background slides from lecture 1

101
Background Slides from Lecture 1

Upload: clint

Post on 05-Jan-2016

25 views

Category:

Documents


0 download

DESCRIPTION

Background Slides from Lecture 1. Multi-Wavelength SFR Diagnostics. `calorimetric’ IR.  (  m) 1 10 100 1000. 24  m. 70  m. 160  m. 8  m. [OII]. P . H . UV. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Background Slides from Lecture 1

Background Slides from Lecture 1

Page 2: Background Slides from Lecture 1

Multi-Wavelength SFR Diagnostics

(m) 1 10 100 1000

H P 8 m 24 m 70 m 160 mUV [OII]

`calorimetric’ IR

Dale et al. 2007, ApJ, 655, 863

Page 3: Background Slides from Lecture 1
Page 4: Background Slides from Lecture 1

0.1 1 10 100 mag (AV)

Page 5: Background Slides from Lecture 1

GALEX FUV + NUV (1500/2500 A)

IRAC 8.0 m MIPS 24 m

H + R

Page 6: Background Slides from Lecture 1
Page 7: Background Slides from Lecture 1

Spitzer Infrared Nearby Galaxies Survey (SINGS)

• complete IRAC, MIPS imaging of 75 nearby galaxies (3.5 – 160 m)

• IRS, MIPS radial strip maps (10 – 100 m)• IRS maps of centers, 75 extranuclear sources (5–37m)• ancillary imaging campaign covering UV to radio

Kennicutt et al. 2003, PASP, 115, 928

Page 8: Background Slides from Lecture 1

UV Continuum Emission

Page 9: Background Slides from Lecture 1

Ultraviolet stellar continuum: key advantages- direct photospheric measure of young massive stars- primary groundbased SFR tracer for galaxies at z>2-

However:- heavily attenuated by dust. Dust `correction’ methods

have limits (age-dust degeneracy).- dependent on the stellar population mix, usually

measures timescales of ~100 Myr.

Dale et al. 2007, ApJ, 655, 863

Page 10: Background Slides from Lecture 1

GALEX Mission

- all-sky survey- 5 arcsec resolution- 1500 A, 2500 A to

AB = 20-21- 10,000 galaxies to

z=0.02- deep surveys to

AB = 25.5, 26.5- launched April

2003

Page 11: Background Slides from Lecture 1

Steidel et al. 1996, ApJ, 462, L17

Page 12: Background Slides from Lecture 1

Maeder, Meynet 1988, A&AS, 76, 411

Building an Evolutionary Synthesis Model

Kurucz 1979, ApJS, 40, 1

+

single star SED evolution model

Page 13: Background Slides from Lecture 1

Leitherer et al. 1999, ApJS, 123, 3 “Starburst99”

“single burst models” “continuous star formation” models (single age star clusters)

Page 14: Background Slides from Lecture 1

apply evolutionary synthesis maodels to constrain IMF

Kennicutt, Tamblyn, Congdon 1994, ApJ, 435, 22

Page 15: Background Slides from Lecture 1

UV, Dust, and Age

Starbursts

(Calzetti et al. 1994,1995,1996,1997,2000, Meurer et al. 1999, Goldader et al. 2002)

26

A dusty stellar population may have similar UV characteristics of an old population

Page 16: Background Slides from Lecture 1

26

Blue= starburstsRed= normal SF

Page 17: Background Slides from Lecture 1

M51 Calzetti et al. 2005, ApJ, 633, 871

FUV, H, 24m 3.6, 4.5, 5.8, 8.0 m

Page 18: Background Slides from Lecture 1
Page 19: Background Slides from Lecture 1

Photoionization Methods: Emission Lines

SINGG survey, G. Meurer et al. (NOAO)

• for ionization-bounded region observed recombination line flux scales with ionization rate

• ionization dominated by massive stars (M > 10 Mo), so nebular emission traces SFR in last 3-5 Myr

• ionizing UV reprocessed through few nebular lines, detectable to large distances

• only traces massive SFR, total rates sensitive to IMF extrapolation

• SFRs subject to systematic errors from extinction, escape of ionizing radiation from galaxy

Page 20: Background Slides from Lecture 1

Kennicutt 1992, ApJS, 79, 255

Page 21: Background Slides from Lecture 1
Page 22: Background Slides from Lecture 1

