Transcript
Page 1: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Applying GCMs to terrestrial exoplanets

F.Forget, R. WordsworthB. Charnay, E. Millour, F. Codron, J.Leconte,

F. Selsis*,

LMD, Institut Pierre Simon Laplace, Université Pierre et Marie Curie, BP 99, 75005 Paris, France* LAB, (CNRS; Université Bordeaux I)

Page 2: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

MercuryVenus

Earth

Mars

JUPITER

SATURNETitanURANUS

NEPTUNETritonAtmospheres in the solar system

• GIANT PLANETS• Terrestrial atmospheres

Pluto

Page 3: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

VENUS

TERRE

MARS TITAN

Many GCM teamsApplications:• Weather forecast• Assimilation and climatology• Climate projectionsClimate projections• Paleoclimates• chemistry• Biosphere / hydrosphere cryosphere / oceans coupling• Many other applications

~a few GCMs (LMD, Univ. of Chicago, Caltech, Köln…)

Coupled cycles:• Aerosols• Photochemistry• Clouds

Several GCMs (NASA Ames, Caltech, GFDL, LMD, AOPP, MPS, Japan, York U., Japan, etc…)Applications:• Dynamics & assimilation• CO2 cycle• dust cycle• water cycle• Photochemistry• thermosphere and ionosphere• isotopes cycles• paleoclimates• etc…•

~1 true GCMs Coupling dynamic & radiative transfer(LMD)6 GCMs with simplified physics

TRITON1 full GCM (LMD)

PLUTO1 full GCM (LMD)

Page 4: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

What we have learned from solar system GCMs

• To first order: GCMs work– A few equations can build « planet simulators » with a realistic, complex

behaviour and strong prediction capacities

• However the devil is in the details:– Problems with

• Positive feedbacks and unstability (e.g. sea ice and land ice albedo feedback on the Earth)

• Non linear behaviour and threshold effect (e.g. dust storms on Mars)

• Complex subgrid scale process and poorly known physics (e.g. clouds on the Earth)

• System with extremely long « inertia » with small forcing (e.g. Venus circulation). Sensitivity to intrinsinc dynamical core conserving properties Sensitivity to initial state

Need to somewhat « tune » a few model parameters to accurately model an observed planet and predict its behaviour

Page 5: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Lebonnois et al. 2011

Page 6: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Venus intercomparison GCMs

Page 7: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Lebonnois et al. 2011

Page 8: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Lebonnois et al. 2011

Page 9: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Lebonnois et al. 2011

Page 10: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Lebonnois et al. 2011

Page 11: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Mars dynamical core intercomparisons

(Mischna and Wilson 2008)

Page 12: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Participating Model SpecsModel Core numerics Vertical Levels

GFDL A Spectral 28, 36

GFDL B B-grid 32

GFDL C Finite Volume 28, 36

GFDL D FV + Cubed-Sphere 28, 36, 56

Hokkaido Spectral 48

Caltech/Cornell/JPL C-grid 25, 40

CCSR/NIES Spectral 33

York C-grid 88

LMD C-grid 32

Various models provided various combinations of model resolution, damping (α=2, 4) and vertical levels.

Page 13: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Hokkaido Spectral MGCM

Page 14: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

GFDL Spectral MGCM: T31L36

Page 15: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

GFDL B-grid MGCM

Page 16: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

GFDL Cubed-sphere MGCM 3°x3°

Page 17: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Caltech/Cornell/JPL MarsWRF MGCM

Page 18: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

LMD MGCM

Page 19: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

York University MGCM

Page 20: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Full intercomparison

Johnson et al. 2008

Page 21: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

The science of Simulating the unknown:From planet GCMs to extrasolar planet GCMs.

Page 22: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

How GCM work ? :The minimum General Circulation Model for a terrestrial planet

1) 3D Hydrodynamical code to compute large scale atmospheric motions and transport

2) At every grid point : Physical parameterizations to force the dynamic to compute the details of the local climate• Radiative heating & cooling of the atmosphere • Surface thermal balance • Subgrid scale atmospheric motions

Turbulence in the boundary layer Convection Relief drag Gravity wave drag• Specific process : ice condensation, cloud microphysics, etc…

Most processes can be described by equations that we have learned to solve with some accuracy

Page 23: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Toward a “generic” Global climate model (LMD)

1) Use “universal” parametrisations for all planets:

– Standard dynamical core– Surface and subsurface thermal model– “Universal” Turbulent boundary layer scheme

2) The key : Versatile, fast and accurate radiative transfer code (see next slide)

3) Simple, Robust, physically based parametrisation of volatile phase change processes

- Including robust deep convection representation : wet convection- Clouds are represented by splitting condensed phase on a prescribed number of

Cloud Condensation Nuclei (see next slide)

4) If needed: simplified physical “slab ocean + sea ice” scheme.

