lecture slides: lecture review

106
1 Challenge the future G-L-1 Review The Modelling Team Department of Design Engineering Faculty of Industrial Design Engineering Delft University of Technology

Upload: tu-delft-opencourseware

Post on 21-Jun-2015

1.208 views

Category:

Education


1 download

DESCRIPTION

The lecture slides of lecture Review of the Modelling Course of Industrial Design of the TU Delft

TRANSCRIPT

Page 1: Lecture Slides: Lecture Review

1Challenge the future

G-L-1

Review

The Modelling TeamDepartment of Design Engineering

Faculty of Industrial Design EngineeringDelft University of Technology

Page 2: Lecture Slides: Lecture Review

2Challenge the future

Aim

To pick-up knowledge learned before

To be able to interpret this knowledge in the Modelling Framework

To be better prepared for Modelling

Page 3: Lecture Slides: Lecture Review

3Challenge the future

Contents

• Our vision

• Statics – Product in Action

• Dynamics – Product in Motion

• Summary

• The workshop

IO2081: G-L-1 Review

Page 4: Lecture Slides: Lecture Review

4Challenge the future

Our vision

Page 5: Lecture Slides: Lecture Review

5Challenge the future

The Modeling Framework

Case brief

Compare

Acceptable?

Experience

System

Thought simulation

Experiment

Build abstract model

Solve/ simulate

choices

choiceschoices

choices

do you need more insights/ data?

‘touch’ your thoughts

what are you studying?

what exactly...?

what do you foresee?

what does your model foresee?

did you both agree?everything you did/ saw/ felt/

remember to be true...

Finish!

Revisit choices

Courtesy of centech.com.pl and http://www.clipsahoy.com/webgraphics4/as5814.htm

Page 6: Lecture Slides: Lecture Review

6Challenge the future

Statics Case study: Nut Cracker Special Thanks to ir. Ernest van Breemen

Page 7: Lecture Slides: Lecture Review

7Challenge the future

Design Brief

Crack nuts by hand force

Adapt to different sizes of nuts

A portable nut cracker

Ref. http://www.lizandlaura.com/fun-and-games/fortune/?read=1301456242

Page 8: Lecture Slides: Lecture Review

8Challenge the future

The basic thought

We use

Force

to

Break nuts

Page 9: Lecture Slides: Lecture Review

9Challenge the future

How about the force?

Nut BreaksForce

300N300N

Max510NMax510N

The userThe user

Comfort150N

Comfort150N

Courtesy of http://unrealitymag.com/index.php/2009/03/19/tom-cruise-working-on-mi-4/

Page 10: Lecture Slides: Lecture Review

10Challenge the future

What shall we do?

Give me a place to stand, and I shall move the earth.

Courtesy of http://en.wikipedia.org/wiki/Archimedes

Archimedes of Syracuse

Page 11: Lecture Slides: Lecture Review

11Challenge the future

The lever

Courtesy of http://en.wikipedia.org/wiki/Lever

Lever

Mig-29

“Fulcrum”

Page 12: Lecture Slides: Lecture Review

12Challenge the future

Physics behind

1L2L

1F2F

Courtesy of http://en.wikipedia.org/wiki/Lever

21 20

LL 0M

Page 13: Lecture Slides: Lecture Review

13Challenge the future

The Experience

To zoom force at least two times larger

Use the theory of the lever

Design a place to stand

Page 14: Lecture Slides: Lecture Review

14Challenge the future

The first idea

Something similar

Too large

Not potable

It should work

But

Page 15: Lecture Slides: Lecture Review

15Challenge the future

Then

Something similar

Too large

Portable

It should work

But

Page 16: Lecture Slides: Lecture Review

16Challenge the future

The breakthrough

Something similar

Small

Potable

It should work

Page 17: Lecture Slides: Lecture Review

17Challenge the future

Thought simulation

Grip here

Nut here

Page 18: Lecture Slides: Lecture Review

18Challenge the future

Thought simulation

Grip here 1L

21 2LL

Nut here2L

Page 19: Lecture Slides: Lecture Review

19Challenge the future

First design with polished stainless steel

2 21

2 22

140 42 146

50 15 52

L

L

21 2LL

Page 20: Lecture Slides: Lecture Review

20Challenge the future

Design is how it works

“Make it look good!' That's not what we think design is.

