chuong 3-x

Upload: ha-nguyen-thai

Post on 30-May-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Chuong 3-X

    1/22

    1

    1

    Gii tch ton hc. Tp 1. NXB i hc quc gia H Ni 2007.

    Tkho: Gii tch ton hc, gii tch, Hm lin tc, im gin on, lin tc, lin tc

    u, hm scp.

    Ti liu trong Thvin in tH Khoa hc Tnhin c th c sdng cho mc

    ch hc tp v nghin cu c nhn. Nghim cm mi hnh thc sao chp, in n phc

    v cc mc ch khc nu khngc schp thun ca nh xut bn v tc gi.

    Mc lc

    Chng 3 Hm lin tc mt bin s................................................................................. 3

    3.1 nh ngha s lin tc ca hm s ti mt im......................................................3

    3.1.1 Cc nh ngha .................................................................................................. 3

    3.1.2 Hm lin tc mt pha, lin tc trn mt khong, mt on kn ......................4

    3.1.3 Cc nh l v nhng php tnh trn cc hm lin tc......................................5

    3.1.4 im gin on ca hm s.............................................................................. 7

    3.2 Cc tnh cht ca hm lin tc............................................................................... 10

    3.2.1 Tnh cht bo ton du ln cn mt im....................................................10

    3.2.2 Tnh cht ca mt hm s lin tc trn mt on...........................................10

    3.3 iu kin lin tc ca hm n iu v ca hm s ngc...................................14

    3.3.1 iu kin lin tc ca hm n iu..............................................................14

    3.3.2 Tnh lin tc ca hm ngc .......................................................................... 15

    3.4 Khi nim lin tc u...........................................................................................16

    Chng 3. Hm lin tc mt bin s

    L Vn Trc

  • 8/9/2019 Chuong 3-X

    2/22

    2

    3.4.1 Mu............................................................................................................16

    3.4.2 nh ngha ...................................................................................................... 16

    3.4.3 Lin tc ca cc hm s scp ...................................................................... 18

    3.5 Bi tp chng 3.................................................................................................... 19

  • 8/9/2019 Chuong 3-X

    3/22

    3

    3

    Chng 3

    Hm lin tc mt bin s

    Khi nim lin tc ca hm s l khi nim rt cbn, ng mt vai tr rt quan trngtrong vic nghin cu hm s c v l thuyt v ng dng. Trc ht, ta hy tm hiu v tnhlin tc ca hm s.

    3.1nh ngha slin tc ca hm s ti mt im

    3.1.1 Cc nh ngha

    nh ngha 1Cho :f A v 0x A . Ta ni rng hm flin tc tiim 0x nu vibt k s 0 > cho trc c thtm c s 0 > sao cho x A m 0| |x x < ta c

    0| ( ) ( )|f x f x < .

    Hmflin tc ti mi im x A th ta niflin tc trn A.

    Nu fkhng lin tc tix0, ta ni rng fgin on tix0.

    Quay trvnh ngha gii hn ca hm s ta c th pht biu s lin tc ca hmftix0nh sau:

    Tnh cht

    Gi s A f : v 0x A . Khi hmflin tc tix0 khi v ch khi

    =

    00l im ( ) ( )

    x xf x f x .

    nh ngha 2Hmflin tc ti im 0x A nu nh mi dy {xn} nm trong A, m 0nx x ta u c 0( ) ( )nf x f x khi n .

    V d 1: Xt hm s ( ) | | .f x x= Ly bt k 0x

    Do 0 0 0| ( ) ( )| | | | | | | | |f x f x x x x x = .

    Cho nn 0 > , chn = , th

  • 8/9/2019 Chuong 3-X

    4/22

    4

    Trc ht, nu chn 1 < th | ( ) 10 | 3 .5 15f x < =

    Ty, nu ta chn15

    < th | ( ) 10|f x < .

    Cui cng ta hy chn = min{1, }15 th khi | 2|x < ta c | ( ) 10|f x < , iu phi

    chng minh.

    V d 3: Dng ngn ng ( ) hy chng minh hm sy = x2 lin tc ti mi im. Gi sx0 l tu , cho 0 > v 0| |x x < . Ta thy

    20 0 0

    0 0 0 0 0 0

    | ( ) ( )| | | | | | |

    | | | 2 | | | (| | 2| | )

    y x y x x x x x x x

    x x x x x x x x x x

    = = + =

    = + +

    nn 0 0| | (2| | )y y x < + . Nu chn 1, < theo trn ta c 0 0| | (2| | 1)y y x < + . Mt khc,

    nu 02| | 1x

    < + th 0| |y y < . Vy hy chn 0min{1, },2| | 1x

    = + th khi 0| |x x < ta c

    0| |y y < . Vy hm s lin tc tix0

    V d 4: Xt hm sf(x)=sinx. Lyx0 bt k thuc . Ta thy

    0 00

    0 00

    | sin sin | | 2cos .sin |2 2

    2| sin | 2| | | |2 2

    x x x x x x

    x x x x x x

    + =

    =

    (ta bit| sin | | |x x< vi 0x )

    Cho trc >0 chn = , khi 0| |x x < ta c 0| sin sin |x x < . Vy hmflin tc timi x .

