lecture 4: dc & transient response

62
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 2004

Upload: ngonhi

Post on 31-Dec-2016

235 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 4: DC & Transient Response

Introduction toCMOS VLSI

Design

Lecture 4: DC & Transient Response

David Harris

Harvey Mudd CollegeSpring 2004

Page 2: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 2CMOS VLSI Design

Outlineq DC Responseq Logic Levels and Noise Marginsq Transient Responseq Delay Estimation

Page 3: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 3CMOS VLSI Design

Activity1) If the width of a transistor increases, the current willincrease decrease not change

2) If the length of a transistor increases, the current willincrease decrease not change

3) If the supply voltage of a chip increases, the maximum transistor current will

increase decrease not change4) If the width of a transistor increases, its gate capacitance willincrease decrease not change

5) If the length of a transistor increases, its gate capacitance willincrease decrease not change

6) If the supply voltage of a chip increases, the gate capacitance of each transistor will

increase decrease not change

Page 4: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 4CMOS VLSI Design

Activity1) If the width of a transistor increases, the current willincrease decrease not change

2) If the length of a transistor increases, the current willincrease decrease not change

3) If the supply voltage of a chip increases, the maximum transistor current will

increase decrease not change4) If the width of a transistor increases, its gate capacitance willincrease decrease not change

5) If the length of a transistor increases, its gate capacitance willincrease decrease not change

6) If the supply voltage of a chip increases, the gate capacitance of each transistor will

increase decrease not change

Page 5: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 5CMOS VLSI Design

DC Responseq DC Response: Vout vs. Vin for a gateq Ex: Inverter

– When Vin = 0 -> Vout = VDD

– When Vin = VDD -> Vout = 0– In between, Vout depends on

transistor size and current– By KCL, must settle such that

Idsn = |Idsp|– We could solve equations– But graphical solution gives more insight

Idsn

Idsp Vout

VDD

Vin

Page 6: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 6CMOS VLSI Design

Transistor Operationq Current depends on region of transistor behaviorq For what Vin and Vout are nMOS and pMOS in

– Cutoff?– Linear?– Saturation?

Page 7: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 7CMOS VLSI Design

nMOS Operation

Vgsn >

Vdsn >

Vgsn >

Vdsn <

Vgsn <SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Page 8: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 8CMOS VLSI Design

nMOS Operation

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn < Vtn

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Page 9: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 9CMOS VLSI Design

nMOS Operation

Vgsn > Vtn

Vdsn > Vgsn – Vtn

Vgsn > Vtn

Vdsn < Vgsn – Vtn

Vgsn < Vtn

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

Page 10: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 10CMOS VLSI Design

nMOS Operation

Vgsn > Vtn

Vin > Vtn

Vdsn > Vgsn – Vtn

Vout > Vin - Vtn

Vgsn > Vtn

Vin > Vtn

Vdsn < Vgsn – Vtn

Vout < Vin - Vtn

Vgsn < Vtn

Vin < Vtn

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Vgsn = Vin

Vdsn = Vout

Page 11: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 11CMOS VLSI Design

pMOS Operation

Vgsp <

Vdsp <

Vgsp <

Vdsp >

Vgsp >SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Page 12: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 12CMOS VLSI Design

pMOS Operation

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp > Vtp

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Page 13: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 13CMOS VLSI Design

pMOS Operation

Vgsp < Vtp

Vdsp < Vgsp – Vtp

Vgsp < Vtp

Vdsp > Vgsp – Vtp

Vgsp > Vtp

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

Page 14: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 14CMOS VLSI Design

pMOS Operation

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp < Vgsp – Vtp

Vout < Vin - Vtp

Vgsp < Vtp

Vin < VDD + Vtp

Vdsp > Vgsp – Vtp

Vout > Vin - Vtp

Vgsp > Vtp

Vin > VDD + Vtp

SaturatedLinearCutoff

Idsn

Idsp Vout

VDD

Vin

Vgsp = Vin - VDD

Vdsp = Vout - VDD

Vtp < 0

Page 15: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 15CMOS VLSI Design

I-V Characteristicsq Make pMOS is wider than nMOS such that βn = βp

Vgsn5

Vgsn4

Vgsn3

Vgsn2Vgsn1

Vgsp5

Vgsp4

Vgsp3

Vgsp2

Vgsp1

VDD

-VDD

Vdsn

-Vdsp

-Idsp

Idsn

0

Page 16: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 16CMOS VLSI Design

Current vs. Vout, Vin

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Page 17: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 17CMOS VLSI Design

