lecture slides: lecture thermodynamics

52
1 Challenge the future PL1 Thermodynamics The Modelling Team Department of Design Engineering Faculty of Industrial Design Engineering Delft University of Technology

Upload: tu-delft-opencourseware

Post on 25-Jun-2015

919 views

Category:

Education


13 download

DESCRIPTION

The lecture slides of lecture Thermodynamics of the Modelling Course of Industrial Design of the TU Delft

TRANSCRIPT

Page 1: Lecture Slides: Lecture Thermodynamics

1Challenge the future

P‐L‐1

Thermodynamics

The Modelling Team Department of Design Engineering

Faculty of Industrial Design EngineeringDelft University of Technology

Page 2: Lecture Slides: Lecture Thermodynamics

2Challenge the future

Aim

To develop basic understanding of thermodynamics;

To demonstrate that products with simple heat transfer behaviour can be modelled to provide useful data for designs;

To communicate with experts in their professional languages.

1

2

3

Page 3: Lecture Slides: Lecture Thermodynamics

3Challenge the future

The contents

• 0th law of thermodynamics• 1st law of thermodynamics

• Case study: The cool box

• Conduction• Convection• Radiation

Fundamentals 1

Heat transfer2

Thermal resistance network3

`Industrial applications4

Summary5

Page 4: Lecture Slides: Lecture Thermodynamics

4Challenge the future

FundamentalsThermodynamics is the study of transformations of energy

Page 5: Lecture Slides: Lecture Thermodynamics

5Challenge the future

0th law of thermodynamics

0th Law of thermodynamics

Object ATemperature T0

Object BTemperature T0

Object CTemperature T0

Thermal Equilibrium

Thermal Equilibrium

Thermal Equilibrium

If two systems (A, B) are in thermal equilibrium with a third system (C), they are also in thermal equilibrium with each other.

Page 6: Lecture Slides: Lecture Thermodynamics

6Challenge the future

0th law of thermodynamics

Thermal Equilibrium Thermal Equilibrium 

No Energy transferNo Energy transfer

Temperature

Courtesy of http://iceworld2008.wordpress.com/

Page 7: Lecture Slides: Lecture Thermodynamics

7Challenge the future

Measuring temperature

Ref. http://en.wikipedia.org/wiki/ThermometerCourtesy of http://en.wikipedia.org/wiki/File:Pakkanen.jpg,

http://en.wikipedia.org/wiki/File:Thermocouple0002.jpg,http://www.kaz-europe.com/in/braun-thermoscan-3020/, Braun' is a registered trademark of Braun GmbH, Kronberg, Germany

Glass thermometer

Thermocouple

Infrared sensors

others

Thermo resistant 

Gas thermometer

Langmuir probe

Etc.

Page 8: Lecture Slides: Lecture Thermodynamics

8Challenge the future

1th law of thermodynamics 1st Law of thermodynamics

Q System

Boundary Surroundings

W

ΔU

U Q - W

The change in the internal energy (ΔU) of a system is equal to the amount of energy added (Q) by heating the system minus the amount lost as a result of the work done (W) by the system to its surroundings

Ref. http://en.wikipedia.org/wiki/First_law_of_thermodynamics

Page 9: Lecture Slides: Lecture Thermodynamics

9Challenge the future

Conservation of energy

Any other energy change

Heat exchanged through the boundary

System

Sub‐system 1

Sub‐system 4Sub‐system 6

Sub‐system ...Sub‐system 2

Sub‐system 5Sub‐system 3

A: Area of the boundary

Page 10: Lecture Slides: Lecture Thermodynamics

10Challenge the future

The three classical states

Page 11: Lecture Slides: Lecture Thermodynamics

11Challenge the future

Latent heat – During the change of state

Q mL

SolidSolid liquidliquid GasGas

Courtesy of http://www.gabrielweinberg.com/blog/2010/11/code-icebergs.html

Page 12: Lecture Slides: Lecture Thermodynamics

12Challenge the future

Specific heat capacity – With in a state

SolidSolid liquidliquid GasGas

Q mC T In the differential form

q t Heat flow rate

Page 13: Lecture Slides: Lecture Thermodynamics

13Challenge the future

Heating & Cooling curve

Slope 2

Slope 1

Does slope 1 = slope 2?