Local H Surveys

Survey Ngal Selection PI

GOLDMine 277 magnitude Coma/Virgo G. Gavazzi

MOSAIC ~1000 H Abell clusters R. Kennicutt

HGS 450 mag/volume field (<40 Mpc) P. James

SINGG/SUNGG* 468 HIPASS field (<40 Mpc) G. Meurer

STARFORM 150 volume field (<25 Mpc) S. Hameed

11HUGS *** 470 volume field (<11 Mpc) R. Kennicutt

AMIGA ~270 magnitude isolated field L. Montenegro

SINGS *** 75 multi-param <30 Mpc R. Kennicutt

SMUDGES ~1000 mag field dwarfs L. van Zee

UCM 376 obj prism field J. Gallego

KISS ~2200 obj prism field J. Salzer

** paired GALEX survey

Page 23: Background Slides from Lecture 1

Photoionization Methods: Emission Lines

SINGG survey, G. Meurer et al. (NOAO)

• for ionization-bounded region observed recombination line flux scales with ionization rate

• ionization dominated by massive stars (M > 10 Mo), so nebular emission traces SFR in last 3-5 Myr

• ionizing UV reprocessed through few nebular lines, detectable to large distances

• only traces massive SFR, total rates sensitive to IMF extrapolation

• SFRs subject to systematic errors from extinction, escape of ionizing radiation from galaxy

Page 24: Background Slides from Lecture 1

Leakage of Ionizing Flux at z ~ 3

Shapley et al. 2006, ApJ, 651, 688

Page 25: Background Slides from Lecture 1

Shapley et al. 2006, ApJ, 651, 688

composite spectrum

Page 26: Background Slides from Lecture 1

Calzetti et al., ApJ, submittedKennicutt & Moustakas, in prep

HII regions galaxies (integrated fluxes)

Page 27: Background Slides from Lecture 1

Other Emission Lines

- H (0.48 m)

- Paschen- (1.9 m)

- Brackett- (2.2m)

- [OII] (0.37 m)

- Lyman- (0.12 m)

Scoville et al. 2000, AJ, 122, 3017

Page 28: Background Slides from Lecture 1

Wavelength

Page 29: Background Slides from Lecture 1

Moustakas, Kennicutt, Tremonti 2006, ApJ, 642, 775

Page 30: Background Slides from Lecture 1

Moustakas et al. 2006, ApJ, 642, 775

Page 31: Background Slides from Lecture 1

M83 = NGC 5236 (Sc)

SINGG: Survey for Ionization in Neutral-Gas

Galaxies

SINGG: Survey for Ionization in Neutral-

Gas Galaxies

11 Mpc Ha/Ultraviolet Survey (11HUGS)

Page 32: Background Slides from Lecture 1
Page 33: Background Slides from Lecture 1

Lecture 2 Begins Here

Page 34: Background Slides from Lecture 1

Dust Emission

• Interstellar dust absorbs ~50% of starlight in galaxies, re-radiates in thermal infrared (3–1000 m)

• Provides near-bolometric measure of SFR in dusty starbursts, where absorbed fraction ~100%

• Largest systematic errors from non-absorbed star formation and dust heated by older stars

• Different components of IR trace distinct dust species and stellar sub-populations

Page 35: Background Slides from Lecture 1
Page 36: Background Slides from Lecture 1

FIR to SFR?

Dale et al. 2007

(m) 1 10 100 1000

8 m 24 m 70 m 160 m

`calorimetric’ IR

FIR - sensitive to heating from old stellar populations 8 m - mostly single photon heating (PAH emission)24 m - both thermal and single photon heating70 m and 160 m - mostly thermal, also from old stars

Page 37: Background Slides from Lecture 1

NGC 628(M74)

C. Tremonti

Page 38: Background Slides from Lecture 1

Moustakas et al. 2006, ApJ, 642, 775

Page 39: Background Slides from Lecture 1

Calzetti et al. 2007Kennicutt & Moustakas 2007

HII regions galaxies (integrated fluxes)

Page 40: Background Slides from Lecture 1

GALEX FUV + NUV (1500/2500 A)

IRAC 8.0 m MIPS 24 m

H + R

Page 41: Background Slides from Lecture 1

M81

H + R

Page 42: Background Slides from Lecture 1

M 81

24µm 70µm 160µm

Page 43: Background Slides from Lecture 1

Bell 2003, ApJ, 586, 794

Radio Continuum Emission

• exploits tight observed relation between 1.4 GHz radio continuum (synchrotron) and FIR luminosity