Load Line Analysis

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

q For a given Vin:– Plot Idsn, Idsp vs. Vout

– Vout must be where |currents| are equal in

Idsn

Idsp Vout

VDD

Vin

Page 18: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 18CMOS VLSI Design

Load Line Analysis

Vin0

Vin0

Idsn, |Idsp|

VoutVDD

q Vin = 0

Page 19: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 19CMOS VLSI Design

Load Line Analysis

Vin1

Vin1Idsn, |Idsp|

VoutVDD

q Vin = 0.2VDD

Page 20: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 20CMOS VLSI Design

Load Line Analysis

Vin2

Vin2

Idsn, |Idsp|

VoutVDD

q Vin = 0.4VDD

Page 21: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 21CMOS VLSI Design

Load Line Analysis

Vin3

Vin3

Idsn, |Idsp|

VoutVDD

q Vin = 0.6VDD

Page 22: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 22CMOS VLSI Design

Load Line Analysis

Vin4

Vin4

Idsn, |Idsp|

VoutVDD

q Vin = 0.8VDD

Page 23: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 23CMOS VLSI Design

Load Line Analysis

Vin5Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

q Vin = VDD

Page 24: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 24CMOS VLSI Design

Load Line Summary

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

Idsn, |Idsp|

VoutVDD

Page 25: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 25CMOS VLSI Design

DC Transfer Curveq Transcribe points onto Vin vs. Vout plot

Vin5

Vin4

Vin3

Vin2Vin1

Vin0

Vin1

Vin2

Vin3Vin4

VoutVDD

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+Vtp

Page 26: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 26CMOS VLSI Design

Operating Regionsq Revisit transistor operating regions

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+VtpE

D

C

B

A

pMOSnMOSRegion

Page 27: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 27CMOS VLSI Design

Operating Regionsq Revisit transistor operating regions

CVout

0

Vin

VDD

VDD

A B

DE

Vtn VDD/2 VDD+VtpCutoffLinearE

SaturationLinearD

SaturationSaturationC

LinearSaturationB

LinearCutoffA

pMOSnMOSRegion

Page 28: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 28CMOS VLSI Design

Beta Ratioq If βp / βn ≠ 1, switching point will move from VDD/2q Called skewed gateq Other gates: collapse into equivalent inverter

Vout

0

Vin

VDD

VDD

0.51

2

10p

n

ββ

=

0.1p

n

ββ

=

Page 29: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 29CMOS VLSI Design

Noise Marginsq How much noise can a gate input see before it does

not recognize the input?

IndeterminateRegion

NML

NMH

Input CharacteristicsOutput Characteristics

VOH

VDD

VOL

GND

VIH

VIL

Logical HighInput Range

Logical LowInput Range

Logical HighOutput Range

Logical LowOutput Range

Page 30: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 30CMOS VLSI Design

Logic Levelsq To maximize noise margins, select logic levels at

VDD

Vin

Vout

VDD

βp/βn > 1

Vin Vout

0

Page 31: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 31CMOS VLSI Design

Logic Levelsq To maximize noise margins, select logic levels at

– unity gain point of DC transfer characteristic

VDD

Vin

Vout

VOH

VDD

VOL

VIL VIHVtn

Unity Gain PointsSlope = -1

VDD-|Vtp|

βp/βn > 1

Vin Vout

0

Page 32: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 32CMOS VLSI Design

Transient Responseq DC analysis tells us Vout if Vin is constantq Transient analysis tells us Vout(t) if Vin(t) changes

– Requires solving differential equationsq Input is usually considered to be a step or ramp

– From 0 to VDD or vice versa

Page 33: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 33CMOS VLSI Design

Inverter Step Responseq Ex: find step response of inverter driving load cap

0( )(

)