Page 24: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Developping a Versatile, fast and accurate radiative transfer code for GCM

• Input : assumption on the atmosphere:– Any mixture of well mixed gases (ex: CO2 + N2 + CH4 + SO2)– Add 1 variable gases (H2O). Possibly 2 or 3 (e.g. Titan)– Refractive Indexes of aerosols.

• Semi automatic processes: Spectroscopic database (Hitran 2008) Line by line spectra (k-spectrum model) correlated k coeeficients radiative transfer model

• RT Model can also simulate scattering by several kind of aerosols (size and amount can vary in space and time)

• Key technical problems: – gas spectroscopy in extreme cases– Predicting aerosol and cloud properties

• Key scientific problem : assumption on the atmosphere !

Page 25: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Clouds and precipitation (at this stage)

• Large scale condensation:

(r~.0.2 …)

• Wet convection (“Manabe”) mass flux scheme ?

• Particles size estimated by splitting condensed phase on a prescribed number of Cloud Condensation Nuclei. Used to compute:– Sedimentation– cloud effective radius

• Precipitation : above threshold:

ql/(cloud fraction) > threshold (~1.1g/kg)

• On the surface : « bucket model » (runoff if > 150 kg/m2) + snow, etc.

1-rqH2O qH2O 1+rqH2O

Cloud fraction

Page 26: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

An ongoing test: modeling the Earth as an extrasolar planet

• An « Earth size » planet at 1 AU around a G2 star…

• Asume N2 atmosphere + present-day CO2 and CH4

• Use Earth albedo and topography.• Oceans are represented by humid, very

high thermal inertia surface (TI=25000 SI).• Sea ice limited to 1 meter thick

To be replaced by a sea –ice model.

26

Page 27: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

27

Reference(Earth climatology LMDZ4)

Simulation with the Exoplanet generic model

Mean surface temperature (K)

Mean surface temperature (K)

64x64x20 simulations

Page 28: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Reference(Earth climatology LMDZ4)

Simulation with the Exoplanet generic model

— Earth reference— GCM Generic

Page 29: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

29

Reference(Earth climatology LMDZ4)

Simulation with the Exoplanet generic model

Mean precipitation (kg m2 s-1)

Mean precipitation (kg m2 s-1)

Page 30: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

30 We need a better ocean transport and sea ice model !

Page 31: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

A new « slab ocean » model developped at LMD

Codron, Climate Dynamics, 2011

• How to simply represent Oceanic transport?– Empirical flux based on terrestrial observations ?

– Horizontal diffusion of temperature ?

– Parametrize the largest heat transport : wind-driven Ekman transport (and return flow at depth)

31

Page 32: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

32

Test :• Aquaplanet• Earth with LMDZ GCM

Codron, Climate Dynamics, 2011

Page 33: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

An example of application : Gliese 581d

Star = 0.31 MsunDistance = 20.4 Light Year

Planet C :M > 5 Earth MassOrbit : 13 daysat 0.073 AU

Planet B : 16 M

Planet D :M > 7. Earth MassOrbit : at 0.25 AU Bonfils et al. 2005

Udry et al. 2007Selsis et al. 2007

Gliese 581 system

Page 34: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

GGliese 581d

• Mass ~ < 7 Earth Mass• Orbit around a small cold M star

– 1 year ~ 67 Earth days– Excentricity ~ 0.38– Equilibrium temperature ~ -80°C

• Gravity : between 10 and 30 m s-2

• Tidal forces :– Possibly locked in synchronous rotation

or a resonnance– Most likely low obliquity (like Venus or Mercury)

Page 35: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

A GCM for Gliese 581d• The question: what could be the climate assuming a CO2 –

N2 – H2O atmosphere ? Could Gliese 581d be habitable ?• The model :

– Two spatial resolution • 11.25° lon x 5.6° lat resolution• 5.6° lon x 2.3° lat resolution

– Radiative transfer : • 32 spectral bands in the longwave and 36 in the shortwave • Include improved Collision Induced absorption parametrisation (Wordsworth et

al. 2010)

• 6 × 9× 7 temperature, pressure and H2O volume mixing ratio grid: – T =100; 150;…350K, – p = 1E-3, 1E-2, … 1E5 mbar

– qH2O = 1E-7, 1E-6 … 1E-1

• 16 points in the g space (k-distributions)

• Assume stellar spectra from Virtual planet laboratory (AD Leo, slightly warmer than Gliese 581)

– CO2 condensation (surface + clouds) included

– Two cases : 1) desert planet 2) Ocean planet (not oceanic transport)

Page 36: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

top of atmGround, no Rayleigh scat

Ground, with Rayleigh scat.

top of atmGround, no Rayleigh scat

Ground, with Rayleigh scat.

