coastal ocean observation lab john wilkin, hernan arango, julia levin, javier zavala-garay, gordon...

29
Coastal Ocean Observation Lab http:// marine.rutgers.edu/cool John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean Prediction Scott Glenn, Oscar Schofield, Bob Chant Josh Kohut, Hugh Roarty, Josh Graver Coastal Ocean Observation Lab Janice McDonnell Education and Outreach tal Observation and Prediction Sponsors: Regional Ocean Prediction http:// marine.rutgers.edu/po Education & Outreach http:// coolclassroom.org Coastal Ocean Modeling, Observation and Prediction

Post on 22-Dec-2015

222 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Coastal Ocean Observation Labhttp://marine.rutgers.edu/cool

John Wilkin, Hernan Arango, Julia Levin,Javier Zavala-Garay, Gordon Zhang

Regional Ocean Prediction

Scott Glenn, Oscar Schofield, Bob ChantJosh Kohut, Hugh Roarty, Josh Graver

Coastal Ocean Observation Lab

Janice McDonnell Education and Outreach

Coastal Observation and Prediction Sponsors:

Regional Ocean Prediction http://marine.rutgers.edu/po

Education & Outreachhttp://coolclassroom.org

Coastal Ocean Modeling, Observation and Prediction

Page 2: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Coastal Ocean Observation Labhttp://marine.rutgers.edu/cool/sw06/sw06.htm

Integrating Ocean Observing and Modeling Systems for SW06 Analysis and Forecasting

Regional Ocean Modeling and Predictionhttp://marine.rutgers.edu/po/sw06

• gliders and CODAR

• satellite SST, bio-optics

• high-res regional WRF atmospheric forecast

• SW06 ship-based obs.

• ROMS model embedded in NCOM or climatology

• WRF and NCEP forcing + rivers

• 2-day cycle IS4DVAR assimilation

Real-time data and analysis to ships via ExView and HiSeasNet

• glider, CODAR, satellite, WRF Daily Bulletin

• NCOM and ROMS/assimilation 2-day forecasts

Model-based re-analysis of submesoscale ocean state

• ROMS/IS4DVAR assimilation: plus CODAR, Scanfish, moorings, CTDs …

• high-res nesting in SW06 center

• ensemble simulations; uncertainty instability, sensitivity analysis, optimal observations

• Weekly/monthly bulletin ?

Page 3: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Regional Ocean Modeling and Predictionfor Shallow Water 2006

Rutgers Ocean Modeling and Prediction Group for SW06:

– Hernan Arango– John Evans– Naomi Fleming– Gregg Foti– Julia Levin– John Wilkin– Javier Zavala-Garay– Gordon Zhang

http://marine.rutgers.edu/po/sw06

Page 4: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Outline• Strong constraint 4-dimensional variational data

assimilation– some math– how it works

• SW06 configuration– some results

• Next steps:– SW06 reanalysis

• Algorithmic tuning, more data, higher resolution

– ensemble simulations• Forecast and analysis uncertainty and predictability

– observing system design

Page 5: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Notation

• ROMS state vector

• NLROMS equation form:

(1)

• NLROMS propagator form:

• Observation at time with observation error variance

• Model equivalent at observation points

• Unbiased background state with background error covariance

iy

( )( ( )) ( )

(0)

( ) ( )i

tt t

t

t t

xN x F

x x

x x

( )T

t x u v T S ζ

it O

( )i i i it H x H x

bx B

1 1( ) ( , )( ( ))i i i it t t t x M x

Page 6: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Strong constraint 4DVAR Talagrand & Courtier, 1987, QJRMS, 113, 1311-1328

• Seek that minimizes

subject to equation (1) i.e., the model dynamics are imposed as a ‘strong’ constraint.

depends only on

“control variables” • Cost function as function of control variables

• J is not quadratic since M is nonlinear.

1 1

1

1 1( )

2 2b o

NT T

b b i i i i i ii

J J

J x

x x B x x H x y O H x y

(0), ( ), ( )t tx x F

( )tx

( )tx

1

1

1

1( ) (0) (0) (0) (0)

2

1( ,0) (0) ( ,0) (0)

2

b

o

T

b b

J

NT

i i b i i i b ii

J

J x

t t

x x B x x

H M x y O H M x y

Page 7: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

S4DVAR procedure

Lagrange function

Lagrange multiplier

At extrema of , we require:

S4DVAR procedure:

(1) Choose an

(2) Integrate NLROMS and compute J

(3) Integrate ADROMS to get

(4) Compute

(5) Use a descent algorithm to determine a “down gradient” correction to that will yield a smaller value of J

(6) Back to (2) until converged. But actually, it doesn’t converge well!

