colesterol

15
COLESTEROL Colesterol Nombre (IUPAC) sistemático (3β)-cholest-5-en-3-ol General Otros nombres (10R,13R)-10,13-dimethyl- 17-(6-methylheptan-2-yl)- 2,3,4,7,8,9,11,12,14,15,1 6,17-dodecahydro-1H- cyclopenta[a]phenanthren- 3-ol Fórmula estructura l Fórmula molecular C 27 H 46 O Identificadores

Upload: jhon-fredy-carlos-gomez

Post on 22-Dec-2015

11 views

Category:

Documents


1 download

DESCRIPTION

Colesterol

TRANSCRIPT

Page 1: Colesterol

COLESTEROL

Colesterol

Nombre (IUPAC) sistemático

(3β)-cholest-5-en-3-ol

General

Otros

nombres

(10R,13R)-10,13-dimethyl-17-(6-

methylheptan-2-yl)-

2,3,4,7,8,9,11,12,14,15,16,17-

dodecahydro-1H-

cyclopenta[a]phenanthren-3-ol

Fórmula

estructural

Fórmula

molecular

C27H46O

Identificadores

Número CAS 57-88-51

Page 2: Colesterol

Número

RTECS

FZ8400000

ChEBI 16113

ChemSpider 5775

DrugBank {{{DrugBank}}}

PubChem 5997

UNII 97C5T2UQ7J

Propiedades físicas

Apariencia polvo cristalino blanco2

Densidad 1052 kg/m3; 1.052 g/cm3

Masa molar 386,65 g/mol

Punto de

fusión

421,15 K (148 °C)

Punto de

ebullición

633,15 K (360 °C)

Propiedades químicas

Solubilidaden

agua

0,095 mg/L (30 °C)

Valores en el SI y en condiciones estándar

(25 °C y 1 atm), salvo que se indique lo contrario.

El colesterol es un esterol (lípido) que se encuentra en los tejidos corporales y en el plasma sanguíneo de los vertebrados. Se presenta en altas

Page 3: Colesterol

concentraciones en el hígado, médula espinal, páncreas y cerebro. Pese a tener consecuencias perjudiciales en altas concentraciones, es esencial para crear la membrana plasmática que regula la entrada y salida de sustancias que atraviesan la célula. El nombre de «colesterol» procede del griego χολή kolé ‘bilis’ y στερεος stereos ‘sólido’, por haberse identificado por primera vez en los cálculos de la vesícula biliar por Michel Eugène Chevreul quien le dio el nombre de «colesterina», término que solamente se conservó en el alemán (Cholesterin). Abundan en las grasas de origen animal.

Índice

1 Estructura química

2 Metabolismo del colesterol

o 2.1 Biosíntesis del colesterol

o 2.2 Degradación del colesterol

o 2.3 Regulación del colesterol

3 Funciones del colesterol

4 Transporte del colesterol e hipercolesterolemia

5 Véase también

6 Referencias

7 Enlaces externos

Estructura química

La fórmula química del colesterol se representa de dos formas: C27H46O / C27H22OH.

Es un lípido esteroide, molécula de ciclopentanoperhidrofenantreno (o esterano), constituida por cuatro carboxilos condensados o fundidos, denominados A, B, C y D, que presentan varias sustituciones:

1. Dos radicales metilo en las posiciones C-10 y C-13.

2. Una cadena alifática ramificada de 8 carbonos en la posición C-17.

3. Un grupo hidroxilo en la posición C-3.

4. Una insaturación entre los carbonos C-5 y C-6.

En la molécula de colesterol se puede distinguir una cabeza polar constituida por el grupo hidroxilo y una cola o porción apolarformada por el carbociclo de núcleos condensados y los sustituyentes alifáticos. Así, el colesterol es una molécula tan hidrófoba que la solubilidad de colesterol libre en agua es de 10−8 M y, al igual que los otros lípidos, es bastante soluble en disolventes apolares como el cloroformo (CHCl3).