Page 14: Lecture Slides: Lecture Thermodynamics

14Challenge the future

Specific heat capacity

Slope 2

Slope 1Does slope 1 = slope 2?

Substance Phase Cp [J/(g·K)] Volumetric heat capacity [J/(cm3·K)]

Gold solid 0.129 2.492

Silver solid 0.233 2.44

Copper solid 0.385 3.45

Iron solid 0.450 3.537

Carbon dioxide CO2 gas 0.839

Glass solid 0.840

Aluminium solid 0.897 2.422

Air (Sea level, dry, 0 °C) gas 1.004 0.001297

Nitrogen gas 1.040

Water at -10 °C (ice) solid 2.050 1.938

Water at 100 °C (steam) gas 2.080

Polyethylene (rotomolding grade) solid 2.303

Animal (and human) tissue mixed 3.500 3.7*

Water at 25 °C liquid 4.181 4.186

Hydrogen gas 14.30

Specific heat capacity of common materials

Ref. http://en.wikipedia.org/wiki/Heat_capacity

Page 15: Lecture Slides: Lecture Thermodynamics

15Challenge the future

Specific heat capacity: Case study

At a temperature of 15 °C, the heat required to raise the temperature of a water sample by 1 K (equivalent to 1 °C) is:

Key factors of radiation regarding heat transfer► 4186 joules per kilogram►This is the same amount of energy to lift a 1kg object to level of 418,6m (Potential energy of mechanics)

Case StudyCase Study1

Page 16: Lecture Slides: Lecture Thermodynamics

16Challenge the future

Heat transfer

Page 17: Lecture Slides: Lecture Thermodynamics

17Challenge the future

Three ways of heat transfer

1

2

In physics and thermodynamics, heat transfer is the process of energy transfer from one body or system due to thermal contact.

Heat transfer is defined as an energy transfer to a body in any other way than

due to work performed on the body.

Page 18: Lecture Slides: Lecture Thermodynamics

18Challenge the future

Three ways of heat transfer3 ways of heat transfer

Hot object

Cold Object

Conduction via solid contact

Convection via fluid contact

Radiation via electromagnetic waves

Courtesy of http://www.roasterproject.com/2010/01/heat-transfer-the-basics/

Page 19: Lecture Slides: Lecture Thermodynamics

19Challenge the future

Three ways of heat transfer

3 ways of heat transfer

Hot object

Cold Object

Conduction via solid contact

Convection via fluid contact

Radiation via electromagnetic waves

Temperature difference

Energy transfer happens due to 

Page 20: Lecture Slides: Lecture Thermodynamics

20Challenge the future

Conduction

Page 21: Lecture Slides: Lecture Thermodynamics

21Challenge the future

Conduction: An case study

Case study: ConductionCase study: Conduction

373K

293K

A steel beamInitial Temperature 293K

Page 22: Lecture Slides: Lecture Thermodynamics

22Challenge the future

Conduction

( ) ( ( ) ( ))hot coldkAq t T t T tL

Page 23: Lecture Slides: Lecture Thermodynamics

23Challenge the future

Key parameters in conduction: K & A

Page 24: Lecture Slides: Lecture Thermodynamics

24Challenge the future

Thermal conductivity

Material Thermal conductivity k [W/(m·K)]Air 0.025Wood 0.04 - 0.4Polypropylene 0.25Rubber 0.16Cement, Portland 0.29Water (liquid) 0.6Thermal grease 0.7 - 3Glass 1.1Concrete, stone 1.7Ice 2Stainless steel 12.11 ~ 45.0Steel, Carbon 1% 43Aluminium 237 (pure) 120—180 (alloys)Gold 318Copper 401Silver 429