• correlation may reflect CR particle injection/acceleration by supernova remnants, and thus scale with SFR

• no ab initio SFR calibration, bootstrapped from FIR calibration

• valuable method when no other tracer is available

Page 44: Background Slides from Lecture 1

Cookbook

Extinction-Free Limit (Salpeter IMF, Z=ZSun)

SFR (Mo yr-1) = 1.4 x 10-28 L (1500) ergs/s/Hz

SFR (Mo yr-1) = 7.9 x 10-42 L (H) (ergs/s) Extinction-Dominated Limit; SF Dominated

SFR (Mo yr-1) = 4.5 x 10-44 L (FIR) (ergs/s)

SFR (Mo yr-1) = 5.5 x 10-29 L (1.4 GHz) (ergs/Hz)

Composite: SF Dominated Limit

SFR (Mo yr-1) = 7.9 x 10-42 [L H, obs + a L24m ] (erg s-1) [a = 0.15 – 0.31]

SFR (Mo yr-1) = 4.5 x 10-44 [L(UV) + L (FIR)] (ergs/s)

Page 45: Background Slides from Lecture 1

General Points and Cautions• Different emission components trace distinct stellar

populations and ages– nebular emission lines and resolved 24 m dust sources trace ionizing

stellar population, with ages <5-10 Myr– UV starlight mainly traces “intermediate” age population, ages 10-200

Myr– diffuse dust emission and PAH emission trace same “intermediate”

age and older stars– 10 Myr to 10 Gyr(!)

• Consequence: it is important to match the SFR tracer to the application of interest– emission lines – Schmidt law, early SF phases– UV – time-averaged SFR and SFR in low surface brightness systems– dust emission – high optical depth regions

• Multiple tracers can constrain SF history, properties of starbursts, IMF, etc.

Page 46: Background Slides from Lecture 1
Page 47: Background Slides from Lecture 1

Demographics of Local Star-Forming Galaxies and Starbursts

M82: Spitzer/CXO/HST

Page 48: Background Slides from Lecture 1

• Spitzer Infrared Nearby Galaxies Survey (SINGS) – resolved UV radio mapping of 75 galaxies

– selection: maximize diversity in type, mass, IR/optical

• 11 Mpc H/Ultraviolet Survey (11HUGS)– resolved H, UV imaging, integrated/resolved IR of 400 galaxies

– selection: volume-complete within 11 Mpc (S-Irr)

• Survey for Ionization in Neutral-Gas Galaxies (SINGG)– resolved H, UV imaging, integrated/resolved IR of 500 galaxies

– selection: HI-complete in 3 redshift slices

• Integrated Measurements– Ha flux catalogue (+IR, UV) for >3000 galaxies within 150 Mpc

- integrated spectra (+IR, UV) for ~600 galaxies in same volume (Moustakas & Kennicutt 2006, 2007)

Primary Datasets

Page 49: Background Slides from Lecture 1

Thanks to: S. Akiyama, J. Lee, C. Tremonti, J. Moustakas, C. Tremonti (Arizona), J. Funes (Vatican), S. Sakai (UCLA), L. van Zee (Indiana) + The SINGS Team: RCK, D. Calzetti, L. Armus, G. Bendo, C. Bot, J. Cannon, D. Dale, B. Draine, C. Engelbracht, K. Gordon, G. Helou, D. Hollenbach, T. Jarrett, S. Kendall, L. Kewley, C. Leitherer, A. Li, S. Malhotra, M. Meyer, E. Murphy, M. Regan, G. Rieke, M. Rieke, H. Roussel, K. Sheth, JD Smith, M. Thornley, F. Walter

Page 50: Background Slides from Lecture 1

Spitzer Local Volume Legacy

• UV/H/IR census of local volume• HST ANGST sample to 3.5 Mpc• GALEX 11HUGS sampel to 11 Mpc