    3.1.2 Hm lin tc mt pha, lin tc trn mt khong, mt on kn

    Cho hm :f A R v 0x A

    nh ngha 3Hmflin tc bn phi ti im 0x A nu > 0 cho trc, 0 > sao cho x A m 0 0x x x < + ta c

    |f(x)f(x0)|< , (3.1.4)

    k hiu0

    0l im ( ) ( )x x

    f x f x +

    = (3.1.4)

    nh ngha 4 Hmflin tc bn tri ti im 0x A nu > 0 cho trc, 0 > sao cho

    x A m 0 0x x x <

    ta c |f(x) f(x0)|< , (3.1.5)

    k hiu0

    0l im ( ) ( )x x

    f x f x

    = (3.1.5)

    Cc hm s lin tc bn phi hoc bn tri c gi l lin tc mt pha.

  • 8/9/2019 Chuong 3-X

    5/22

    5

    5

    nh l 3.1.1iu kin cn v hmflin tc ti im 0x A l n lin tc theo c haipha ti 0x .

    Chng minh:

    iu kin cn l hin nhin.

    Ngc li, nu f lin tc theo c hai pha ti 0x , th > 0 , 1 0 > sao chox A , 0 10 x x < ta c

    |f(x) f(x0)|<

    v 2 0 > sao cho x A , < 2 0 0x x ta c

    |f(x) f(x0)|< .

    Khi gi 1 2min( , ) = , th 0,| |x A x x < ta c

    |f(x) f(x0)|< .Vyflin tc tix0

    nh ngha 5 Cho hmfxc nh trn khong (a,b). Ta ni rng hmflin tc trn khong(a,b) nu n lin tc ti mi im ca khong .

    By gicho hm fxc nh trn on [a,b]. Nu hm f lin tc trn (a,b), lin tc bnphi ti im a v lin tc bn tri ti im b, th ta ni rng hmflin tc trn [a,b].

    V d 5: Xt hm s

    1 v i 0 2

    ( ) 1 v i 2 3

    0 v i c c gi tr cn l i .

    x

    f x x

    x

    =

    <

    Ta thy hm s khng lin tc ti cc imx = 0,x = 2,x = 3 v chng hn tix = 2, tac:

    2 2l im ( ) 1, l im ( ) 1x x

    f x f x +

    = = .

    V d 6: Hm s1

    ( )f xx a

    =

    khng lin tc ti imx =a v ti a hm s khng xc nh.

    3.1.3 Cc nh l v nhng php tnh trn cc hm lin tc

    a) Tnh lin tc ca tng hiu tch v thng ca hm lin tc

    T cc nh l v gii hn ca tng, hiu, tch v thng ca hai hm s m mi hm uc gii hn ta c th chng minh nh l sau.

    nh l 3.1.2Nu hai hm sfvgxc nh trn cng mt tp RA v c hai u lin tc

    ti im 0x A th ti im cc hm c.f trong c l hng s; ; .f g f g vf

    g(vi

    0( ) 0g x ) cng lin tc.

    V d 7: Hm a thc 10 1 1...n n

    n ny a x a x a x a

    = + + + + lin tc trn ton tp v phn thc

    hu t

  • 8/9/2019 Chuong 3-X

    6/22

    6

    10 1 1

    10 1 1

    ...

    ...

    n nn n

    m mm m

    a x a x a x a y

    b x b x b x b

    + + + +=

    + + + +lin tc ti cc gi trx tr cc gi tr lm cho mu s

    trit tiu.

    ii) Hm m = > ( 0, 0)x

    y a a a lin tc trn ton tp R

    iii) Hm lgarity = logax (a>0, a 0) lin tc trong khong (0,+ )

    iv) Hm lu tha = ( )ny x n lin tc trong khong ( , + )

    v) Cc hmy =sinx, y = cosx lin tc trn tp , cc hmsin 1

    tg , seccos cos

    xx x

    x x= = lin

    tc tr ra cc gi tr

    +(2 1)2

    k v cc hmcos 1

    cot g , cosecsin sin

    xx x

    x x= = lin tc tr ra cc gi

    tr k .

    b) Tnh lin tc ca hm s hpnh l 3.1.3 Gi s hm : ( , )f A B A B lin tc ti im 0x A cn hm g:

    B lin tc ti im 0 0( )y f x B =

    Khi hm hp 0 :g f A lin tc tix0.

