chemical models of terrestrial exoplanets

28
Chemical Models of Terrestrial Exoplanets Bruce Fegley, Jr. and Laura Schaefer Planetary Chemistry Laboratory Department of Earth and Planetary Sciences McDonnell Center for the Space Sciences Washington University St. Louis, MO 63130 USA We use thermodynamic calculations to model atmospheric chemistry on terrestrial exoplanets that are hot enough for chemical equilibria between the atmosphere and lithosphere, as on Venus. The results of the calculations place constraints on abundances of spectroscopically observable gases, the surface temperature and pressure, and the mineralogy of the

Upload: marli

Post on 02-Feb-2016

29 views

Category:

Documents


0 download

DESCRIPTION

Chemical Models of Terrestrial Exoplanets. Bruce Fegley, Jr. and Laura Schaefer Planetary Chemistry Laboratory Department of Earth and Planetary Sciences McDonnell Center for the Space Sciences Washington University St. Louis, MO 63130 USA. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chemical Models of Terrestrial Exoplanets

Chemical Models of Terrestrial Exoplanets

Bruce Fegley, Jr. and Laura SchaeferPlanetary Chemistry LaboratoryDepartment of Earth and Planetary Sciences

McDonnell Center for the Space SciencesWashington UniversitySt. Louis, MO 63130

USA

We use thermodynamic calculations to model atmospheric chemistry on terrestrial exoplanets that are hot enough for chemical equilibria between the atmosphere and lithosphere, as on Venus. The results of the calculations place constraints on abundances of spectroscopically observable gases, the surface temperature and pressure, and the mineralogy of the planetary surface

Page 2: Chemical Models of Terrestrial Exoplanets

Mineral Buffer Reactions• Co-existing minerals control (buffer) gas

partial pressures – single unique gas pressure at each temperature, e.g.

CaCO3 + SiO2 = CaSiO3 + CO2 (gas)

Calcite Quartz Wollastonite

log10 PCO2 = log10 Keq = 7.97 – 4456 / T

Page 3: Chemical Models of Terrestrial Exoplanets

CQW Buffer for CO2

Page 4: Chemical Models of Terrestrial Exoplanets

Venus - H2O buffer

KMg2Al3Si2O10(OH) 2 =

MgAl2O4 + MgSiO3 + KAlSiO4 + H2O

Eastonite – Spinel – Enstatite – Kalsilite log10 K = −0.782 + 78,856 / T

XH2O = 30 ppm

Page 5: Chemical Models of Terrestrial Exoplanets

Venus - HCl buffer2 HCl + 8 NaAlSi3O8 = 2Na4[AlSi3O8]3Cl +

Al2SiO5 + 5 SiO2 + H2O

Albite – Scapolite marialite – Andalusite – Quartz

log10 XHCl = 4.216 - 7,860 / T

XHCl = PHCl / PT

PT = 92.1 bars

XH2O = 30 ppm

Page 6: Chemical Models of Terrestrial Exoplanets

Albite – Scapolite marialite – Andalusite – Quartz

Page 7: Chemical Models of Terrestrial Exoplanets

Venus - HF buffer2 HF + NaAlSiO4 + 2 CaMgSi2O6 + Mg2SiO4

+ MgSiO3 = NaCa2Mg5Si7AlO22F2 + H2O

Nepheline – Diopside – Forsterite – Enstatite – Fluor-edenitelog10 XHF = 0.2214 - 6,426 / T