Page 51: Background Slides from Lecture 1

The Starburst Bestiary

GEHRs

SSCs

HII galaxies

ELGs

CNELGs

W-R galaxies

BCGs

BCDs

LIGs, LIRGs

ULIGs, ULIRGs

LUVGs, UVLGs

nuclear starbursts

circumnuclear

starbursts

clumpy irregular

galaxies

Ly- galaxies

E+A galaxies

K+A galaxies

LBGs

DRGs

EROs

SCUBA galaxies

extreme starbursts

Page 52: Background Slides from Lecture 1

Demographics of Star-Forming Galaxies

• absolute SFR (Mo/yr)– from H corrected for [NII], dust

• SFR density, intensity (Mo/yr/kpc2)– defined as SFR/R2

SF

– correlates strongly with gas density, SF timescale

• normalized SFR/mass; birthrate parameter b – ratio of present SFR to average past SFR– defined here globally – integrated over galaxy– primary evolutionary variable along Hubble sequence

Baseline: 11 Mpc H + Ultraviolet Survey (11HUGS) - all known galaxies w/gas within 11 Mpc + Ursa Major cluster - companion GALEX Legacy survey coming…

Quantify SF properties in terms of 3 observables:

Page 53: Background Slides from Lecture 1

R = 100 pc

1 kpc

10 kpc

11HUGS/LVL Sample

Page 54: Background Slides from Lecture 1

11HUGS Sample + HGS + Goldmine Virgo Sample (James et al. 2003; Gavazzi et al. 2003)

Page 55: Background Slides from Lecture 1

Gronwall 1998

SFR* ~5 Mo/yr

Page 56: Background Slides from Lecture 1

LIGs, ULIGs (Dopita et al., Soifer et al, Scoville et al)

merger-driven inflows, starbursts

Page 57: Background Slides from Lecture 1
Page 58: Background Slides from Lecture 1

Martin 2005, ApJ, 619, L59

Page 59: Background Slides from Lecture 1
Page 60: Background Slides from Lecture 1
Page 61: Background Slides from Lecture 1

Mgas/Hubble

gas/Hubble

Mgas/dyn

crit

1 O5V/3_Myr

0.5” @ 4 M

pc

Meurer limit

Page 62: Background Slides from Lecture 1

Lecture 2 Ended Here Extra Slides Follow

(from Lecture 4)

Page 63: Background Slides from Lecture 1

108 109 1010

1011 Mo

Page 64: Background Slides from Lecture 1

11MPC + BCGs (Gil de Paz et al. 2003)

Page 65: Background Slides from Lecture 1

11HUGS Sample + HGS + Goldmine Virgo Sample (James et al. 2003; Gavazzi et al. 2003)

Page 66: Background Slides from Lecture 1

Disk SFRs: Main Results

• spectra best fitted with IMF ~ Salpeter for M* > 1 Mo

• SF is ubiquitous when cold gas is present - <4% S-Irr non-detects in H, nearly all show trace SF in UV

• average SFR/mass increases by 5-10x per type bin (S0 - Sa - Sb, etc)– proportional changes in disk SF history with type- changes in frequency and characteristic mass of SF events

• large residual variation in SFR within a given type– most variation in disk SFR vs B/D ratio– more strongly correlated with mean gas density– temporal SFR variations (bursts)

• strong bimodality seen in SFR/mass vs galaxy mass– extension to dwarfs shows evidence for third mode

• radial gradients in disk age and metallicity

Kennicutt 1998, ARAA, 36, 189Brinchmann et al. 2004, MNRAS, 351, 1151

Page 67: Background Slides from Lecture 1

Disk Star Formation Rates and Histories

• evolutionary synthesis of integrated colors

Tinsley 1968, ApJ, 151, 547 Searle et al. 1973, ApJ, 179, 427 Larson, Tinsley 1978, ApJ, 219, 46

• results – disk colors consistent

with sequence of constant age, IMF, Z, and variable SF history (t)

– best fit for ~Salpeter IMF

– spectra fit with similar model sequence

Kennicutt 1983, ApJ, 272, 54

Page 68: Background Slides from Lecture 1

Bruzual, Charlot 1993, ApJ, 405, 538

Page 69: Background Slides from Lecture 1

Kennicutt 1992, ApJS, 79, 255

Page 70: Background Slides from Lecture 1

Disk SF – Global Trends

Kennicutt 1998, ARAA, 36, 189 Bendo et al. 2002, AJ, 124, 1380

Page 71: Background Slides from Lecture 1

Kennicutt, Tamblyn, Congdon 1994, ApJ, 435, 22

Page 72: Background Slides from Lecture 1

Sandage 1986, A&A, 161, 89

Page 73: Background Slides from Lecture 1

Kennicutt 1998, ARAA, 36, 189

Page 74: Background Slides from Lecture 1

Bell, de Jong 2000,MNRAS, 312, 497

Page 75: Background Slides from Lecture 1

• Gas consumption– typical timescales for

depletion ~few Gyr– stellar recycling of gas

is significant factor!