    Chng minh:

    Cho mt s tu 0 > . V hm lin tc ti y0, nn vi 0 > c th tm c 1 0 > saocho 0 1, | |y B y y < ta c 0| ( ) ( )|g y g y < .

    Mt khc v f lin tc ti x = x0 nn vi 1 ni trn ta c th tm c 0 > sao cho

    0,| |x A x x < suy ra

    0 0 1| | | ( ) ( )|y y f x f x = < .

    Tm li, theo cch chn s suy ra 0,| |x A x x < ta c

    0 0 0 0 0| ( )( ) ( )( )| | ( ( )) ( ( ))| | ( ) ( )|g f x g f x g f x g f x g y g y = = < .

    Vy hm 0g f lin tc ti imx0.

    V d 8:

    i) Do hm lu tha x (x >0) biu din c di dng ln xx e = l hp ca hm logarit

    v hm m nn lin tc.ii) Hm xx lin tc ti im bt kx >0. Tht vy ln ln( )x x x x x x e e= = .

    V d 9:

    Xt s lin tc ca hm s+

    +=

    +

    2

    l im1

    nx

    nxn

    x x ey

    e

    Vix >0 ta c+ +

    ++

    =+ +

    22

    l im lim11 1

    nx nx

    nxn n

    nx

    xx

    x x e e

    e

    e

  • 8/9/2019 Chuong 3-X

    7/22

    7

    7

    Vix >0, khi ch l nxe khi n + ta c

    +

    +=

    +

    22l im

    1

    nx

    nxn

    x x ex

    e

    Vix

    Hin nhin l khi 0x hm s lin tc. Mt khc ta thy0 0

    l im ( ) lim ( ) 0 (0)x x

    f x f x f +

    = = = ,

    vy hm s cng lin tc tix=0.

    Do f(x) lin tc x .

    V d 10:

    Cho1

    2

    khi 2

    1( ) khi 2.

    1 x

    a x

    f x x

    e

    =

    =

    +

    Tm a hm lin tc x .

    D thy khi 2x hm s lin tc. hm s lin tc x th n phi lin tc tix=2.

    Ta thy1

    2 22

    1lim ( ) l im 0

    1x x

    x

    f x

    e+ +

    = =

    +

    (bi v1

    2xe + khi 2x + )

    12 2

    2

    1lim ( ) lim 1

    1x x

    x

    f x

    e

    = =

    +

    (bi v1

    2 0xe khi 2x ).

    Vy a hm s khng th lin tc tix = 2.

    3.1.4 im gin on ca hm s

    Hm sf(x) c gi l gin on tix0 nu tix =x0 hmf(x) khng lin tc. Vyx0 lim gin on ca hm sf(x) nu: hocx0 khng thuc tp xc nh caf(x), hocx0 thuctp xc nh caf(x) nhng

    0

    0l im ( ) ( )x x

    f x f x

    , hoc khng c0

    l im ( )x x

    f x

    .

    im gin on x0 ca hm sf(x) c gi l im gin on loi 1 nu cc gii hnmt pha

    0

    l im ( )x x

    f x+

    ,0

    l im ( )x x

    f x

    tn ti hu hn v t nht mt trong hai gii hn ny khcf(x0).

    im gin on khng phi loi 1 sc gi l im gin on loi 2. Nh vy imx0l im gin on loi 2 nu hm s khng c gii hn mt pha hay mt trong hai gii hn

    l v hn.

  • 8/9/2019 Chuong 3-X

    8/22

    8

    Gi sx0 l im gin on ca hm sy =f(x). Nu tha mn ng thc

    0 0

    lim ( ) lim ( )x x x x

    f x f x+

    =

    th im gin onx0

    gi l khc. Nu t nht mt trong cc gii hn mt pha nitrn bng thx0 gi l im gin on v cng.

    V d 11: Cho hm s:

    khi 0( )

    1 khi 0.

    x xf x

    x x

    =

    +

  • 8/9/2019 Chuong 3-X

    9/22

    9

    9

    1 1

    1 1

    l im ( ) lim sin sin( 1) sin1,

    l im ( ) l im arcsin arcsin( 1)2

    x x

    x x

    f x x

    f x x

    + +

    = = =

    = = =

    Suy ra hm s gin on loi 1 tix =1Hn na

    1 1

    1 1

    l im ( ) l im( cos ) cos1,

    l im ( ) l im arcsin arcsin1 .2

    x x

    x x

    f x a x a

    f x x

    + +

    = + = +

    = = =

    Vy tix = 1 hm s lin tc nu cos12

    a

    = v gin on loi 1 nu cos12

    a

    .