1

1

0 ( ) 0

0 0

0 (0) (0) 0 &(0)

0 ( ) 0 . .( )

ii i

i

TTi

i im m mi

b

dLNLROMS

dt

dLADROMS

dt

Lcoupling of NL ADROMS

Li c of ADROMS

xN x F

λ

λ Nλ H O Hx y

x x

B x x λx

λx

1

( ) ( )N

T ii i i

i

dL J

dt

xx λ N x F

( )i i t F F ( )i i t x x

( ) ( )i it i t λ λ λ

L

(0) bx x

[0, ]t [ ,0]t (0)λ

1 (0) (0)(0) b

J

B x x λ

x(0)x

Page 8: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Adjoint model integration is forced by the model-data error

xb = model state at end of previous cycle, and 1st guess for the next forecast

In 4D-VAR assimilation the adjoint model computes the sensitivity of the initial conditions to mis-matches between model and data

A descent algorithm uses this sensitivity to iteratively update the initial conditions, xa, to minimize Jb+ (Jo)

Observations minus Previous Forecast

x

0 1 2 3 4 time

Page 9: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Incremental Strong Constraint 4DVAR (Courtier et al, 1994, QJRMS, 120, 1367-1387

Weaver et al, 2003, MWR, 131, 1360-1378 )

• True solution

• NLROMS solution from Taylor series:

---- TLROMS Propagator

• Cost function is quadratic now

b x x x

1

1 1

1 1 1

211 1 1 1

1 ( )

1 1 1 1

( ) ( , )( ( ))

( , )( ( ) ( ))

( , )( , ) ( ) ( )) ( ( ) )

( )

( , ) ( ) ( , ) ( ))b i

i i i i

i i b i i

i ii i b i i i

i t

i i b i i i i

t t t t

t t t t

t tt t t t O t

t

t t t t t t

x

x M x

M x x

MM x x x

x

M x R x1( , )i it t R

1 1

1

1 1( ) (0) (0) (0) (0)

2 2b o

NTT

i i i ii

J J

J x

x B x G x d O G x d

(0, )i i itG H R

( ,0) (0) ( )i i i i b i i b it t d y H M x y H x

Page 10: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Basic IS4DVAR* procedure*Incremental Strong Constraint 4-Dimensional Variational Assimilation

(1) Choose an

(2) Integrate NLROMS and save

(a) Choose a

(b) Integrate TLROMS and compute J

(c) Integrate ADROMS to yield

(d) Compute

(e) Use a descent algorithm to determine a “down gradient” correction to that will yield a smaller value of J

(f) Back to (b) until converged

(3) Compute new and back to (2) until converged

(0) (0)bx x

[0, ]t

(0)x

[0, ]t

[ ,0]t (0)(0)oJ

λx

1 (0) (0)(0)

J

B x λ

x

(0)x

(0) (0) (0) x x x

( )tx

Page 11: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Basic IS4DVAR* procedure*Incremental Strong Constraint 4-Dimensional Variational Assimilation

(1) Choose an

(2) Integrate NLROMS and save

(a) Choose a

(b) Integrate TLROMS and compute J

(c) Integrate ADROMS to yield

(d) Compute

(e) Use a descent algorithm to determine a “down gradient” correction to that will yield a smaller value of J

(f) Back to (b) until converged

(3) Compute new and back to (2) until converged

(0) (0)bx x

[0, ]t

(0)x

[0, ]t

[ ,0]t (0)(0)oJ

λx

1 (0) (0)(0)

J

B x λ

x

(0)x

(0) (0) (0) x x x

( )tx

The Devil is in the Details

Page 12: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Conjugate Gradient Descent (Long & Thacker, 1989, DAO, 13, 413-440)

• Expand step (5) in S4DVAR procedure and step (e) in IS4DVAR procedure

• Two central component: (1) step size determination (2) pre-conditioning (modify the shape of J )

• New NLROMS initial condition: ---- step-size (scalar)

---- descent direction

• Step-size determination:

(a) Choose arbitrary step-size and compute new , and

(b) For small correction, assume the system is linear, yielded by any step-size is

(c) Optimal choice of step-size is the who gives

• Preconditioning:

define

use Hessian for preconditioning: is dominant because of sparse obs.

