applying gcms to terrestrial exoplanets f.forget, r. wordsworth b. charnay, e. millour, f. codron,...

57
Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis * , LMD, Institut Pierre Simon Laplace, Université Pierre et Marie Curie, BP 99, 75005 Paris, France * LAB, (CNRS; Université Bordeaux I)

Upload: madlyn-bradley

Post on 28-Dec-2015

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Applying GCMs to terrestrial exoplanets

F.Forget, R. WordsworthB. Charnay, E. Millour, F. Codron, J.Leconte,

F. Selsis*,

LMD, Institut Pierre Simon Laplace, Université Pierre et Marie Curie, BP 99, 75005 Paris, France* LAB, (CNRS; Université Bordeaux I)

Page 2: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

MercuryVenus

Earth

Mars

JUPITER

SATURNETitanURANUS

NEPTUNETritonAtmospheres in the solar system

• GIANT PLANETS• Terrestrial atmospheres

Pluto

Page 3: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

VENUS

TERRE

MARS TITAN

Many GCM teamsApplications:• Weather forecast• Assimilation and climatology• Climate projectionsClimate projections• Paleoclimates• chemistry• Biosphere / hydrosphere cryosphere / oceans coupling• Many other applications

~a few GCMs (LMD, Univ. of Chicago, Caltech, Köln…)

Coupled cycles:• Aerosols• Photochemistry• Clouds

Several GCMs (NASA Ames, Caltech, GFDL, LMD, AOPP, MPS, Japan, York U., Japan, etc…)Applications:• Dynamics & assimilation• CO2 cycle• dust cycle• water cycle• Photochemistry• thermosphere and ionosphere• isotopes cycles• paleoclimates• etc…•

~1 true GCMs Coupling dynamic & radiative transfer(LMD)6 GCMs with simplified physics

TRITON1 full GCM (LMD)

PLUTO1 full GCM (LMD)

Page 4: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

What we have learned from solar system GCMs

• To first order: GCMs work– A few equations can build « planet simulators » with a realistic, complex

behaviour and strong prediction capacities

• However the devil is in the details:– Problems with

• Positive feedbacks and unstability (e.g. sea ice and land ice albedo feedback on the Earth)

• Non linear behaviour and threshold effect (e.g. dust storms on Mars)

• Complex subgrid scale process and poorly known physics (e.g. clouds on the Earth)

• System with extremely long « inertia » with small forcing (e.g. Venus circulation). Sensitivity to intrinsinc dynamical core conserving properties Sensitivity to initial state

Need to somewhat « tune » a few model parameters to accurately model an observed planet and predict its behaviour

Page 5: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Lebonnois et al. 2011

Page 6: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Venus intercomparison GCMs

Page 7: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Lebonnois et al. 2011

Page 8: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Lebonnois et al. 2011

Page 9: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Lebonnois et al. 2011

Page 10: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Lebonnois et al. 2011

Page 11: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Mars dynamical core intercomparisons

(Mischna and Wilson 2008)

Page 12: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Participating Model SpecsModel Core numerics Vertical Levels

GFDL A Spectral 28, 36

GFDL B B-grid 32

GFDL C Finite Volume 28, 36

GFDL D FV + Cubed-Sphere 28, 36, 56

Hokkaido Spectral 48

Caltech/Cornell/JPL C-grid 25, 40

CCSR/NIES Spectral 33

York C-grid 88

LMD C-grid 32

Various models provided various combinations of model resolution, damping (α=2, 4) and vertical levels.

Page 13: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Hokkaido Spectral MGCM

Page 14: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

GFDL Spectral MGCM: T31L36

Page 15: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

GFDL B-grid MGCM

Page 16: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

GFDL Cubed-sphere MGCM 3°x3°

Page 17: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Caltech/Cornell/JPL MarsWRF MGCM

Page 18: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

LMD MGCM

Page 19: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

York University MGCM

Page 20: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Full intercomparison

Johnson et al. 2008

Page 21: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

The science of Simulating the unknown:From planet GCMs to extrasolar planet GCMs.