    Cui cng, nux0 l im gin on loi 1 ca hm s, ta gi hiu

    0 0

    0 0| ( ) ( )| | l im ( ) l im ( )|x x x x

    f x f x f x f x +

    +

    =

    (3.1.6)

    l bc nhy ca hm s tix0.

    nh l 3.1.4Mi im gin on ca hm sn iu xc nh trn [a,b] u l im ginon loi mt.

    Chng minh:

    Gi s : [ , ]f a b l mt hm tng v 0 [ , ]x a b l im gin on caf.

    t

    0sup{ ( )| [ , )}f x x a x = (3.1.7)

    0inf{ ( )| ( , ]}f x x x b = . (3.1.8).

    Trong trng hp c bit nu x0=a ta ch xt , nu x0= b ta ch xt . Theo (3.1.17)v (3.1.8) , l hu hn.

    nh l c chng minh nu ta chng minh c rng

    0

    0

    l im ( )x xx x

    f x

    = (3.1.10)

    Tht vy, theo nh ngha supremum 00, x x > < sao cho ( )f x < . Chn

    0x x = .Ta thy x m 0 0x x x < < th 0x x x < < ,ta c

    ( ) ( )f x f x < (3.1.11)

    hay 0 0| ( ) | ( , )f x x x x < (3.1.12)

    Vy0

    0

    l im ( )x xx x

    f x

    = .

    3.2 Cc tnh cht ca hm lin tc

    3.2.1Tnh cht bo ton du ln cn mt im

    nh l 3.2.1Gi s hm sf(x) xc nh trn tpA, lin tc ti im 0x A . Khi

    i) Nuf(x0)> th 0 > sao chof(x) > 00 ( )x x A ,

    trong

    0 00 ( ) { :| | }x x x x = < . (3.2.1)

    ii) Nu 0 sao cho

    0( ) 0 ( ) .f x x x A< (3.2.2)

    Chng minh:

    i) Do hm sf lin tc ti 0x A nn 0, 0 > > sao cho x A 0| |x x < th

    0( ) ( )f x f x < < , c ngha l 0( ) ( )f x f x > 00 ( )x x A .

    By gihy chn = >0( ) 0f x khi

    0 0( ) ( ) ( )f x f x f x > + = 00 ( )x x A .

    ii) Tng t hy chn 0( )f x = .

    ngha:

    Hm lin tcf(x) bo ton du ca n trong mt ln cn ca imx0.

    3.2.2 Tnh cht ca mt hm s lin tc trn mt on

    nh l 3.2.2 (nh l Weierstrass th nht)

    Nu hmfxc nh v lin tc trn on [a,b] th n b chn, tc l tn ti cc hng smv Msao cho

    ( ) [ , ]m f x M x a b . (3.2.3)

    Chng minh:

    Ta hy chng minh nh l bng phn chng. Tht vy, ta gi s rng hm s khng bchn. Khi vi mi s t nhin n ta tm c trn [a,b] gi trx =xn sao cho:

    ( )nf x n> (3.2.4)

    Theo b Bolzan - Weierstrass t dy {xn} c th trch ra mt dy con { }kn

    x hi tn

    mt gii hn hu hn: 0knx x khi k + , trong hin nhin 0 .a x b

  • 8/9/2019 Chuong 3-X

    11/22

    11

    11

    V hm lin tc ti x0 nn 0( ) ( )knf x f x . Nhng khi t (3.2.4) ta suy ra

    ( )kn

    f x + , khc f(x0) l mt hm s hu hn. Mu thun ny suy ra nh l c chng

    minh.

    Ta ch rng nh l khng cn ng i vi nhng khong khng ng. V d nh hm1

    xlin tc trn khong (0,1) nhng trong khong ny hm s khng b chn.

    nh l 3.2.3 (nh l Weierstrass th hai)

    Nu hm : [ , ]f a b lin tc th n t cn trn ng v cn di ng trong [a,b], tc ltn ti 1 2, [ , ]c c a b sao cho

    1[ , ]

    sup ( ) ( )x a b

    f x f c

    = v 2[ , ]

    inf ( ) ( )x a b

    f x f c

    = . (3.2.5)

    Chng minh:

    Theo nh l trn, do hm lin tc nn n b chn. Ta c

    M=[ , ]

    sup ( )x a b

    f x

    < + .

    Theo nh l supremum ta c mt dy {xn} [a,b] sao cho l im ( ).nn

    M f x

    = Dy {xn} b

    chn nn n cha mt dy con {kn

    x } hi t, c th 1knx c khi k .

    Mt khc t cc bt ng thckn

    a x b suy ra l imknk

    a x b

    tc l 1 [ , ]c a b . theo gi

    thit hmflin tc ti c1, nn 1l im ( ) ( )knkM f x f c

    = = .