Page 76: Background Slides from Lecture 1
Page 77: Background Slides from Lecture 1

SFR increase reflects an increase in frequency of SF events, and a shift in the mass spectrum of single events

Page 78: Background Slides from Lecture 1

Brinchmann et al. 2004, MNRAS, 351, 1151

Page 79: Background Slides from Lecture 1

blue sequence red sequence

Page 80: Background Slides from Lecture 1

Kauffmann et al. 2003, MNRAS, 341, 54

Page 81: Background Slides from Lecture 1

Lee & Kennicutt,in preparation

Page 82: Background Slides from Lecture 1

Janice Lee, PhD thesis

Page 83: Background Slides from Lecture 1

starburst duty cycle in dwarf galaxies (Lee 2006)

Page 84: Background Slides from Lecture 1

see poster by Lee et al.

Page 85: Background Slides from Lecture 1

Application to Starburst Duty Cycles

• bursts produce 20-40% of present-day SF in dwarfs• fraction of bursting dwarfs in same sample is 5-10%

• the galaxies are bursting 5-10% of the time

• average burst amplitude is ~4-8x the background SFR

• typical burst durations are 10-100 Myr (e.g., Gallagher, Harris, Calzetti, Zaritsky, Hunter…)

- a typical burst lasts for 0.1-1% of Hubble time

• a typical galaxy bursts ~10-20 times over a Hubble time, each time producing a few percent of its stars (every 500-1000 Myr)

Page 86: Background Slides from Lecture 1

Disk SFRs: Main Results

• spectra best fitted with IMF ~ Salpeter for M* > 1 Mo

• SF is ubiquitous when cold gas is present - <4% S-Irr non-detects in H, nearly all show trace SF in UV

• average SFR/mass increases by 5-10x per type bin (S0 - Sa - Sb, etc)– proportional changes in disk SF history with type- changes in frequency and characteristic mass of SF events

• large residual variation in SFR within a given type– most variation in disk SFR vs B/D ratio– more strongly correlated with mean gas density– temporal SFR variations (bursts)

• strong bimodality seen in SFR/mass vs galaxy mass– extension to dwarfs shows evidence for third mode

• radial gradients in disk age and metallicity

Kennicutt 1998, ARAA, 36, 189Brinchmann et al. 2004, MNRAS, 351, 1151

Page 87: Background Slides from Lecture 1
Page 88: Background Slides from Lecture 1

NGC 1512 (HST)

Page 89: Background Slides from Lecture 1

NGC 1512 (GALEX FUV/NUV)

Page 90: Background Slides from Lecture 1

Kormendy & Kennicutt 2004, ARAA, 42, 603 Sakamoto et al. 1999, ApJ, 525, 691

Page 91: Background Slides from Lecture 1

M82NGC 3034

Page 92: Background Slides from Lecture 1

Lo et al. 1987, ApJ, 312, 574

Page 93: Background Slides from Lecture 1
Page 94: Background Slides from Lecture 1
Page 95: Background Slides from Lecture 1

Kennicutt 1998, ARAA, 36, 189

ELS limit

normal galaxies

IR-luminous galaxies

Page 96: Background Slides from Lecture 1

Circumnuclear Star Formation - Trends with Type

Ho et al. 1997, ApJ, 487, 595

ellipticals too?!

Yi et al. 2005, ApJ, 619, L111

Page 97: Background Slides from Lecture 1
Page 98: Background Slides from Lecture 1

Borne et al. 2000, ApJ, 529, L77

Page 99: Background Slides from Lecture 1
Page 100: Background Slides from Lecture 1

IR-luminous: ~5-8%circumnuclear: ~3-4%BCGs, ELGs: ~5-8%

Contributions to the global star formation budget

Total fraction ~10-20%

Page 101: Background Slides from Lecture 1

L’Floch et al. 2005, ApJ, 632, 169

total

IR-luminous starbursts