Metabolismo del colesterol

Page 4: Colesterol

Biosíntesis del colesterol

La biosíntesis del colesterol tiene lugar en el retículo endoplasmático liso de virtualmente todas las células de los animales vertebrados. Mediante estudios de marcaje isotópico, D. Rittenberg y K. Bloch demostraron que todos los átomos de carbono del colesterol proceden, en última instancia, del acetato, en forma de acetil coenzima A. Se requirieron aproximadamente otros 30 años de investigación para describir las líneas generales de la biosíntesis del colesterol, desconociéndose, sin embargo, muchos detalles enzimáticos y mecanísticos a la fecha. Los pasos principales de la síntesis de colesterol son:

Descripción ReacciónSustrato inicial

EnzimaProducto final

Condensación de dos moléculas de acetil CoA

2 Acetil-CoA

Acetoacetil CoA tiolasa

Acetoacetil-CoA-

Condensación de una molécula de acetil-CoAcon una de acetoacetil-CoA

acetoacetil-CoA yacetil-CoA

HMG-CoA sintasa

3-hidroxi-3-metilglutaril CoA(HMG-CoA)

Reducción del HMG-CoA por el NADPH

HMG-CoA

HMG-CoA reductasa

Mevalonato y CoA

Fosforilación del mevalonato

Mevalonato

Mevalonato quinasa

Mevalonato 5-fosfato

Fosforilación del mevalonato 5-fosfato

Mevalonato 5-fosfato

Fosfomevalonato quinasa

5-pirofosfomevalonato

Page 5: Colesterol

Fosforilación del 5-pirofosfomevalonato

5-pirofosfomevalonato

Pirofosfomevalonato descarboxilasa

3-fosfomevalonato 5-pirofosfato

Descarboxilación del 3-fosfomevalonato 5-pirofosfato

3-fosfomevalonato 5-pirofosfato

Pirofosfomevalonato descarboxilasa

Δ3-isopentil pirofosfato

Isomerización del isopentil pirofosfato

Isopentil pirofosfato

Isopentil pirofosfato isomerasa

3,3-dimetilalil pirofosfato

Condensación de 3,3-dimetilalil pirofosfato(5C) e isopentil pirofosfato (5C)

3,3-dimetilalil pirofosfato eisopentil pirofosfato

Geranil transferasa

Geranil pirofosfato(10C)

Condensación de geranil pirofosfato (10C) eisopentil pirofosfato (5C)

Geranil pirofosfato eisopentil pirofosfato

Geranil transferasa

Farnesil pirofosfato(15C)

Condensación de dos moléculas de farnesil pirofosfato (

2 Farnesil pirofosfato

Ecualeno sintasa

Escualeno (30 C)

Page 6: Colesterol

15C)

Reducción del escualeno por el NADPH, que gana un oxígeno que proviene del oxígeno molecular (O2)

Escualeno

Escualeno epoxidasa

Escualeno 2,3-epóxido

Ciclación del escualeno 2,3-epoóxido

Escualeno 2,3-epóxido

Lanosterol ciclasa

Lanosterol

19 reacciones consecutivas, no aclaradas totalmente que implican otros tantos enzimas, en que se transforma el lanosterol en colesterol, a través de diversos intermediarios, entre los

Lanosterol

Colesterol

Page 7: Colesterol

que destacan elzimosterol y el 7-deshidrocolesterol

Biosíntesis del colesterol.

Resumidamente, estas reacciones pueden agruparse de la siguiente manera:3 4

1. Tres moléculas de acetil-CoA se combinan entre sí

formando mevalonato, el cual es fosforilado a 3-fosfomevalonato 5-

pirofosfato.

2. El 3-fosfomevalonato 5-pirofosfato es descarboxilado y desfosforilado a

3-isopentil pirofosfato.

3. Ensamblaje sucesivo de seis moléculas de isopentil pirofosfato para

originar escualeno, vía geranil pirofosfato y farnesil pirofosfato.

4. Ciclación del escualeno a lanosterol.

5. El lanosterol se convierte en colesterol después de numerosas

reacciones sucesivas, enzimáticamente catalizadas, que implican la

eliminación de tres grupos metilo (–CH3), el desplazamiento de un doble

enlace y reducción del doble enlace de la cadena lateral.

Degradación del colesterol[editar]

Page 8: Colesterol

El ser humano no puede metabolizar la estructura del colesterol hasta CO2 y H2O. El núcleo intacto de esterol se elimina del cuerpo convirtiéndose en ácidos y sales biliares las cuales son secretadas en la bilis hacia el intestino para desecharse por heces fecales. Parte de colesterol intacto es secretado en la bilis hacia el intestino el cual es convertido por las bacterias enesteroides neutros como coprostanol y colestanol.[cita requerida]

En ciertas bacterias sí se produce la degradación total del colesterol y sus derivados; sin embargo, la ruta metabólica es aún desconocida.