It's not just what it looks like and feels like.

Design is how it works.Steve Jobs

Page 21: Lecture Slides: Lecture Review

21Challenge the future

Components in the system?

The system

1

2

3

4

Cracker

User

EarthNuts

Page 22: Lecture Slides: Lecture Review

22Challenge the future

What is a system?

System consists of a set of interacting or interdependent system components (or sub-systems)

System

-Structure & interconnectivity-Boundary-Input & Output-Surroundings

Page 23: Lecture Slides: Lecture Review

23Challenge the future

Components in the system?

The system

1

2

3

4

Cracker

User

EarthNuts

Boundary

Your experiences?

Page 24: Lecture Slides: Lecture Review

24Challenge the future

Physics behind: Newton's law of universal gravitation

2sun nut

ssun

m mF Gr

2earth nut

eearth

m mF Gr

0.06%sun earthGravity Gravity

Page 25: Lecture Slides: Lecture Review

25Challenge the future

Explore the relationsCracker

User

EarthNuts

Page 26: Lecture Slides: Lecture Review

26Challenge the future

Explore the relationsCracker

User

EarthNuts

Gravity

Gravity

Gravity

Page 27: Lecture Slides: Lecture Review

27Challenge the future

Explore the relationsCracker

User

EarthNuts

NO Gravity

Gravity

Gravity

Force

Page 28: Lecture Slides: Lecture Review

28Challenge the future

Explore the relationsCracker

User

EarthNuts

Force

No Gravity

Gravity

Gravity

Force

Page 29: Lecture Slides: Lecture Review

29Challenge the future

Explore the relationsCracker

User

EarthNuts

Force

No Gravity

Gravity

Gravity

Force

Page 30: Lecture Slides: Lecture Review

Explore the relationsCracker

User

EarthNuts

Force

Gravity

Force

Page 31: Lecture Slides: Lecture Review

The thought simulation

Cause

Earth

Effects

Gravity

User ~ Cracker

Cracker ~ Nuts

Force

Force

The system

1

2

3

4

Cracker

User

EarthNuts

Page 32: Lecture Slides: Lecture Review

Further focus on the nut

Cause

Earth

Effects

Gravity

Cracker ~ Nut Force

Nut sub-

system

Nut

CrackerEarth

Page 33: Lecture Slides: Lecture Review

Explore the relations

Cracker

EarthNuts

Force

Gravity

Force

Page 34: Lecture Slides: Lecture Review

Explore the relations

Cracker

EarthNuts

Force

Gravity

Page 35: Lecture Slides: Lecture Review

Modelling - The Nut – Analysis

Earth ‐ Gravity

•Earth Gravityvity

G

θ

Page 36: Lecture Slides: Lecture Review

Modelling - The Nut – Analysis

Cracker ~ Nuts

•Earth Gravityvity

ndary θ

Page 37: Lecture Slides: Lecture Review

Modelling - The Nut – Analysis

Cracker ~ Nuts

•Earth Gravityvity

ndary

InputInput

ReactionReaction

FrictionFriction

•From the grips

θ

Fu

FL

Page 38: Lecture Slides: Lecture Review

Modelling - The Nut – Analysis

Cracker ~ Nuts

•Earth Gravityvity

ndary

InputInput

ReactionReaction

FrictionFriction

•From the grips

θ

fu

fLR

•From the grips

Page 39: Lecture Slides: Lecture Review

The attribute of friction force

u uf fF θ

FU

FL

fU

fL

coefficient of friction

Page 40: Lecture Slides: Lecture Review

Modelling - The Nut – Equilibrium

θ

FU

FL

G

fU

fL

0, 0 F MCause ~ effect

•Earth Gravityvity

ndary

InputInput

ReactionReaction

FrictionFriction

•From the grips

•From the grips