    Hon ton tng t 2c sao cho: 2[ , ]

    inf ( ) ( )x a b

    f x f c

    = .

    c) Ch :

    i) Cui cng ta ch rng gi trc1, c2 ni trn khng phi l duy nht. V d trn hnh3.2.1

    Hnh 3.2.1

    V d trn hnh 3.2.1 hmf(x) trong on [a,b] nhn gi tr ln nht ti hai im c1, c2 vnhn gi tr b nht ti nhiu v hn im ca on [d1, d2].

  • 8/9/2019 Chuong 3-X

    12/22

    12

    nh l khng cn ng i vi nhng khong khng ng, v d hmf(x) = 2x2 nh xkhong [0,1) ln khong [0,2), do sup ( ) 2f x = nhng hmf(x) khng nhn gi tr 2 trongkhong [0,1).

    ii) Nu hmf(x) khi bin thin trn mt khongXno d l b chn th ta gi dao ngca n trong khong l hiu M m = gia cn trn ng v cn di ng ca n. Nicch khc

    ,

    sup {| ( ) ( )| }.x x X

    f x f x

    = Nu xt hmf(x) lin tc trn on hu hnX=[a,b], th

    theo nh l va chng minh trn, dao ng ca hmf(x) s chn gin l hiu gia gi trln nht v b nht ca hm trn on .

    nh l 3.2.4 (nh l Bolzano - Cauchy th nht)

    Gi s hmf(x) xc nh v lin tc trn [a,b] v f(a).f(b) < 0. Khi tn ti t nht mtim c(a,b) sao chof(c)=0.

    Chng minh:

    xc nh ta gi sf(a)< 0 cnf(b)>0. Ta chia i on [a,b] bi im2

    a b+ . C th

    xy ra lf(x) trit tiu ti im , khi nh l c chng minh, ta c tht c =2

    a b+.

    By gi gi sf(2

    a b+) 0, khi ti cc u mt ca mt trong cc on [a,

    2

    a b+],

    [2

    a b+,b] hm s ly cc gi tr khc du nhau (c th gi tr m ti mt tri v gi tr dng

    ti mt phi). Gi on l [a1,b1], ta c (xem hnh 3.2.2)f(a1)< 0, f(b1)> 0

    Hnh 3.2.2

    By gita li chia i on [a1,b1]. C th xy ra hai kh nng:

    Hoc lf(x) trit tiu ti trung im 1 12

    a b+ca on , khi ta c th chn im c =

    1 1

    2

    a b+, nh l c chng minh.

    Hoc l ta thu c on [a2,b2] l mt trong hai na ca on [a1,b1] sao chof(a2) < 0,f(b2) > 0. (Xem hnh 3.2.2)

    Ta tip tc qu trnh lp cc on . Khi hoc sau mt s hu hn bc ta s gptrng hp im chia l im ti hm trit tiu v khi nh l c chng minh.

  • 8/9/2019 Chuong 3-X

    13/22

    13

    13

    Hoc c mt dy v hn cc on cha nhau. Khi i vi on th n, [an,bn]

    (n=1,2,3) ta s cf(an) 0 v di ca on r rng bng bnan=2n

    b a.

    Dy cc on ta lp c tho mn cc iu kin ca b v dy cc on lng nhau, bi vtheo trn l im( ) 0n n

    nb a

    = . V vy, c hai dy {an}, {bn} dn ti gii hn chung

    = =l im limn n

    n na b c, m r rng c[a,b]. Ta hy chng minh im c ny tho mn yu cu

    ca nh l.

    Tht vy, do tnh lin tc ca hm s tix = c, ta c

    ( ) l im ( ) 0nn

    f c f a

    = v

    = ( ) l im ( ) 0nn

    f c f b .

    Vyf(c)=0, nh l c chng minh.

    nh l 3.2.5 (nh l Bolzano - Cauchy th hai)

    Gi s hmf(x) xc nh v lin tc trn on [a,b] v ti cc u mt ca on hmf(x) nhn cc gi tr khng bng nhauf(a) = A, f(b) = B.

    Khi vi sCbt k nm trung gian giaA vB, ta c th tm c im ( , )c a b saochof(c)=C.

    Chng minh: Khng mt tnh tng qut ta c th gi thit rng A

  • 8/9/2019 Chuong 3-X

    14/22

    14

    Hnh 3.2.3

    s2

    5nm trung gian gia s

    1(0)

    3f = v

    2(1)

    3f = nhng khng c gi tr c no trn (0,1)

    sao cho 2( ) .5

    f c =

    3.3iu kin lin tc ca hm n iu v ca hm s ngc

    3.3.1 iu kin lin tc ca hm n iu

    nh l 3.3.1Chof(x) l hm n iu. iu kin cn v hmf(x)lin tc trn on[a,b] l tp gi tr ca n chnh l on vi hai u mtf(a) vf(b).