Regulación del colesterol

La producción en el humano del colesterol es regulada directamente por la concentración del colesterol presente en el retículo endoplásmico de las células, habiendo una relación indirecta con los niveles plasmáticos de colesterol presente en las lipoproteínas de baja densidad (LDL por su acrónimo inglés). Una alta ingesta de colesterol en los alimentosconduce a una disminución neta de la producción endógena y viceversa. El principal mecanismo regulador de la homeostasis de colesterol celular aparentemente reside en un complejo sistema molecular centrado en las proteínas SREBPs (Sterol Regulatory Element Binding Proteins 1 y 2: proteínas que se unen a elementos reguladores de esteroles). En presencia de una concentración crítica de colesterol en la membrana del retículo endoplásmico, las SREBPs establecen complejos con otras dos importantes proteínas reguladoras:SCAP (SREBP-cleavage activating protein: proteína activadora a través del clivaje de SREBP) e Insig (insulin induced gene) 1 y 2. Cuando disminuye la concentración del colesterol en el retículo endoplásmico, las Insigs se disocian del complejo SREBP-SCAP, permitiendo que el complejo migre al aparato de Golgi, donde SREBP es escindido secuencialmente por S1P y S2P (site 1 and 2 proteases: proteasas del sitio 1 y 2 respectivamente). El SREBP escindido migra al núcleo celular donde actúa como factor de transcripción uniéndose al SRE (Sterol Regulatory Element: elemento regulador de esteroles) de una serie de genes relevantes en la homeostasis celular y corporal de esteroles, regulando su transcripción. Entre los genes regulados por el sistema Insig-SCAP-SREBP destacan los del receptor de lipoproteínas de baja densidad (LDLR) y la hidroxi-metil-glutaril CoA-reductasa (HMG-CoA-reductasa), la enzima limitante en la vía biosintética del colesterol. El siguiente diagrama muestra de forma gráfica los conceptos anteriores:

Page 9: Colesterol

Tras dilucidar los mecanismos celulares de captación endocítica de colesterol lipoproteico, trabajo por el cual fueron galardonados con el Premio Nobel en Fisiología o Medicina en el año 1985, Michael S. Brown y Joseph L. Goldstein han participado directamente en el descubrimiento y caracterización de la vía de los SREBPs de regulación del colesterol corporal. Éstos avances han sido la base del mejor entendimiento de la fisiopatología de diversas enfermedades humanas, fundamentalmente la enfermedad vascular aterosclerótica, principal causa de muerte en el mundo occidental a través del infarto agudo al miocardio y los accidentes cerebrovasculares y el fundamento de la farmacología de las drogas hipocolesteromiantes más potentes: las estatinas. Debemos tener presente que el colesterol es esencial para la vida y reducir la síntesis de colesterol farmacológicamente o mediante dietas puede ocasionar fisiopatologías más graves que la que deseamos

Page 10: Colesterol

prevenir o curar.5 6 No hay ningún estudio tipo causa-efecto realizado por científicos sin relacion o sin haber sido financiados por la grandes farmacéuticas que demuestre que el colesterol es una causa relacionada con enfermedades cardiovasculares o aterosclerosis.;7 8

Es importante tener en cuenta que la inhibición de HMG-CoA reductasa por cualquier tipo de estatina tiene efectos secundarios no deseados. HMG-CoA reductasa es una enzima que forma parte de la ruta metabólica del ácido mevalónico, la cual es común para la síntesis de la Q10 en humanos, una conezima imprescindible para la producción de energía en las mitocondrias.9 10 Así, todas las estatinas consiguen inhibir la síntesis de colesterol, que ya de por sí no es recomendable, además se inhibe la síntesis de coenzima Q10, provocando una disminución de la energía necesaria para vivir, cuyos síntomas se manifiestan fundamentalmente en los tejidos con mayores requerimientos energéticos como son el músculo esquelético, el cerebro o los riñones, de ahí las dolencias, miopatías (dolores musculares de las extremidades) manifestadas por un porcentaje elevado de pacientes consumidores de estatinas.

Funciones del colesterol

El colesterol es imprescindible para la vida animal por sus numerosas funciones:

1. Estructural: el colesterol es un componente muy importante de

las membranas plasmáticas de las células animales (en vegetales esa

función es análoga a la delFitoesterol). Aunque el colesterol se

encuentra en pequeña cantidad en las membranas celulares, en la

membrana citoplasmática lo hallamos en una proporción molar 1:1 con

relación a los fosfolípidos, regulando sus propiedades físico-químicas,

en particular la fluidez. Sin embargo, el colesterol se encuentra en muy

baja proporción o está prácticamente ausente en las membranas

subcelulares.