• Look for minimum J in v space

1(0) (0)n n n x x d

nd

1 1(0)n n n

n

J

d dx 1

1

( , )(0) (0)n

n n

J Jf

x x

0 (0)x 0JrJ r

0 0( , , )r rJ f J r 0r rJ

1( )

2TJ x x Ex

12v E x

1( )

2TJ z v v

21 1

2TJ

E B H O Hx

B

Page 13: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Background Error Covariance Matrix

(Weaver & Courtier, 2001, QJRMS, 127, 1815-1846; Derber & Bouttier, 1999, Tellus, 51A, 195-221)

• Split B into two parts:

(1) unbalanced component Bu

(2) balanced component Kb

• Unbalanced component ---- diagonal matrix of background error standard deviation

---- symmetric matrix of background error correlation

• for preconditioning,

• Use diffusion operator to get C1/2:

assume Gaussian error statistics, error correlation

the solution of diffusion equation over the interval with is

• ---- the solution of diffusion operator

---- matrix of normalization coefficients

Σ

Tb u bB K B K

u B ΣCΣ

1 2 2TB B B 1 2 1 2bB K ΣC

C

2

2

( )( ) exp

2

xf x

2

20

2t T x

2

2

1 ( )( ) exp

22

xx

[0, ]t T 2(0) ( )x

C = ΛLΛΛL

1

21 2 1 2 1 2

vC = ΛL L

Page 14: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Adjoint surface temperature states at different time during a

three -day period. Initial adjoint forcing area is surrounded by the black frame. Top: southward wind. Bottom: northward wind.

Page 15: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Har

vard

Box

(100

kmx1

00km

)

ROMS LATTE o

uter b

oundary

ROMS SW

06 oute

r boundary

SW06 Model Domains

Page 16: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

ROMS SW06

5-km grid for IS4DVAR testing

Forcing:

• NCEP-NAM and WRF USGS Hudson River OTPS tides

• Open boundaries NCOM and L&G climatology

2-day assimilation cycle

20-km horizontal and 5-m vertical length scales in background error covariance

Data:

• gliders, CTDs, XBTs, Knorr thermosalinograph, daily best-SST composite, AVISO SSH

Page 17: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean
Page 18: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Salt 5m Salt 30m Temp 30m

Page 19: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean
Page 20: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean
Page 21: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Forecast skill in 2-day interval when initial conditions are adjusted using IS4DVARSimple forecast: No

data assimilation

Page 22: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Mesoscale prediction test case:East Australian Current

IS4DVAR assimilation• daily SST (CSIRO)• SSH (AVISO)• VOS XBT Tasman

Sea

Javier Zavala-GarayJohn WilkinHernan Arango

• Adjoint adjusts all state variables, not just those observed

• Singular vectors of the tangent linear model give most unstable modes of variability– Optimal perturbations for

ensemble simulation– Predictability limits

Page 23: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

East Australian Current

Page 24: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Ensembles of:

1-day forecasts 8-day forecasts 15-day forecasts

Page 25: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Ass

imil

atin

g S

SH

+S

ST

+X

BT

Ass

imil

atin

g S

SH

+S

ST

East Australian Current Color: ensemble mean. Contours: individual ensemble members. Black: SSH observations

Page 26: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Optimal Perturbation AnalysisA

fter

ass

im.

SS

H+

SS

T+

XB

TA

fter

ass

im S

SH

+S

ST

Vertical Structure of SV1Perturbation after 10 daysSingular Vector 1

Page 27: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean
Page 28: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Now what ?SW06 reanalysis of sub-mesoscale ocean state

– IS4DVAR algorithmic tuning• forecast cycle length; background error covariance

(preconditions conjugate gradient search)

– More data• CODAR, moorings, shipboard ADCP …

– Higher resolution– Ensemble simulations

• forecast skill; quantify predictability; analysis uncertainty

MURI COMOP– Observing system design– Physics information

Page 29: Coastal Ocean Observation Lab  John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean

Mixing of the Hudson and Raritan Rivers

PhytoplanktonAbsorption

Detritus AbsorptionSeaWiFS

chlorophyll

VisibleRGB

SST