Thermal conductivity of common materials

Ref. http://en.wikipedia.org/wiki/Thermal_conductivity

Page 25: Lecture Slides: Lecture Thermodynamics

25Challenge the future

Thermal conductivity: A case study

AluminumAluminum

Structural steelStructural steel

Stainless steelStainless steel

Page 26: Lecture Slides: Lecture Thermodynamics

26Challenge the future

Thermal resistant: Conduction

( ) ( ( ) ( ))hot colddQ t kA T t T t

dt L

( ) ( ) ( ) ( )( ) hot cold hot coldT t T t T t T tdQ tLdt RkA

LRkA

Page 27: Lecture Slides: Lecture Thermodynamics

27Challenge the future

Understanding the thermal resistant

Page 28: Lecture Slides: Lecture Thermodynamics

28Challenge the future

Convection

Page 29: Lecture Slides: Lecture Thermodynamics

29Challenge the future

Natural convection

Page 30: Lecture Slides: Lecture Thermodynamics

30Challenge the future

Convection: Newton's law of cooling

( ) ( ( ) ( ))hot coldq t hA T t T t

h Fluid propertiesThe velocity of Fluid

The typical Value of h

Air: 10~100Water: 500 to 10,000

Ref. http://en.wikipedia.org/wiki/Heat_transfer_coefficient

Page 31: Lecture Slides: Lecture Thermodynamics

31Challenge the future

Thermal resistant: Convection

( ) ( ( ) ( ))hot colddQ t hA T t T t

dt

( ) ( ) ( ) ( )( )1

hot cold hot coldT t T t T t T tdQ tdt R

hA

1RhA

Page 32: Lecture Slides: Lecture Thermodynamics

32Challenge the future

Case study: Cool an iron ball

The air is heated

Heat loss Absorb heat

Iron cools down

Effect

Cause

1/ 0

SystemThe iron The air

How long will it take to cool an iron?1. In still air2. With ventilations

Courtesy of http://www.philips.com

Choice: Except the area that exposed to the air, the iron is well insulated.

Page 33: Lecture Slides: Lecture Thermodynamics

33Challenge the future

Case study: Cool an iron ball – The implementation

Ventilated Simulated by h=20

StillSimulated by h=10

Page 34: Lecture Slides: Lecture Thermodynamics

34Challenge the future

Radiation

Page 35: Lecture Slides: Lecture Thermodynamics

35Challenge the future

What is radiations

Courtesy of http://www.nuonsolarteam.nl

Radiation is a process in which energetic particles or energy or waves travel through a medium or space. There are two distinct types of radiation: ionizing and non‐ionizing. 

Key factors of radiation regarding heat transfer► Frequency►Areas► Surface 

RadiationRadiation

Courtesy of http://en.wikipedia.org/wiki/Radiation

Page 36: Lecture Slides: Lecture Thermodynamics

36Challenge the future

The black body & The grey body

4 4( ) ( ( ) ( ) )obj envq t T t T t A

4 4( ) ( ( ) ( ) )obj envq t T t T t A

Page 37: Lecture Slides: Lecture Thermodynamics

37Challenge the future

Thermal resistance network

Page 38: Lecture Slides: Lecture Thermodynamics

38Challenge the future

Thermal resistances regarding conduction & convection

( ) ( ) ( ) ( )( )1

hot cold hot coldT t T t T t T tdQ tdt R

hA

ConductionConduction

ConvectionConvection

( ) ( ) ( ) ( )( ) hot cold hot coldT t T t T t T tdQ tLdt RkA

A more complicated scenario

Page 39: Lecture Slides: Lecture Thermodynamics

39Challenge the future

Case study: thermal resistance network

Case study 2Case study 2

20 Watt

Inside air(20ºC initial)

OutsideAir (20ºC)

Aluminum

Insulator

Aluminum

Insulator

GoldGold

Case study 1Case study 1

20 Watt

Inside air(20ºC initial)

OutsideAir (20ºC)

Aluminum

Insulator

Aluminum

Insulator

Which one is hotter?Which one is hotter?