)

(o

i

ut

n

out

V t tt

Vt

V

dd

t

=< =

=

Vin(t) Vout(t)Cload

Idsn(t)

Page 34: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 34CMOS VLSI Design

Inverter Step Responseq Ex: find step response of inverter driving load cap

0

0

( )

( )

( )

( )

ou

DDin

t

out

u t t V

dd

t

t t

V t

V

V

t

==<−

=

Vin(t) Vout(t)Cload

Idsn(t)

Page 35: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 35CMOS VLSI Design

Inverter Step Responseq Ex: find step response of inverter driving load cap

0

0(

( ))

(

(

)

)

DD

Do

i

D

o t

n

ut

u

V t

u t t V

V

dd

t

t

V

V

tt

= −=<

=

Vin(t) Vout(t)Cload

Idsn(t)

Page 36: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 36CMOS VLSI Design

Inverter Step Responseq Ex: find step response of inverter driving load cap

0

0

( )( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

VV

u t t Vt t

V t

V

ddt C

t

I t

= −=

= −

<

0

( ) DD tout

ou

ds

t DD t

nI t V VVV V

Vt t≤

= > − < −

Vin(t) Vout(t)Cload

Idsn(t)

Page 37: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 37CMOS VLSI Design

Inverter Step Responseq Ex: find step response of inverter driving load cap

0

0

( )( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

VV

u t t Vt t

V t

V

ddt C

t

I t

= −=

= −

<

( )0

2

2

0

2)

)

( ( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V t V t

β

β

= − > −

− − < −

Vin(t) Vout(t)Cload

Idsn(t)

Page 38: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 38CMOS VLSI Design

Inverter Step Responseq Ex: find step response of inverter driving load cap

0

0

( )( )

( )

(

(

)

)

DD

DD

loa

d

ou

i

d

t

o

n

ut sn

VV

u t t Vt t

V t

V

ddt C

t

I t

= −=

= −

<

( )0

2

2

0

2)

)

( ( )

( DD DD t

DD

out

outout out D t

n

t

ds

D

I V

t t

V V V V

V V V VV

t

V t V t

β

β

= − > −

− − < −

Vout(t)

Vin(t)

t0t

Vin(t) Vout(t)Cload

Idsn(t)

Page 39: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 39CMOS VLSI Design

Delay Definitionsq tpdr:

q tpdf:

q tpd:

q tr:

q tf: fall time

Page 40: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 40CMOS VLSI Design

Delay Definitionsq tpdr: rising propagation delay

– From input to rising output crossing VDD/2q tpdf: falling propagation delay

– From input to falling output crossing VDD/2q tpd: average propagation delay

– tpd = (tpdr + tpdf)/2q tr: rise time

– From output crossing 0.2 VDD to 0.8 VDD

q tf: fall time– From output crossing 0.8 VDD to 0.2 VDD

Page 41: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 41CMOS VLSI Design

Delay Definitionsq tcdr: rising contamination delay

– From input to rising output crossing VDD/2q tcdf: falling contamination delay

– From input to falling output crossing VDD/2q tcd: average contamination delay

– tpd = (tcdr + tcdf)/2

Page 42: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 42CMOS VLSI Design

Simulated Inverter Delayq Solving differential equations by hand is too hardq SPICE simulator solves the equations numerically

– Uses more accurate I-V models too!q But simulations take time to write

(V)

0.0

0.5

1.0

1.5

2.0

t(s)0.0 200p 400p 600p 800p 1n

tpdf = 66ps tpdr = 83psVin Vout

Page 43: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 43CMOS VLSI Design

Delay Estimationq We would like to be able to easily estimate delay

– Not as accurate as simulation– But easier to ask “What if?”

q The step response usually looks like a 1st order RC response with a decaying exponential.

q Use RC delay models to estimate delay– C = total capacitance on output node– Use effective resistance R– So that tpd = RC

q Characterize transistors by finding their effective R– Depends on average current as gate switches