Page 22: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

How GCM work ? :The minimum General Circulation Model for a terrestrial planet

1) 3D Hydrodynamical code to compute large scale atmospheric motions and transport

2) At every grid point : Physical parameterizations to force the dynamic to compute the details of the local climate• Radiative heating & cooling of the atmosphere • Surface thermal balance • Subgrid scale atmospheric motions

Turbulence in the boundary layer Convection Relief drag Gravity wave drag• Specific process : ice condensation, cloud microphysics, etc…

Most processes can be described by equations that we have learned to solve with some accuracy

Page 23: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Toward a “generic” Global climate model (LMD)

1) Use “universal” parametrisations for all planets:

– Standard dynamical core– Surface and subsurface thermal model– “Universal” Turbulent boundary layer scheme

2) The key : Versatile, fast and accurate radiative transfer code (see next slide)

3) Simple, Robust, physically based parametrisation of volatile phase change processes

- Including robust deep convection representation : wet convection- Clouds are represented by splitting condensed phase on a prescribed number of

Cloud Condensation Nuclei (see next slide)

4) If needed: simplified physical “slab ocean + sea ice” scheme.

Page 24: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Developping a Versatile, fast and accurate radiative transfer code for GCM

• Input : assumption on the atmosphere:– Any mixture of well mixed gases (ex: CO2 + N2 + CH4 + SO2)– Add 1 variable gases (H2O). Possibly 2 or 3 (e.g. Titan)– Refractive Indexes of aerosols.

• Semi automatic processes: Spectroscopic database (Hitran 2008) Line by line spectra (k-spectrum model) correlated k coeeficients radiative transfer model

• RT Model can also simulate scattering by several kind of aerosols (size and amount can vary in space and time)

• Key technical problems: – gas spectroscopy in extreme cases– Predicting aerosol and cloud properties

• Key scientific problem : assumption on the atmosphere !

Page 25: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Clouds and precipitation (at this stage)

• Large scale condensation:

(r~.0.2 …)

• Wet convection (“Manabe”) mass flux scheme ?

• Particles size estimated by splitting condensed phase on a prescribed number of Cloud Condensation Nuclei. Used to compute:– Sedimentation– cloud effective radius

• Precipitation : above threshold:

ql/(cloud fraction) > threshold (~1.1g/kg)

• On the surface : « bucket model » (runoff if > 150 kg/m2) + snow, etc.

1-rqH2O qH2O 1+rqH2O

Cloud fraction

Page 26: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

An ongoing test: modeling the Earth as an extrasolar planet

• An « Earth size » planet at 1 AU around a G2 star…

• Asume N2 atmosphere + present-day CO2 and CH4

• Use Earth albedo and topography.• Oceans are represented by humid, very

high thermal inertia surface (TI=25000 SI).• Sea ice limited to 1 meter thick

To be replaced by a sea –ice model.

26

Page 27: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

27

Reference(Earth climatology LMDZ4)

Simulation with the Exoplanet generic model

Mean surface temperature (K)

Mean surface temperature (K)

64x64x20 simulations

Page 28: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Reference(Earth climatology LMDZ4)

Simulation with the Exoplanet generic model

— Earth reference— GCM Generic

Page 29: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

29

Reference(Earth climatology LMDZ4)

Simulation with the Exoplanet generic model

Mean precipitation (kg m2 s-1)

Mean precipitation (kg m2 s-1)

Page 30: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

30 We need a better ocean transport and sea ice model !

Page 31: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

A new « slab ocean » model developped at LMD

Codron, Climate Dynamics, 2011

• How to simply represent Oceanic transport?– Empirical flux based on terrestrial observations ?

– Horizontal diffusion of temperature ?

– Parametrize the largest heat transport : wind-driven Ekman transport (and return flow at depth)

31

Page 32: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

32

Test :• Aquaplanet• Earth with LMDZ GCM

Codron, Climate Dynamics, 2011

Page 33: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

An example of application : Gliese 581d

Star = 0.31 MsunDistance = 20.4 Light Year

Planet C :M > 5 Earth MassOrbit : 13 daysat 0.073 AU

Planet B : 16 M

Planet D :M > 7. Earth MassOrbit : at 0.25 AU Bonfils et al. 2005

Udry et al. 2007Selsis et al. 2007

Gliese 581 system

Page 34: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

GGliese 581d

• Mass ~ < 7 Earth Mass• Orbit around a small cold M star

– 1 year ~ 67 Earth days– Excentricity ~ 0.38– Equilibrium temperature ~ -80°C

• Gravity : between 10 and 30 m s-2

• Tidal forces :– Possibly locked in synchronous rotation

or a resonnance– Most likely low obliquity (like Venus or Mercury)

Page 35: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

A GCM for Gliese 581d• The question: what could be the climate assuming a CO2 –

N2 – H2O atmosphere ? Could Gliese 581d be habitable ?• The model :

– Two spatial resolution • 11.25° lon x 5.6° lat resolution• 5.6° lon x 2.3° lat resolution