    Chng minh:

    iu kin cn: Gi sf(x) l n iu tng v lin tc trn [a,b], ta phi chng minh:=([ , ]) [ ( ), ( )]f a b f a f b . (3.3.1)

    Tht vy, ly bt k ([ , ])f a b , khi [ , ]x a b sao cho ( )f x = . Do f n iu tng,nn khi

    =

    ( ) ( ) ( ) ( ) [ ( ), ( )]

    ([ , ]) [ ( ), ( )].

    a x b f a f x f b f x f a f b

    f a b f a f b

    Ngc li, ly [ ( ), ( )]f a f b do f(x) lin tc trn on [a,b] nn [ , ]c a b sao( ) ([ , ]).f c f a b = Suy ra [ ( ), ( )] ([ , ])f a f b f a b v h thc (3.3.1) c chng minh.

    iu kin

    Gi sf(x)l n iu tng vf([a,b])= [f(a),f(b)]. Ta hy chng minhf(x)lin tc trn[a,b].

    Gi s ngc li, f(x) gin on ti 0 [ , ]x a b . Nu a < 0x < b, ta hy t

    0 0

    l im ( ) , l im ( )x x x x

    f x f x +

    = = (Hnh 3.3.1).

    Khi hoc < 0( )f x , hoc 0( )f x < .

    Nu 0( )f x < , th f([a,b]) khng cha khong 0( , ( ))f x . Nu f(x0)< th f([a,b])

    khng cha khong (f(x0), ), iu ny tri vi gi thitf([a,b])=[f(a),f(b)].Trng hpx0 = a hocx0 = b chng minh tng t.

  • 8/9/2019 Chuong 3-X

    15/22

    15

    15

    Hnh 3.3.1

    3.3.2Tnh lin tc ca hm ngc

    nh l 3.3.2Gi sf(x) l hm tng thc s v lin tc trn [a,b]. Khi f(x)c hm ngcf-1 xc nh trn tp [f(a),f(b)], ng thi 1f cng tng thc s v lin tc trn [f(a),f(b)].

    Chng minh:

    Theo nh l trn f([a,b])=[f(a),f(b)], nn

    [ ( ), ( )], [ , ]y f a f b x a b sao cho 1 1 2 2( ) ( )y f x f x y = < = ( )f x y= . Phn tx ni trn lduy nht. Tht vy, ta gi s ,x [ , ],x a b x x < sao cho ( ) ( )f x f x y = = , iu ny v l

    do hmfthc s tng.By gicho tng ng phn t [ ( ), ( )]y f a f b vi phn t duy nht [ , ]x a b ni trn ta

    thu c hm ngc n tr

    1 : [ ( ), ( )] [ , ]f f a f b a b . (3.3.2)

    By gita hy chng minhf-1 l hm tng thc s.

    Tht vy 1 2 1 2, [ ( ), ( )],y y f a f b y y < khi 1 2, [ , ]x x a b sao cho

    1 1 2 2( ), ( ).y f x y f x = = do, v doftng thc s nn

    1 11 2 1 2( ) ( )x x f y f y

    < < .

    Cui cng ta thy f 1 l hm tng v c min gi tr l

    [a,b]=[ f 1 (f(a)), f 1 (f(b))]. (3.3.3)

    Vy f 1 l hm lin tc.

    Nhn xt:

    nh l cn ng khifl hm gim thc s hoc thay [a,b] bng (a,b).

  • 8/9/2019 Chuong 3-X

    16/22

    16

    V d 1: Hm sin x: [ , ] [ 1,1]2 2

    n iu tng v lin tc, nn theo nh l trn hm

    arcsinx: [1,1] [ , ]2 2

    cng n iu tng v lin tc.

    Hm cosx: [0, ] [1,1] n iu gim v lin tc , nn hm arccosx: [1,1] [0,] cng n iu gim v lin tc.

    Hm tg x: ( , ) ( , )2 2

    + n iu tng v lin tc nn hm arctg x:

    ( , ) ( , )2 2

    + n iu tng v lin tc.

    vi) Tng t hm cotgx: (0, ) ( , ) + n iu gim v lin tc nn hm ngcarccotgx: ( , ) + (0, ) n iu gim v lin tc.

    3.4 Khi nim lin tc u

    3.4.1 Mu

    Cho hmf(x) xc nh trn tpA (c th l khong ng hay m, hu hn hay v hn) vlin tc ti mi imx0 A . Theo ngn ng ta c th pht biu nh sau: i vi mi >0 ta c th chn c mt s >0 sao cho x A m |xx0| cho trc s tm c mt

    s sao cho bt ng thc (3.4.1) c tho mn. Ta thy khi 0x bin thin trn tpA, chod cnh, s ni chung s thay i. Ni cch khc s khng nhng ch ph thucvo m cn ph thuc vo 0x .