2. Precursor de la vitamina D: esencial en el metabolismo del calcio.

3. Precursor de las hormonas

sexuales: progesterona, estrógenos y testosterona.

4. Precursor de las hormonas

corticoesteroidales: cortisol y aldosterona.

5. Precursor de las sales biliares: esenciales en la absorción de algunos

nutrientes lipídicos y vía principal para la excreción de colesterol

corporal.

6. Precursor de las balsas de lípidos.

Transporte del colesterol e hipercolesterolemia

Artículo principal: Lipoproteínas

Page 11: Colesterol

La concentración actualmente aceptada como normal de colesterol en el plasma sanguíneo (colesterolemia) de individuos sanos es de 120 a 200 mg/dL. Sin embargo, debe tenerse presente que la concentración total de colesterol plasmático tiene un valor predictivo muy limitado respecto del riesgo cardiovascular global (ver más abajo). Cuando esta concentración aumenta se habla de hipercolesterolemia.

Dado que el colesterol es insoluble en agua, el colesterol plasmático solo existe en la forma de complejos macromoleculares llamados lipoproteínas, principalmente LDL y VLDL, que tienen la capacidad de fijar y transportar grandes cantidades de colesterol. La mayor parte de dicho colesterol se encuentra en forma de ésteres de colesterol, en los que algúnácido graso, especialmente el ácido linoleico (un ácido graso de la serie omega-6), esterifica al grupo hidroxilo del colesterol.

Aunque habitualmente se afirma que la existencia sostenida de niveles elevados de colesterol LDL (popularmente conocido como "colesterol malo") por encima de los valores recomendados, incrementa el riesgo de sufrir eventos cardiovasculares (principalmente infarto de miocardio agudo) hasta diez años después de su determinación, según indicaba elestudio de Framingham[cita requerida] iniciado en 1948, lo cierto es que ningún ensayo clínico rigurosamente controlado ha demostrado jamás de forma concluyente que la reducción del colesterol LDL pueda prevenir enfermedades cardiovasculares.11 12 13 Por tanto, el colesterol tiene un impacto dual y complejo sobre la fisiopatología de la arteriosclerosis, por lo que la estimación del riesgo cardiovascular basado solo en los niveles totales de colesterol plasmático es claramente insuficiente.

Sin embargo, y considerando lo anterior, se ha definido clínicamente que los niveles de colesterol plasmático total (la suma del colesterol presente en todas las clases de lipoproteínas) recomendados por la Sociedad Norteamericana de Cardiología (AHA)[cita requerida] son:

Colesterolemia por debajo de 200 mg/dL (miligramos por decilitros): es

la concentración deseable para la población general, pues por lo general

correlaciona con un bajo riesgo de enfermedad cardiovascular.

Colesterolemia entre 200 y 239 mg/dL: existe un riesgo intermedio en la

población general, pero es elevado en personas con otros factores de

riesgo como la diabetes mellitus.

Colesterolemia mayor de 240 mg/dL: puede determinar un alto riesgo

cardiovascular y se recomienda iniciar un cambio en el estilo de vida, sobre

todo en lo concerniente a ladieta y al ejercicio físico.

En sentido estricto, el nivel deseable de colesterol LDL debe definirse clínicamente para cada sujeto en función de su riesgo cardiovascular individual, el cual está determinado por la presencia de diversos factores de riesgo, entre los que destacan:

Edad y sexo.

Page 12: Colesterol

Antecedentes familiares.

Tabaquismo.

Presencia de hipertensión arterial.

Nivel de colesterol HDL.

En personas con riesgo cardiovascular alto, es decir, aquellas con una probabilidad de más de un 20 % de sufrir un evento cardiovascular mayor o letal en un periodo de 10 años, tales como pacientes diabéticos o que previamente hayan tenido uno de estos eventos, la recomendación actual es mantener un nivel de colesterol LDL menor a 100 mg/dL[cita requerida]. Incluso en los pacientes que se catalogan de muy alto riesgo se recomienda un colesterol LDL igual o menor a 70 mg/dL[cita requerida].

En España la máxima concentración recomendada de colesterol en sangre es más elevada que la aceptada internacionalmente y basada en la evidencia científica, como lo indica laSociedad Española de Arteriosclerosis, quizá debido a que el riesgo cardiovascular global en España es más bajo:[cita requerida]

Colesterol por debajo de 200 mg/dL: bajo riesgo.

Colesterol entre 200 y 300 mg/dL: riesgo intermedio.

Colesterol mayor de 300 mg/dL: alto riesgo.