Page 41: Lecture Slides: Lecture Review

Modelling - The Nut – Equilibrium

•Diameter = 30mmCause ~ effect

•Earth Gravityvity

ndary

InputInput

ReactionReaction

FrictionFriction

•From the grips

•From the grips

Page 42: Lecture Slides: Lecture Review

Modelling - The Nut – Large & Small nut

•Diameter = 20mm

D 20

•Diameter = 40mm

40

f = 0.4 f = 0.2

Page 43: Lecture Slides: Lecture Review

Evaluation

cannot guarantee that it will work.

Page 44: Lecture Slides: Lecture Review

If this is an acceptable design

1

e developed a rtable nut cracker

3We advice the user to purchase a caliper to make a precise measurement of the nut before usage

2

normal conditions, it can ck nuts till 20mm in meter. (Small nuts)

4We also advice the user to dress a safety glasses in the case of trying to crack large nuts

Page 45: Lecture Slides: Lecture Review

Evaluation: Revisit choices in the system

Diameters of the Nuts

Contact angles

Gravity

Friction coefficient

Page 46: Lecture Slides: Lecture Review

Which parameter can be changed?

Diameters of the Nuts

Contact angles/Positions

Gravity

Friction coefficient

Page 47: Lecture Slides: Lecture Review

Evaluation: Friction coefficient

We may try to use rubber in the contact area, but rubber is not durable?

What else can we do?

Page 48: Lecture Slides: Lecture Review

A new idea – Change the contact angle

A new idea

Page 49: Lecture Slides: Lecture Review

A new cycle of modelling

DIY it, Please

Cause ~ effect

•Earth Gravityty

dary

nputnput

eactioneaction

rictionriction

•From the grips

•From the grips

Page 50: Lecture Slides: Lecture Review

The origin of this case study

Thank you: Ir. Ernest van Breemen

Page 51: Lecture Slides: Lecture Review

Free your imagination in designing

Courtesy of http://www.signetemporium.com/promo.php

http://www.craftsmanspace.com/free-projects/rounded-wooden-nut-cracker-plan.htmlhttp://www.ohgizmo.com/2009/12/02/northern-industrial-tools-nut-cracker-is-one-serious-piece-of-holiday-kit/

http://www legendcookshop co uk/ratchet nut cracker 2782 0 html

Page 52: Lecture Slides: Lecture Review

igid body dynamics

The Modelling TeamDepartment of Design Engineering

Faculty of Industrial Design Engineering

pecial Thanks to Dr. Bas Flipsen

Page 53: Lecture Slides: Lecture Review

Everything starts from here

Law of Motion

Observed from an inertial reference frame, the net force on a particle is equal to the time rate of change of its linear momentum:

d mdt

F v

mF aHe never wrote

Page 54: Lecture Slides: Lecture Review

Dynamics – Equilibrium

Forces related to Cause ~ effect

•Earth Gravityavity

undary

InputInput

ReactionReaction

FrictionFriction

ertia forceertia forced mdt

v

0, 0 F M

Page 55: Lecture Slides: Lecture Review

Case study: Galileo's Leaning Tower of Pisa experiment

PhysicistMathematicianAstronomer

Page 56: Lecture Slides: Lecture Review

Is it really true?

Height 55.863 metersHeight 55.863 meters

Page 57: Lecture Slides: Lecture Review

57Challenge the future

Hammer & Feather drop: Apollo 15ref. http://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_15_feather_drop.html

It seems true on the moon, how about earth?It seems true on the moon, how about earth?