XHF = PHCl / PT

PT = 92.1 bars

XH2O = 30 ppm

Page 8: Chemical Models of Terrestrial Exoplanets

Nepheline – Dolomite – Forsterite – Enstatite – Fluor-edenite

Page 9: Chemical Models of Terrestrial Exoplanets

Venus

Page 10: Chemical Models of Terrestrial Exoplanets

Hot exo-Venus - CO2 buffer

MgCO3 + MgSiO3 = Mg2SiO4 + CO2

Magnesite – Enstatite – Forsterite log10 PCO2 = log10 K =8.85 – 4903 / T

Page 11: Chemical Models of Terrestrial Exoplanets

Hot exo-Venus - H2O buffer

2 KMg3AlSi3O10(OH) 2 =

3 MgSi2O4 + KAlSi2O6 + KAlSiO4 + 2H2O

Phlogopite – Forsterite – Leucite – Kalsilite log10 PH2O = 9.50 – 7,765 / T

XH2O = 1000 ppm

Page 12: Chemical Models of Terrestrial Exoplanets

Hot exo-Venus - HCl buffer12 HCl + 6 CaSiO3 + 5 Na4[AlSiO4]3Cl =

17 NaCl + 6 CaAl2Si2O8 + 3 NaAlSi3O8

+ 6 H2O

Wollastonite – Sodalite – Halite – Anorthite - Albite

log10 XHCl = −1.1406 – 4,115 / T

PCO2 = 439.4 bars

XH2O = 1000 ppm

Page 13: Chemical Models of Terrestrial Exoplanets

Hot exo-Venus - HF buffer2 HF + KAlSi3O8 + 3 Mg2SiO4 =

KMg3AlSi3O10F2 + 3 MgSiO3 + H2O

Microcline –Forsterite – Fluor-phlogopite – Enstatite

log10 XHF = 0.2936 – 6,657 / T

PT = 439.4 bars

XH2O = 1000 ppm

Page 14: Chemical Models of Terrestrial Exoplanets

Hot Exo-Venus

Page 15: Chemical Models of Terrestrial Exoplanets

Cool exo-Venus #1 - H2O buffer

Ca2Mg5Si8O22(OH) 2 =

3 MgSiO3 + 2 CaMgSi2O6 + SiO2 + H2O

Tremolite – Enstatite – Diopsdie – Quartz log10 PH2O = 8.05 – 6,742 / T

XH2O = 100 ppm

Page 16: Chemical Models of Terrestrial Exoplanets

Cool exo-Venus #1 - HCl buffer2 HCl + 8 NaAlSi3O8 = 2Na4[AlSi3O8]3Cl +

Al2SiO5 + 5 SiO2 + H2O

Albite – Scapolite marialite – Andalusite - Quartz

log10 XHCl = 4.6418 − 7,860 / T

PCO2 = 43.29 bars

XH2O = 100 ppm

Page 17: Chemical Models of Terrestrial Exoplanets

Cool exo-Venus #1 - HF buffer2 HF + NaAlSiO4 + 2 CaMgSi2O6 +

3 MgSiO3 = NaCa2Mg5Si7AlO22F2 +

SiO2 + H2O

Nepheline – Diopside –Enstatite –

Fluor-edenite – Quartzlog10 XHF = 0.6218 − 6,049 / T

PT = 43.29 bars

XH2O = 100 ppm

Page 18: Chemical Models of Terrestrial Exoplanets

Cool Exo-Venus #1

Page 19: Chemical Models of Terrestrial Exoplanets

Cool exo-Venus #2 - CO2 buffer

CaMg(CO3)2 + 4 MgSiO3 = 2 Mg2SiO4 + CaMgSi2O6 + 2 CO2

Dolomite – Enstatite – Forsterite – Diopsidelog10 PCO2 = log10 K = 8.52 – 4,511 / T

Page 20: Chemical Models of Terrestrial Exoplanets

Cool exo-Venus #2 - H2O buffer

2 KMg3AlSi3O10(OH) 2 =

3 MgSi2O4 + KAlSi2O6 + KAlSiO4 + 2H2O

Phlogopite – Forsterite – Leucite – Kalsilite log10 PH2O = 9.50 – 7,765 / T

XH2O = 100 ppm

Page 21: Chemical Models of Terrestrial Exoplanets

Cool exo-Venus #2 - HCl buffer2 HCl + 9 NaAlSiO4 = Al2O3 + NaAlSi3O8 +

2Na4[AlSiO4]3Cl + H2O

Albite – Scapolite marialite – Andalusite - Quartz

log10 XHCl = 3.9719 − 8,075 / T

PCO2 = 41.33 bars

XH2O = 100 ppm

Page 22: Chemical Models of Terrestrial Exoplanets

Cool exo-Venus #2 - HF buffer2 HF + KAlSi3O8 + 3 Mg2SiO4 =

KMg3AlSi3O10F2 + 3 MgSiO3 + H2O

Microcline – Forsterite – Fluor-phlogopite – Enstatite

log10 XHF = 0.3069 – 6,657 / T

PT = 43.29 bars

XH2O = 100 ppm

Page 23: Chemical Models of Terrestrial Exoplanets

Cool exo-Venus #2

Page 24: Chemical Models of Terrestrial Exoplanets

H2O buffersKMg2Al3Si2O10(OH) 2 = MgAl2O4 + MgSiO3 + KAlSiO4

+ H2OEastonite – Spinel – Enstatite – Kalsilite

log10 PH2O = log10 K = −0.782 + 78,856 / T

2 KMg3AlSi3O10(OH) 2 = 3 MgSi2O4 + KAlSi2O6 + KAlSiO4 + 2H2O

Phlogopite – Forsterite – Leucite – Kalsilite log10 PH2O = ½ log10 K = 9.50 – 7,765 / T

Ca2Mg5Si8O22(OH) 2 = 3 MgSiO3 + 2 CaMgSi2O6 + SiO2 + H2O

Tremolite – Enstatite – Diopsdie – Quartz log10 PH2O = log10 K = 8.05 – 6,742 / T

Page 25: Chemical Models of Terrestrial Exoplanets
Page 26: Chemical Models of Terrestrial Exoplanets

Planet P (bars) T (K) Minerals

Venus 92 740ab, and, ca, di, east, en, f-ed, fo, kls, neph, qtz, sp, sod, wo

Hot exo-Venus

439 790ab, an, en, f-phl, fo, ha, kls, leu, mc, mg, phl, sod, wo

Cool exo-Venus #1

43 647ab, and, ca, di, do, en, f-ed, fo, neph, qtz, sc-m, trem

Cool exo-Venus #2

41 653ab, co, di, do, en, f-phl fo, kls, leu, mc, neph, phl, sod

Ab-albite, an-anorthite, and-andalusite, ca-calcite, co-corundum, di-diopside, do-dolomite, east-eastonite, en-enstatite, f-ed-fluor-edenite, f-phl-fluor-phlogopite, fo-forsterite, ha-halite, kls-kalsilite, leu-leucite, mc-microcline, mg-magnesite, neph-nepheline, phl-phlogopite, qtz-quartz, sc-m-scapolite marialite, sod-sodalite, sp-spinel, trem-tremolite, wo-wollastonite

Page 27: Chemical Models of Terrestrial Exoplanets

Summary

• Spectroscopic observations of CO2, H2O, HCl, HF give information on surface T, P, mineralogy for exoplanets analogous to Venus

• CO – product of CO2 photolysis, its abundance does not constrain surface conditions

• SO2, H2S, OCS, S1-8 – similar problems due to photochemical gain/loss

Page 28: Chemical Models of Terrestrial Exoplanets

Venus