    Nh vy, i vi hmf(x) lin tc trn tpA, ny ra vn l: vi 0 > cho trc, tnti hay khng mt s >0 ph hp vi mi im 0x A . Ta c nh ngha sau.

    3.4.2 nh ngha

    Ta ni rng hm s :f A lin tc u trnA, nu 0 > cho trc 0 > ch phthuc vo sao cho ,x x A m | |x x < , th

    | ( ) ( )|f x f x < . (3.4.2)

    V d 1:

    i) Chng minh rng hmf(x) =x lin tc u trn ton trc s. Tht vy 0 > ly = ta thy ,x x m | |x x < th

    | ( ) ( )| | |f x f x x x = < .

    ii) Hmy =sinx, y =cosx lin tc u trn . Tht vy, chng hn xt hmy = cosx, tathy

  • 8/9/2019 Chuong 3-X

    17/22

    17

    17

    | | | cos cos | 2| sin .sin |2 2

    | |2 | | .

    2

    x x x x y y x x

    x xx x

    + = =

    =

    Vi 0 > cho trc bt k, ta ch cn chn = th khi ,x x , | |x x < ta c| |y y < .

    V d 2: Chng minh rng hm f(x) = x2 lin tc u trn khong (1,1). Tht vy, ly haiim bt k , ( 1,1)x x , khi

    2 2| ( ) ( )| | | | ( )( )|

    | | | | 2| |

    f x f x x x x x x x

    x x x x x x

    = = +

    = + <

    Vi 0 > nh ty , ta ch cn chn2

    = , khi x x, ( 1,1) m x x| | < th

    f x f x | ( ) ( )| 2 2.2

    < = =

    Nhn xt: chng minh hm f(x) khng lin tc u trn tp A ta ch cn chng minhmnh sau:

    n nx x A0, , > sao cho n nx x| | 0 th

    n nf x f x | ( ) ( )| . (3.4.3)

    nh l 3.4.1 (nh l Cantor): Nu : [ , ]f a b lin tc th n lin tc u trn [ , ]a b .

    Chng minh:Ta hy chng minh nh l bng phn chng. Gi sf(x) khng lin tc u trn [ , ]a b ,

    tc tn ti mt s dng sao cho 0, > tn ti , [ , ]x x a b m x x| | < th

    0| ( ) ( )|f x f x .

    Ln lt ly1

    n = (n=1,2,3,) ta s tm c cc dy , [ , ]n nx x a b , m

    1| |n nx x

    n <

    nhng

    *0| ( ) ( )|n nf x f x n . (3.4.4).

    Theo b Bolzann - Werierstrass dy {xn} b chn, n cha mt dy con hi t:0 [ , ].knx x a b

    Khi vi dy nx{ } ta cng c dy con tng ng knx x0{ } . Tht vy,

    0 0| | | | | | 0 + k k k k n n n nx x x x x x khi k .

    Mt khc theo gi thitf(x) lin tc tix0 ta c

    0lim ( ) lim ( ) ( )

    = =

    k kn nk kf x f x f x ,

    suy ra lim | ( ) ( ) | 0

    =k k

    n nk

    f x f x , iu ny mu thun vi (3.4.4). nh l c chng minh.

  • 8/9/2019 Chuong 3-X

    18/22

    18

    Ch rng nh l khng cn ng nu hmf(x) ch lin tc u trn khong (a,b).

    V d 3: Hm1

    yx

    = lin tc trn khong (0,1) nhng khng lin tc u trn khong ny.

    Tht vy,0

    1 11, ,2

    n nx xn n = = = .

    Khi 1

    | | 0,2

    n nx x n = nhng

    | ( ) ( ) | | 2 | 1n nf x f x n n n = = = .

    3.4.3 Lin tc ca cc hm s scp

    Tnh l v cc php tnh ca cc hm lin tc v nh l v tnh lin tc ca hm hp ta

    c nh l sau:nh l 3.4.2Cc hm scp lin tc ti mi im thuc tp xc nh ca n.

    Ch :

    Ta ch rng nuf(x) lin tc ti imx0, th

    0 00lim ( ) ( ) (lim ).

    = =

    x x x xf x f x f x

    Nh vy, nu hmf(x) lin tc th c th thay i th t vic ly gii hn v vic tnh gitr ca hm.

    Sau y da vo tnh lin tc ca nhng hm scp, chng ta sa ra hng lot giihn quan trng:

    a)0

    log (1 )lim log

    +=a a e . (3.4.5)

    Gii hn c dng0

    0. Ta c

    1log (1 )

    log (1 )a a

    += + .