Page 40: Lecture Slides: Lecture Thermodynamics

40Challenge the future

Case study: thermal resistance network

Case study 2Case study 2Case study 1Case study 1

Page 41: Lecture Slides: Lecture Thermodynamics

41Challenge the future

Compose the thermal resistance network

22

1

gas

Rh A

13

1

LRK A

24

2

LRK A

51

1

liquid

Rh A

( )hT t ( )cT t

1 2 3 4 5 6

( ) ( )( ) h cT t T tq tR R R R R R

11

1

gas

Rh A

62

1

liquid

Rh A

If we don’t neglect the heat 

capacity 

Page 42: Lecture Slides: Lecture Thermodynamics

42Challenge the future

Case study: The cool box

Air in the oven

Layer 1 of the cool box

Layer 2 of the cool box

The air inside

Put a cool box in an oven whichis heated to 80 degrees (constant), What is the relations between the Inside temperature and the time? The initial temperature of the cooling box is 20 °C.

Page 43: Lecture Slides: Lecture Thermodynamics

43Challenge the future

Case study: The cooling box - Cause-effect

Layer 1is heated

Hot air

Effect

Cause

Layer 1is heated

Layer 2 is heated

Effect

Cause

Layer 2is heated

Air inside is heated

Effect

Cause

Cause effect: AbstractCause effect: Abstract

Page 44: Lecture Slides: Lecture Thermodynamics

44Challenge the future

Case study: Thermal resistances

1

/2

/2

/2

/2

1

Page 45: Lecture Slides: Lecture Thermodynamics

45Challenge the future

Case study: Cause-effect regarding layer 1

Cause-effect regarding hot air to layer 2

Layer1 temperature higher than layer 2

Heat transferred to layer 2 – q3

Heat transferred to layer 1 – q1

Hot air

Effect

Cause

Layer 1 absorb heat

Temperaturearise – q2

1 2 2 20

Page 46: Lecture Slides: Lecture Thermodynamics

46Challenge the future

Case study: Cause-effect regarding layer 2

Cause-effect regarding hot air to layer 2

Layer2 temperature higher than air

Heat transferred to air – q5

Heat transferred to layer 2 – q3

Hot air

Effect

Cause

Layer 2 absorb heat

Temperaturearise – q4

2 2 2 10

Page 47: Lecture Slides: Lecture Thermodynamics

47Challenge the future

Case study: Cause-effect regarding air

Cause-effect regarding hot air

Heat transferred to air – q5

Layer2 temperature higher than air

Effect

Cause

Air absorb heat

Temperaturearise – q6

2 10

Page 48: Lecture Slides: Lecture Thermodynamics

48Challenge the future

The implementation

T3T4

T2

T1

Page 49: Lecture Slides: Lecture Thermodynamics

49Challenge the future

Industrial design applications

Page 50: Lecture Slides: Lecture Thermodynamics

50Challenge the future

Conduction, Convention or Radiation?

Thermo-dynamics

& heat transfer

Courtesy ofhttp://en.wikipedia.org/wiki/Infrared_heater

http://en.wikipedia.org/wiki/Radiatorhttp://missouribeefcouncil.com/?m=201004

http://www.tefal.comhttp://www.daalderop.nl

http://www.ikea.nl

Page 51: Lecture Slides: Lecture Thermodynamics

51Challenge the future

Summary1

2

3

• Basic law of thermodynamics 

• Heat transfer

• Case studies

To develop basic understanding of thermodynamics;

To demonstrate that products with simple heat transfer behaviour can be modelled to provide useful data for designs;

To communicate with experts in their professional languages.

1

2

3

Page 52: Lecture Slides: Lecture Thermodynamics

52Challenge the future

Thank You

The Modelling Team Department of Design Engineering

Faculty of Industrial Design EngineeringDelft University of Technology