G-class spectrum(Sun)

M-Class spectrum(AD Leo and ~Gliese 581)

Incident solar flux on a 40 bars CO2 atmosphere

Rayleigh scattering

CO2 absorption

Wordsworth et al. 2010

Page 37: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Global Mean results (1D radiative convective models)

Wordsworth et al. (A&A , 2010)

M star (AD Leo)

SunMe

an

Su

rfa

ce

Te

mp

era

ture

(K

)

Surface Pressure (bars)

Page 38: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

From 1D to 3D

• Distribution of clouds

• Water cycle : cold trapping of water ?

• Impact of heterogeneous heating (cold hemisphere, poles)

Page 39: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Tidal locked Gl581d Ps=10barSurface Temperature

Page 40: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Resonnant 2/1 Gl581d Ps=10barSurface Temperature

Page 41: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Earth-like rotation Gl581d Ps=10barSurface Temperature

Page 42: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Mean surface temperature and atmospheric CO2 collapse

10 bars

Page 43: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

CO2 Liquid !

deposition

Page 44: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,
Page 45: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Simple CO2 ice cloud scheme

1. In each model mesh: If T<Tcond : condensation and latent heat release T=Tcond

2. CO2 ice is splitted in small particles (The number of particle / kg is prescribed)

3. Transport and mixing by winds, turbulence, convection

4. Gravitional sedimentation5. Interaction with Solar and IR radiation (assuming

Mie theory and Hansen et al. (1996) radiative properties

6. If T>Tcond : sublimation to get T=Tcond or no more ice

Page 46: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

CO2 ice clouds maps: Res 2/1 gl581bIce condense in ascendance (adiabatic cooling)

Page 47: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

CO2 ice clouds maps: tidal locked gl581b

Page 48: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Tidal locked Gl581d Ps=20barSurface Temperature

Page 49: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Mean surface temperature (No atmospheric CO2 collapse)

20 bars

Page 50: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Cloud condensation

Radiative effects (clouds + vapour)

Precipitation

Surface processes

Evaporation

• We include radiative effects of vapour and cloud tracers

• Assume fixed CCN distribution, but variable mean cloud particle sizes

• Simple convective relaxation (Manabe scheme), 100% cloud fraction assumed

Adding a water cycle

Page 51: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Ocean planet (no oceanic transport)Mean cloud coverage

H2O CO2

ice ice

Page 52: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Including the water cycle:Preliminary results

(assuming an ocean planet)

Page 53: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Including the water cycle:Preliminary results

Dry case

Water cycle case

• Net warming• No glaciation with Ps > 10 bars

Page 54: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Assuming enough CO2 and H2O (which is not unlikely), Gliese 581d WOULD be habitable.

Gliese 581d: conclusions

Dry planet

With water cycle

Page 55: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Astrophysical Journal, Wordsworth, Forget et al. 2011

Page 56: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Terrestrial planets: Many projects• Cold atmosphere

– Early Mars– Early Earth– Cold ocean planet with oceanic transport and sea ice

• Warm atmosphere– Habitable zone Inner edge : runaway greenhouse effect, etc…

Challenge: clouds+convection+water vapor radiative properties– Early Venus– Future Earth

• Exotic cases:– H2 atmospheres (Wordsworth 2011)

Page 57: Applying GCMs to terrestrial exoplanets F.Forget, R. Wordsworth B. Charnay, E. Millour, F. Codron, J.Leconte, F. Selsis *, LMD, Institut Pierre Simon Laplace,

Some Conclusions• Assuming atmosphere/ocean compositions, robust,

“complete” GCMs/Planet simulators may be developed to address major scientic questions related to extrasolar planets :– Prepare observations (e.g. F. Selsis yesterday)– Could such and such planet be habitable. – Limits of habitability

– However, whatever the quality of the model, heavy study of model sensitivity to parameters will always be necessary.

• The key scientific problem may be to understand the zoology of atmospheric composition and long term evolution… observations by a project like ECHO would tell us a lot.

• To be continued…


Top Related