– Radiative transfer : • 32 spectral bands in the longwave and 36 in the shortwave • Include improved Collision Induced absorption parametrisation (Wordsworth et

al. 2010)

• 6 × 9× 7 temperature, pressure and H2O volume mixing ratio grid: – T =100; 150;…350K, – p = 1E-3, 1E-2, … 1E5 mbar

– qH2O = 1E-7, 1E-6 … 1E-1

• 16 points in the g space (k-distributions)

• Assume stellar spectra from Virtual planet laboratory (AD Leo, slightly warmer than Gliese 581)

– CO2 condensation (surface + clouds) included

– Two cases : 1) desert planet 2) Ocean planet (not oceanic transport)

Page 36: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

top of atmGround, no Rayleigh scat

Ground, with Rayleigh scat.

top of atmGround, no Rayleigh scat

Ground, with Rayleigh scat.

G-class spectrum(Sun)

M-Class spectrum(AD Leo and ~Gliese 581)

Incident solar flux on a 40 bars CO2 atmosphere

Rayleigh scattering

CO2 absorption

Wordsworth et al. 2010

Page 37: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Global Mean results (1D radiative convective models)

Wordsworth et al. (A&A , 2010)

M star (AD Leo)

SunMe

an

Su

rfa

ce

Te

mp

era

ture

(K

)

Surface Pressure (bars)

Page 38: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

From 1D to 3D

• Distribution of clouds

• Water cycle : cold trapping of water ?

• Impact of heterogeneous heating (cold hemisphere, poles)

Page 39: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Tidal locked Gl581d Ps=10barSurface Temperature

Page 40: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Resonnant 2/1 Gl581d Ps=10barSurface Temperature

Page 41: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Earth-like rotation Gl581d Ps=10barSurface Temperature

Page 42: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Mean surface temperature and atmospheric CO2 collapse

10 bars

Page 43: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

CO2 Liquid !

deposition

Page 44: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,
Page 45: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Simple CO2 ice cloud scheme

1. In each model mesh: If T<Tcond : condensation and latent heat release T=Tcond

2. CO2 ice is splitted in small particles (The number of particle / kg is prescribed)

3. Transport and mixing by winds, turbulence, convection

4. Gravitional sedimentation5. Interaction with Solar and IR radiation (assuming

Mie theory and Hansen et al. (1996) radiative properties

6. If T>Tcond : sublimation to get T=Tcond or no more ice

Page 46: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

CO2 ice clouds maps: Res 2/1 gl581bIce condense in ascendance (adiabatic cooling)

Page 47: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

CO2 ice clouds maps: tidal locked gl581b

Page 48: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Tidal locked Gl581d Ps=20barSurface Temperature

Page 49: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Mean surface temperature (No atmospheric CO2 collapse)

20 bars

Page 50: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Cloud condensation

Radiative effects (clouds + vapour)

Precipitation

Surface processes

Evaporation

• We include radiative effects of vapour and cloud tracers

• Assume fixed CCN distribution, but variable mean cloud particle sizes

• Simple convective relaxation (Manabe scheme), 100% cloud fraction assumed

Adding a water cycle

Page 51: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Ocean planet (no oceanic transport)Mean cloud coverage

H2O CO2

ice ice

Page 52: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Including the water cycle:Preliminary results

(assuming an ocean planet)

Page 53: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Including the water cycle:Preliminary results

Dry case

Water cycle case

• Net warming• No glaciation with Ps > 10 bars

Page 54: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Assuming enough CO2 and H2O (which is not unlikely), Gliese 581d WOULD be habitable.

Gliese 581d: conclusions

Dry planet

With water cycle

Page 55: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Astrophysical Journal, Wordsworth, Forget et al. 2011

Page 56: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Terrestrial planets: Many projects• Cold atmosphere

– Early Mars– Early Earth– Cold ocean planet with oceanic transport and sea ice

• Warm atmosphere– Habitable zone Inner edge : runaway greenhouse effect, etc…

Challenge: clouds+convection+water vapor radiative properties– Early Venus– Future Earth

• Exotic cases:– H2 atmospheres (Wordsworth 2011)

Page 57: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Some Conclusions• Assuming atmosphere/ocean compositions, robust,

“complete” GCMs/Planet simulators may be developed to address major scientic questions related to extrasolar planets :– Prepare observations (e.g. F. Selsis yesterday)– Could such and such planet be habitable. – Limits of habitability

– However, whatever the quality of the model, heavy study of model sensitivity to parameters will always be necessary.

• The key scientific problem may be to understand the zoology of atmospheric composition and long term evolution… observations by a project like ECHO would tell us a lot.

• To be continued…