Page 44: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 44CMOS VLSI Design

RC Delay Modelsq Use equivalent circuits for MOS transistors

– Ideal switch + capacitance and ON resistance– Unit nMOS has resistance R, capacitance C– Unit pMOS has resistance 2R, capacitance C

q Capacitance proportional to widthq Resistance inversely proportional to width

kgs

d

g

s

d

kCkC

kCR/k

kgs

d

g

s

d

kC

kC

kC

2R/k

Page 45: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 45CMOS VLSI Design

Example: 3-input NANDq Sketch a 3-input NAND with transistor widths

chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

Page 46: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 46CMOS VLSI Design

Example: 3-input NANDq Sketch a 3-input NAND with transistor widths

chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

Page 47: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 47CMOS VLSI Design

Example: 3-input NANDq Sketch a 3-input NAND with transistor widths

chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

3

3

222

3

Page 48: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 48CMOS VLSI Design

3-input NAND Capsq Annotate the 3-input NAND gate with gate and

diffusion capacitance.

2 2 2

3

3

3

Page 49: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 49CMOS VLSI Design

3-input NAND Capsq Annotate the 3-input NAND gate with gate and

diffusion capacitance.

2 2 2

3

3

33C

3C

3C

3C

2C

2C

2C

2C

2C

2C

3C

3C

3C

2C 2C 2C

Page 50: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 50CMOS VLSI Design

3-input NAND Capsq Annotate the 3-input NAND gate with gate and

diffusion capacitance.

9C

3C

3C3

3

3

222

5C

5C

5C

Page 51: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 51CMOS VLSI Design

Elmore Delayq ON transistors look like resistorsq Pullup or pulldown network modeled as RC ladderq Elmore delay of RC ladder

R1 R2 R3 RN

C1 C2 C3 CN

( ) ( )nodes

1 1 1 2 2 1 2... ...

pd i to source ii

N N

t R C

R C R R C R R R C

− −≈

= + + + + + + +

Page 52: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 52CMOS VLSI Design

Example: 2-input NANDq Estimate worst-case rising and falling delay of 2-

input NAND driving h identical gates.

h copies

2

2

22

B

Ax

Y

Page 53: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 53CMOS VLSI Design

Example: 2-input NANDq Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

Page 54: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 54CMOS VLSI Design

Example: 2-input NANDq Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CY

pdrt =

Page 55: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 55CMOS VLSI Design

Example: 2-input NANDq Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CY ( )6 4pdrt h RC= +

Page 56: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 56CMOS VLSI Design

Example: 2-input NANDq Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

Page 57: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 57CMOS VLSI Design

Example: 2-input NANDq Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

pdft =(6+4h)C2CR/2

R/2x Y

Page 58: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 58CMOS VLSI Design

Example: 2-input NANDq Estimate rising and falling propagation delays of a 2-

input NAND driving h identical gates.

h copies6C

2C2

2

22

4hC

B

Ax

Y

( )( ) ( ) ( )( )

2 2 22 6 4

7 4

R R Rpdft C h C

h RC

= + + + = +

(6+4h)C2CR/2

R/2x Y

Page 59: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 59CMOS VLSI Design

Delay Componentsq Delay has two parts

– Parasitic delay• 6 or 7 RC• Independent of load

– Effort delay• 4h RC• Proportional to load capacitance

Page 60: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 60CMOS VLSI Design

Contamination Delayq Best-case (contamination) delay can be substantially

less than propagation delay.q Ex: If both inputs fall simultaneously

6C

2C2

2

22

4hC

B

Ax

Y

R

(6+4h)CYR

( )3 2cdrt h RC= +

Page 61: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 61CMOS VLSI Design

7C

3C

3C3

3

3

222

3C

2C2C

3C3C

IsolatedContactedDiffusionMerged

UncontactedDiffusion

SharedContactedDiffusion

Diffusion Capacitanceq we assumed contacted diffusion on every s / d.q Good layout minimizes diffusion areaq Ex: NAND3 layout shares one diffusion contact

– Reduces output capacitance by 2C– Merged uncontacted diffusion might help too

Page 62: Lecture 4: DC & Transient Response

4: DC and Transient Response Slide 62CMOS VLSI Design

Layout Comparisonq Which layout is better?

AVDD

GND

B

Y

AVDD

GND

B

Y