Page 58: Lecture Slides: Lecture Review

58Challenge the future

NASA “metric mixup” -Mars Climate Orbiter

Courtesy of http://en.wikipedia.org/wiki/Mars_Climate_Orbiter, www.cnn.com

Page 59: Lecture Slides: Lecture Review

59Challenge the future

NASA “metric mixup” - The tution fees

$327.6 million: Orbiter and Lander $193.1 million: Spacecraft development $91.7 million: Launch$42.8 million: Mission operations

$655.3 Million

Ref. http://en.wikipedia.org/wiki/Mars_Climate_Orbiter

Page 60: Lecture Slides: Lecture Review

60Challenge the future

Dimension problemsImperial units

p

Metric system+

Imperial Units

NASA USA

Ref. http://en.wikipedia.org/wiki/Mars_Climate_Orbiter

$655.3 Million+

Time

Page 61: Lecture Slides: Lecture Review

61Challenge the future

Is it really true?

Height 55.863 metersHeight 55.863 meters

Courtesy of http://en.wikipedia.org/wiki/Leaning_Tower_of_Pisa, http://www.bluffton.edu/~bergerd/classes/NSC109/Handouts/answers2-3.html

Page 62: Lecture Slides: Lecture Review

62Challenge the future

Inside the system?

System

Earth

Balls

User

Air

Page 63: Lecture Slides: Lecture Review

63Challenge the future

Reasoning about components:Which one is moving?

System

Earth

Balls

User

AirInertia

Page 64: Lecture Slides: Lecture Review

64Challenge the future

Relations

User

Earth

Balls Air

Gravity

Initialspeed Breath?

Gravity

Friction

Gravity

Page 65: Lecture Slides: Lecture Review

65Challenge the future

Relations

User

Earth

Balls Air

Gravity

Initialspeed NO

Gravity

Friction

Gravity

Page 66: Lecture Slides: Lecture Review

66Challenge the future

RelationsEarth

Balls Air

Gravity

Friction

Page 67: Lecture Slides: Lecture Review

67Challenge the future

Cause-Effect

Cause

Effect

Gravity • Ball drops

Air drag • Ball slows down

Inertia • Resist to change

Page 68: Lecture Slides: Lecture Review

68Challenge the future

Physics behind – The air drag

212D dF AC V

The Air drag (scalar form)

Ref. http://en.wikipedia.org/wiki/Drag_(physics)

Page 69: Lecture Slides: Lecture Review

69Challenge the future

Physics behind – The air drag

212D dF AC V

The Air drag (scalar form)

Ref. http://en.wikipedia.org/wiki/Drag_(physics)

DensityUnit(kg/m3)

The density of air

1.204 kg/m3

Page 70: Lecture Slides: Lecture Review

70Challenge the future

Physics behind – The air drag

212D dF AC V

The Air drag (scalar form)

Ref. http://en.wikipedia.org/wiki/Drag_(physics), Courtesy of http://www.redlineblog.com/reventon-lambos-ruthless-new-bull/

Reference AreaUnit(m2)

The velocity

Cross section areaPerpendicular tothe velocity

Page 71: Lecture Slides: Lecture Review

71Challenge the future

Physics behind – The air drag

Drag coefficient(dimensionless)

212D dF AC V

The Air drag (scalar form)

Courtesy of http://en.wikipedia.org/wiki/Drag_(physics), http://www.cyclingweekly.co.uk/archive/348018/how-to-improve-your-aero-position.html

Page 72: Lecture Slides: Lecture Review

72Challenge the future

Why?

Courtesy of http://en.wikipedia.org/wiki/Drag_(physics), http://www.cyclingweekly.co.uk/archive/348018/how-to-improve-your-aero-position.html

Page 73: Lecture Slides: Lecture Review

73Challenge the future

Physics behind – The air drag

212D dF AC V

The Air drag (scalar form)

DensityUnit(kg/m3)

Reference AreaUnit(m2) Drag coefficient

(dimensionless)

VelocityUnit(m/s)

Ref. http://en.wikipedia.org/wiki/Drag_(physics)