    V biu thc nm bn phi di du lgarit tin n e khi 0 , nn theo tnh lin tc,lgarit ca n tin n logae. Cng thc c chng minh, ni ring khi a = e ta c cng thc

    0

    11

    ln( )l im

    += (3.4.6)

    b)0

    1l im ln

    aa

    = (3.4.7)

    Gii hn ny c dng0

    0.

    Ta t 1 =a , khi theo tnh lin tc ca hm s m khi 0 th 0 . Ngoi rachng ta c log (1 )a = + , nh vy l

    0 0

    1 1lim lim ln

    log (1 ) loga a

    aa

    e

    = = =

    +

    .

  • 8/9/2019 Chuong 3-X

    19/22

    19

    19

    Ni ring, nu ly1

    ( 1,2,3...)nn

    = = th ta nhn c cng thc

    n

    nn a al im ( 1) ln

    = (3.4.8)

    c)a 0

    (1 ) 1l im

    + = (3.4.9)

    Ta t (1 ) 1 + = . Do tnh lin tc ca hm lu tha khi 0 th 0 . Ly

    lgarit hai v ca ng thc (1 ) 1 + = + ta nhn c

    ln(1 ) ln(1 ) + = +

    Nhh thc ny, ta bin i biu thc cho nh sau

    (1 ) 1 ln(1 ). .

    ln(1 )

    + += =

    +

    Theo cc gii hn trn, c hai biu thcln(1 )

    +v

    ln(1 )

    +u c gii hn l 1 khi

    0 , 0 , v vy cng thc c chng minh.

    3.5Bi tp chng 3

    3.1 Cho2 1

    ( )3

    xf x

    x

    +=

    +. Chng minh

    1

    1lim ( )

    2xf x

    = bng ngn ng .

    3.2 Chng minh hm s 1( )1

    f xx

    =+

    lin tc ti mi im 1x bng ngn ng .

    3.3 Kho st lin tc ca cc hm s sau:

    1)2

    1( ) khi 1

    (1 )f x x

    x=

    +v ( 1)f tu .

    2)1

    ( ) sin khi 0, (0) 0f x x x f x

    = =

    3)2

    1

    ( ) khi 0, (0) 0xf x e x f

    = = .

    3.4 Xt xem hm s [ ]: 0,2f c cho bi

    2 khi 0 1( )

    2 khi 1 2

    x xf x

    x x

    =

    <

    c lin tc khng?

    3.5 Tm a hm s

  • 8/9/2019 Chuong 3-X

    20/22

    20

    khi 0( )

    khi 0

    xe xf x

    a x x

  • 8/9/2019 Chuong 3-X

    21/22

    21

    21

    3.12 Chng minh rng nu hmf(x) lin tc trong khong a x < + v tn ti gii hnhu hn l im ( )

    xf x

    +th hm s ny b chn trong khong cho.

    3.13 Chng minh rng hm ( ) sinf x x

    = lin tc v b chn trong khong (0,1) nhngkhng lin tc u trong khong .

    3.14 Chng minh rng hmf(x) =sin2x lin tc v b chn trong khong v hnx < < + nhng khng lin tc u trong khong .

    3.15 Chng minh rng hm khng b chnf(x)=x+sinx lin tc u trn ton trc sx < < + .

    3.16 Xt tnh lin tc u ca cc hm sau:

    1)2

    ( ) khi [ 1,1]4

    xf x x

    x=

    2)1

    ( ) cos khi (0,1)xf x e x x

    =

    3) ( ) khi [1, )f x x x = +

    3.17 Nghin cu tnh lin tc v v phc ho th ca hm s sau

    1 1 1arctg

    1 2

    y

    x x x

    = + +

    3.18 Nghin cu tnh lin tc v v tnh lin tc v v th cc hm s sau:

    1)1

    lim ( 0)1 nn

    y xx+

    = +

    2)ln(1 )

    l imln(1 )

    xt

    tt

    ey

    e+

    +=

    +

    3.19 Chng minh rng phng trnh:

    1 0xxe =

    c t nht mt nghim dng nh hn 1.

    3.20 S dng cng thc tng ng tnh gn ng:

    1) 105

    2) 1632

    3) 0,31 .

    3.21 Chng minh rng hm| sin |

    ( )x

    f xx

    = lin tc u trn cc khong (1,0) v (0,1)

    nhng khng lin tc u trn (1,0) (0,1).

  • 8/9/2019 Chuong 3-X

    22/22

    22

    3.22 Xt tnh lin tc ca cc hm s sau:

    1)1 khi hu t

    ( )0 khi v t

    xf x

    x

    =

    2)khi hu t

    ( )0 khi v t.

    x xf x

    x

    =