▪ From input to falling output crossing

VDD/2

● tpd: average propagation delay▪ tpd = (tpdr + tpdf)/2

Delay Definitions

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 25

Delay Definitions

Contamination Delay: (min delay)

● tcdr: rising contamination delay▪ From input to rising output crossing VDD/2

● tcdf: falling contamination delay▪ From input to falling output crossing VDD/2

● tcd: average contamination delay▪ tpd = (tcdr + tcdf)/2

Difference between propagation and contamination delay:

●Output is guaranteed to stay stable before contamination delay

●Output is guaranteed to stay stable after propagation delay

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 26

Simulated Inverter Delay

Solving differential equations by hand is too hard

SPICE simulator solves the equations numerically

●Uses more accurate I-V models too!

But simulations take time to write, may hide insight

(V)

0.0

0.5

1.0

1.5

2.0

t(s)0.0 200p 400p 600p 800p 1n

tpdf

= 66ps tpdr

= 83psVin

Vout

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 27

Delay Estimation

We would like to be able to easily estimate delay

●Not as accurate as simulation

●But easier to ask “What if?”

The step response usually looks like a 1st order RC response with a decaying exponential.

Use RC delay models to estimate delay

●C = total capacitance on output node

●Use effective resistance R

●So that tpd = RC

Characterize transistors by finding their effective R

●Depends on average current as gate switches

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 28

Effective Resistance

Shockley models have limited value

●Not accurate enough for modern transistors

●Too complicated for much hand analysis

Simplification: treat transistor as resistor

●Replace Ids(Vds, Vgs) with the effective resistance R▪ Ids = Vds/R

●R averaged across switching of a digital gate

Too inaccurate to predict current at any given time

●But good enough to predict RC delay

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 29

RC Delay Model

Use equivalent circuits for MOS transistors

● Ideal switch + capacitance and ON resistance

●Unit nMOS has resistance R, capacitance C

●Unit pMOS has resistance 2R, capacitance C

Capacitance proportional to width

Resistance inversely proportional to width

kg

s

d

g

s

d

kCkC

kCR/k

kg

s

d

g

s

d

kC

kC

kC

2R/k

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 30

Capacitance

●C = Cg = Cs = Cd = 2 fF/μm of gate width in 0.6 μm

●Gradually decline to 1 fF/μm in nanometer techs.

Resistance

●R 6 KΩ*μm in 0.6 μm process

● Improves with shorter channel lengths

Unit transistors

●May refer to minimum contacted device (4/2 λ)

●Or maybe 1 μm wide device

●Doesn’t matter as long as you are consistent

RC Values

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 31

Inverter Delay Estimate

Estimate the delay of a fanout-of-1 inverter

d = 6RC

2

1A

Y

C

CR

2C

2C

R

C

2C

Y C

2C

C

2C

R

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 32

Delay Model Comparison

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 33

Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

Example: 3-input NAND

3

3

3

2 2 2

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 34

2 2 2

3

3

3

Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Caps

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 35

Annotated Netlist (Assume all S/D are contacted)

NAND3 Caps

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 36

Merge capacitance on the same net

●Note: Capacitor with both ends shorted is discarded

NAND3 Caps

2 2 2

3

3

36C

6C

5C

5C

5C

9C

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 37

best

worst

Diffusion capacitance depends on the layout

●Contacted Diffusion Cap is comparable to Cg

●Uncontacted is about half

Diffusion Capacitance

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 38

2C

2C

2C

2C

2C

2C2C 2C 2C

3C

3C

3C

3C3C

3C

3C

2 2 2

3

3

3

Annotated Netlist (Assume only Pins are contacted)

● I/O pins and power pins

NAND3 Caps

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 39

After Merging (Assume only Pins are contacted)

NAND3 Caps

9C

3C

3C3

3

3

222

5C

5C

5C

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 40

We assumed contacted diffusion on every s / d.

Good layout minimizes diffusion area

Ex: NAND3 layout shares one diffusion contact

●Reduces output capacitance by 2C

●Merged uncontacted diffusion might help too

Merged Diffusion Capacitance

7C

3C3

3

3

222

3C

2C2C

3C3C

IsolatedContactedDiffusionMerged

UncontactedDiffusion

SharedContactedDiffusion

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 41

Elmore Delay

ON transistors look like resistors

Pull-up or pull-down network modeled as RC ladder

Elmore delay of RC ladder

R1

R2

R3

RN

C1

C2

C3

CN

nodes

1 1 1 2 2 1 2... ...

pd i to source i

i

N N

t R C

R C R R C R R R C

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 42

Estimate worst-case rising and falling delay of 3-input NAND driving h identical gates.

Example: NAND3

9C

3C

3C3

3

3

222

5hC

Y

n2

n1h copies

9 5pdrt h RC

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 43

3 3 3 3 3 33 3 9 5

11 5

R R R R R Rpdft C C h C

h RC

+ (3C)(R+R/3) + (3C) (R+R/3+R/3)= (18+5h)RC

Delay has two parts

●Parasitic delay▪ 18 or 11 RC

▪ Independent of load

●Effort delay▪ 5h RC

▪ Proportional to load capacitance

Delay Components

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 44

tpdr= (18+5h) RC

tpdf= (11+5h) RC

Best-case (contamination) delay can be substantially less than propagation delay.

Tcdr: If all three inputs fall simultaneously (All PMOS on)

Contamination Delay

9C

3C

3C3

3

3

222

5hC

Y

n2

n1

5

9 5 33 3

cdr

Rt h C h RC

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 45

Tcdf: Is it the same as Tpdf?

●All NMOS are on

The best case is when two diff cap are already discharged

Contamination Delay

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 46

tcdf= (9+5h) RC

Layout Comparison

Which layout is better?

AV

DD

GND

B

Y

AV

DD

GND

B

Y

10/10/2017 CSCE/ELEG 4914: Advnaced Digital Design 47