Page 74: Lecture Slides: Lecture Review

74Challenge the future

Modeling

Height 55.863Height 55.863

R 60mm R 40mm

Courtesy of http://en.wikipedia.org/wiki/Leaning_Tower_of_Pisa

Page 75: Lecture Slides: Lecture Review

75Challenge the future

Dynamics – Equilibrium (Scalar)

Forces related to Cause ~ effect

•Earth GravityGravity

Boundary

InputInput

ReactionReaction

FrictionFriction

Inertia forceInertia forced mdt

v

•From the air

2

2

( )d x tmdt

mg

21 ( )2 d

dx tACdt

0xF

( ) - travel along X-axis x t

Page 76: Lecture Slides: Lecture Review

76Challenge the future

Dynamics – The model

0xF

22

2

( ) 1 ( ) 02 d

d x t dx tm mg ACdt dt

( ) - travel along X-axis x t

Forces related to Cause ~ effect

•Earth GravityGravity

Boundary

InputInput

ReactionReaction

FrictionFriction

Inertia forceInertia forced mdt

v

•From the air

Page 77: Lecture Slides: Lecture Review

77Challenge the future

Dynamics – The model

Forces related to Cause ~ effect

•Earth GravityGravity

Boundary

InputInput

ReactionReaction

FrictionFriction

Inertia forceInertia forced mdt

v

•From the air

22

2

( ) 1 ( ) 02 d

d x t dx tm mg ACdt dt

( ) - travel along X-axis x t

0xF

Page 78: Lecture Slides: Lecture Review

78Challenge the future

Dynamics – Equilibrium

We chooseThe ball radiuses are 60mm and 40mm, respectively

The balls are made from Iron, density is 7800kg/m3

The travel distances is 50 meters

The density of air is 1.204kg/m3

The reference area is

The drag coefficient is 0.47

22

2

( ) 1 ( ) 02 d

d x t dx tm mg ACdt dt

2r

Page 79: Lecture Slides: Lecture Review

79Challenge the future

Dynamics – Equilibrium

We chooseThe ball radiuses are 60mm and 40mm, respectively

The balls are made from Iron, density is 7874kg/m3

The travel distances is 50 meters

The density of air is 1.204kg/m3

The reference area is

The drag coefficient is 0.47

343

Iron

Iron

V

r

2r

22

2

( ) 1 ( ) 02 d

d x t dx tm mg ACdt dt

Page 80: Lecture Slides: Lecture Review

80Challenge the future

Dynamics – SolveBig Small

Indeed, our experience is right, the big ball is faster.It is just hardly noticeable in this case (Human average reaction time: 0.215 second)

The big ball is 0.062 second faster

Ref. http://www.humanbenchmark.com/tests/reactiontime/index.php

Page 81: Lecture Slides: Lecture Review

81Challenge the future

Evaluations – Wooden ballBig Small

0.64 second, which is 10 times larger

Now we know how smart Galileo Galilei is

Page 82: Lecture Slides: Lecture Review

82Challenge the future

Safety regarding Wooden ball

Safety regionSafety region

Courtesy of http://www.theage.com.au/news/world/deadly-storms-lash-europe/2007/01/12/1168105153228.html, http://www.bluffton.edu/~bergerd/classes/NSC109/Handouts/answers2-3.html

Page 83: Lecture Slides: Lecture Review

83Challenge the future

The power of wind

April 18, 2013April 18, 2013

Page 84: Lecture Slides: Lecture Review

Wind speed in PisaData from http://www.windfinder.com/forecast/pisa

11 Knots = 5.66 meter/s

Page 85: Lecture Slides: Lecture Review

Dynamics – Equilibrium

0yF

R 60mm R 40mm

Y +

Wind

Wind

Wind

ces related to Cause ~ effect

•Earth Gravityy

ary

putput

eactioneaction

ictioniction

 force forced mdt

v

•From the air

Page 86: Lecture Slides: Lecture Review

Dynamics – Equilibrium along Y

( ) t l l Y i

2

2

( )d y tmdt

0yF 21 ( )

2 d winddy tAC V

dt

es related to Cause ~ effect

•Earth Gravity

ry

utut

actionaction

ctionction

forceforced mdt

v

•From the air

Page 87: Lecture Slides: Lecture Review

Dynamics – Equilibrium along Y

ces related to Cause ~ effect

•Earth Gravityy

dary

nputnput

eactioneaction

rictionriction

a forcea forced mdt

v

22 ( ) 1 ( ) 02 d wind

d y t dy tm AC Vdt dt

0yF

•From the air

Page 88: Lecture Slides: Lecture Review

Dynamics – Equilibrium

We chooseThe ball radiuses are 60mm and 40mm, respectively

The balls are made from Wood, the density is 684kg/m3

The wind speed is 5.66 m/s

The density of air is 1.204kg/m3

The reference area is

The drag coefficient is 0.47

22 ( ) 1 ( ) 02 d wind

d y t dy tm AC Vdt dt

2r

Page 89: Lecture Slides: Lecture Review

Dynamics – Equilibrium

Small

.5 meters 14.28 meters14.28 meters

Page 90: Lecture Slides: Lecture Review

Safety region – Wooden ball

Safety regionSafety region

14.28meters14.28

meters

Page 91: Lecture Slides: Lecture Review

Safety region – Wooden ball

Lean angle 5.5 degree

Height 50 meters

D

D = Height*tan(Lean angle)= 4.2 meters

Small wooden ball 14.28 meters

Page 92: Lecture Slides: Lecture Review

How about an iron ball?

Big Small

0.77 meter 1.16 meter

Page 93: Lecture Slides: Lecture Review

Safety region – Iron ball

Safety regionSafety region

1.16 meters

1.16 meters

Page 94: Lecture Slides: Lecture Review

Safety region – Iron ballLean angle 5.5 degree

Height 50 meter

D

D = 4.2 meters

Small iron ball 1.16 meter

Now we know more about Galileo Galilei. He is sure that the ball will reach the ground.

Page 95: Lecture Slides: Lecture Review

ummary

Page 96: Lecture Slides: Lecture Review

What did we learn

Check them

, please,then

0F

Forces related to Cause ~ effect

Gravity

Boundary

InputInput

ReactionReaction

FrictionFriction

Inertia forceInertia forceSystem

tem components

e-effect relationships

0M

Page 97: Lecture Slides: Lecture Review

Workshop

Page 98: Lecture Slides: Lecture Review

Workshops: Questions & Coaching

1 coach

1~2 TA(s)

Workshops: A sample question

•Not presented0•No progress0.5•Progressing1

Grading

Page 99: Lecture Slides: Lecture Review

How to do it?

n Brief

oices

stem

etchEffects

Cause-Effects

Advanced

Gre

en L

ine

Page 100: Lecture Slides: Lecture Review

G-W-0

Slide: The slide is straight, 5 meters long. In the initial design, the leaning  angle 30 degrees.The slide is fixed on the ground, it surface friction coefficient 0.2.The accuracy  of the leaning angle specified by you should be within ±1 degree.

Child: Weight 20kg, he keeps still in the process.

f we consider air drag: Air drag coefficient 0 5 air density 1 2 kg/m3 front area of the child is 0 09 m2

Page 101: Lecture Slides: Lecture Review

G-W-0ystem

System

Earth

Slide

Child

Air

Sketch:

mg

Page 102: Lecture Slides: Lecture Review

The Maple solution will be online after the workshop

Page 103: Lecture Slides: Lecture Review

Please check MapleDoc

The MapleDoc

Page 104: Lecture Slides: Lecture Review

Demo

G-W-0

Practice G-W-0 by yourself, please

Maple Demo

Do and Don’t

Maple Demo

Workshop G-W-0

Page 105: Lecture Slides: Lecture Review

Thank You!

The Modelling TeamDepartment of Design Engineering

Faculty of Industrial Design Engineering

Page 106: Lecture Slides: Lecture Review

njoy Sunshine, Enjoy Modellinghen the spring is coming, Modelling is coming